Formal Logic - Introduction

K. Subramani¹

¹Lane Department of Computer Science and Electrical Engineering West Virginia University

12 January, 2016

Why Logic?

(i) The Law!

- (i) The Law!
- (ii) Mathematics.

- (i) The Law!
- (ii) Mathematics.
- (iii) Computer Science

- (i) The Law!
- (ii) Mathematics.
- (iii) Computer Science (Automated Reasoning).

Sample Problem (Propositional Logic)

Sample Problem (Propositional Logic)

Argument

Subramani CS 220 - Discrete Mathematics

Sample Problem (Propositional Logic)

Argument

If a Democrat is elected, then taxes will go up.

Sample Problem (Propositional Logic)

Argument

If a Democrat is elected, then taxes will go up.

Either a Democrat will be elected or the bill will pass.

Argument

If a Democrat is elected, then taxes will go up.

Either a Democrat will be elected or the bill will pass.

Therefore, if the taxes do not go up, then the bill will pass.

Argument

If a Democrat is elected, then taxes will go up.

Either a Democrat will be elected or the bill will pass.

Therefore, if the taxes do not go up, then the bill will pass.

Argument

If a Democrat is elected, then taxes will go up.

Either a Democrat will be elected or the bill will pass.

Therefore, if the taxes do not go up, then the bill will pass.

Argument

If a Democrat is elected, then taxes will go up.

Either a Democrat will be elected or the bill will pass.

Therefore, if the taxes do not go up, then the bill will pass.

Questions of Interest

Is the above argument valid?

Argument

If a Democrat is elected, then taxes will go up.

Either a Democrat will be elected or the bill will pass.

Therefore, if the taxes do not go up, then the bill will pass.

- Is the above argument valid?
- What is a valid argument?

Argument

If a Democrat is elected, then taxes will go up.

Either a Democrat will be elected or the bill will pass.

Therefore, if the taxes do not go up, then the bill will pass.

- Is the above argument valid?
- What is a valid argument?
- What is an argument?

Argument

If a Democrat is elected, then taxes will go up.

Either a Democrat will be elected or the bill will pass.

Therefore, if the taxes do not go up, then the bill will pass.

- Is the above argument valid?
- What is a valid argument?
- What is an argument?
- How do I prove the validity of an argument?

Sample Problem (Predicate Logic)

Sample Problem (Predicate Logic)

Argument

Sample Problem (Predicate Logic)

Argument

Every farmer owns a cow.

Sample Problem (Predicate Logic)

Argument

Every farmer owns a cow. No dentist owns a cow.

Sample Problem (Predicate Logic)

Argument

Every farmer owns a cow. No dentist owns a cow. Therefore, no dentist is a farmer.

Argument

Every farmer owns a cow. No dentist owns a cow. Therefore, no dentist is a farmer.

Argument

Every farmer owns a cow. No dentist owns a cow. Therefore, no dentist is a farmer.

Argument

Every farmer owns a cow. No dentist owns a cow. Therefore, no dentist is a farmer.

Questions of Interest

Is the above argument valid?

Argument

Every farmer owns a cow. No dentist owns a cow. Therefore, no dentist is a farmer.

- Is the above argument valid?
- What is a valid argument?

Argument

Every farmer owns a cow. No dentist owns a cow. Therefore, no dentist is a farmer.

- Is the above argument valid?
- What is a valid argument?
- What are our tools of inference?

Argument

Every farmer owns a cow. No dentist owns a cow. Therefore, no dentist is a farmer.

Questions of Interest

- Is the above argument valid?
- What is a valid argument?
- What are our tools of inference?

Note

Argument

Every farmer owns a cow. No dentist owns a cow. Therefore, no dentist is a farmer.

Questions of Interest

- Is the above argument valid?
- 2 What is a valid argument?
- What are our tools of inference?

Note

More generally, we are interested in deducing new facts, given a set of facts and inferences.

Sample Problem (Number theory)

Sample Problem (Number theory)

Problem

Subramani CS 220 - Discrete Mathematics

Sample Problem (Number theory)

Problem

Prove that the sum of the first *n* positive integers is $\frac{n \cdot (n+1)}{2}$.

Sample Problem (Set Theory)

Sample Problem (Set Theory)

Problem

Subramani CS 220 - Discrete Mathematics

Sample Problem (Set Theory)

Problem

Let A and B denote two sets.

Sample Problem (Set Theory)

Problem

Let *A* and *B* denote two sets. Argue that $(A \cap B) \subseteq A$.

Automated Reasoning

Automated Reasoning

An algorithm

Subramani CS 220 - Discrete Mathematics

Automated Reasoning

An algorithm

Consider the following algorithm:

Automated Reasoning

An algorithm

Consider the following algorithm:

```
Function MAX-FIND(A, n)
```

```
1: if (n == 1) then
```

```
2: return(A[1]).
```

```
3: else
```

```
4: return(max(A[n], MAX-FIND(\mathbf{A}, n - 1))).
```

```
5: end if
```

Questions of Interest

Subramani CS 220 - Discrete Mathematics

Questions of Interest

Subramani CS 220 - Discrete Mathematics

Questions of Interest

• Is the above algorithm correct?

- Is the above algorithm correct?
- 2 What is the definition of correctness?

- Is the above algorithm correct?
- What is the definition of correctness?
- 3 Can you provide a proof of correctness?

- Is the above algorithm correct?
- What is the definition of correctness?
- On you provide a proof of correctness?
- What is a proof?

- Is the above algorithm correct?
- What is the definition of correctness?
- On you provide a proof of correctness?
- What is a proof?
- On you analyze the resources taken by the algorithm?