K. Subramani¹

¹Lane Department of Computer Science and Electrical Engineering West Virginia University

31 March, 5 April, 7 April 2016

Outline

Outline

Combinatorics Sets and Combinatorics

Motivating Examples

Motivating Examples

Example

Example

How many 4 digit numbers can you create using the digits 1, 2, 3, and 4, assuming no digit repeats?

Example

How many 4 digit numbers can you create using the digits 1, 2, 3, and 4, assuming no digit repeats?

Example

Example

How many 4 digit numbers can you create using the digits 1, 2, 3, and 4, assuming no digit repeats?

Example

How many 2 digit numbers can you create using the digits 1, 2, 3, and 4, assuming no digit repeats?

Example

How many 4 digit numbers can you create using the digits 1, 2, 3, and 4, assuming no digit repeats?

Example

How many 2 digit numbers can you create using the digits 1, 2, 3, and 4, assuming no digit repeats?

Example

In how many ways can 6 people be seated in a row?

Example

How many 4 digit numbers can you create using the digits 1, 2, 3, and 4, assuming no digit repeats?

Example

How many 2 digit numbers can you create using the digits 1, 2, 3, and 4, assuming no digit repeats?

Example

In how many ways can 6 people be seated in a row?

Example

Example

How many 4 digit numbers can you create using the digits 1, 2, 3, and 4, assuming no digit repeats?

Example

How many 2 digit numbers can you create using the digits 1, 2, 3, and 4, assuming no digit repeats?

Example

In how many ways can 6 people be seated in a row?

Example

In how many ways can 6 people be seated around a circular table with 6 chairs?

Example

How many 4 digit numbers can you create using the digits 1, 2, 3, and 4, assuming no digit repeats?

Example

How many 2 digit numbers can you create using the digits 1, 2, 3, and 4, assuming no digit repeats?

Example

In how many ways can 6 people be seated in a row?

Example

In how many ways can 6 people be seated around a circular table with 6 chairs? (Only relative positions can be distinguished.)

Permutations

Permutations

Definition

Combinatorics Sets and Combinatorics

Permutations

Definition

A permutation is an ordered arrangement of objects.

Definition

A permutation is an ordered arrangement of objects.

The number of distinct permutations of *r* distinct objects chosen from *n* distinct objects is denoted by P(n, r).

Definition

A permutation is an ordered arrangement of objects.

The number of distinct permutations of *r* distinct objects chosen from *n* distinct objects is denoted by P(n, r).

Definition

Definition

A permutation is an ordered arrangement of objects.

The number of distinct permutations of *r* distinct objects chosen from *n* distinct objects is denoted by P(n, r).

Definition

n! =

Definition

A permutation is an ordered arrangement of objects.

The number of distinct permutations of *r* distinct objects chosen from *n* distinct objects is denoted by P(n, r).

Definition

$$n! = \begin{cases} 1, \\ \end{array}$$

Definition

A permutation is an ordered arrangement of objects.

The number of distinct permutations of *r* distinct objects chosen from *n* distinct objects is denoted by P(n, r).

Definition

$$n! = \begin{cases} 1, & \text{if } n = 0\\ n \cdot (n-1)!, & \text{otherwise} \end{cases}$$

Computing the number of permutations

Computing the number of permutations

Computing P(n, r)

Combinatorics Sets and Combinatorics

Computing the number of permutations

Computing P(n, r)

Computing the number of permutations

Computing P(n, r)

$$P(n,r) =$$

Computing the number of permutations

Computing P(n, r)

$$P(n,r) = r$$

Computing the number of permutations

Computing P(n, r)

$$P(n,r) = n \cdot (n-1)$$

Computing the number of permutations

Computing P(n, r)

$$P(n,r) = n \cdot (n-1) \cdot \ldots (n-r+1)$$

Computing the number of permutations

Computing P(n, r)

$$P(n,r) = n \cdot (n-1) \cdot \dots (n-r+1)$$
$$=$$

Computing the number of permutations

Computing P(n, r)

$$P(n,r) = n \cdot (n-1) \cdot \dots (n-r+1) \\ = n \cdot (n-1) \cdot \dots (n-r+1) \cdot \frac{(n-r) \cdot (n-r-1) \cdot \dots 1}{(n-r) \cdot (n-r-1) \cdot \dots 1}$$

Computing the number of permutations

Computing P(n, r)

$$P(n,r) = n \cdot (n-1) \cdot \dots (n-r+1) \\ = n \cdot (n-1) \cdot \dots (n-r+1) \cdot \frac{(n-r) \cdot (n-r-1) \cdot \dots 1}{(n-r) \cdot (n-r-1) \cdot \dots 1} \\ =$$

Computing the number of permutations

Computing P(n, r)

$$P(n,r) = n \cdot (n-1) \cdot \dots (n-r+1)$$

= $n \cdot (n-1) \cdot \dots (n-r+1) \cdot \frac{(n-r) \cdot (n-r-1) \cdot \dots 1}{(n-r) \cdot (n-r-1) \cdot \dots 1}$
= $\frac{n!}{(n-r)!}, \ 0 \le r \le n$

Permutations (contd.)

Permutations (contd.)

Example

Combinatorics Sets and Combinatorics

Permutations (contd.)

Example

Compute P(7,3), P(n,0), P(n,1), and P(n,n).

Permutations (contd.)

Example

```
Compute P(7,3), P(n,0), P(n,1), and P(n,n).
```

Solution:

Permutations (contd.)

Example

Compute P(7,3), P(n,0), P(n,1), and P(n,n).

Solution: 210,

Permutations (contd.)

Example

Compute P(7,3), P(n,0), P(n,1), and P(n,n).

Solution: 210, 1,

Permutations (contd.)

Example

Compute P(7,3), P(n,0), P(n,1), and P(n,n).

Solution: 210, 1, *n*,

Permutations (contd.)

Example

Compute P(7,3), P(n,0), P(n,1), and P(n,n).

Solution: 210, 1, *n*, and *n*!.

Permutations (contd.)

Example

Compute P(7,3), P(n,0), P(n,1), and P(n,n).

Solution: 210, 1, *n*, and *n*!.

Example

Example

```
Compute P(7,3), P(n,0), P(n,1), and P(n,n).
```

```
Solution: 210, 1, n, and n!.
```

Example

How many 3 letter words can be formed using the letters in the word "compiler"?

Example

```
Compute P(7,3), P(n,0), P(n,1), and P(n,n).
```

```
Solution: 210, 1, n, and n!.
```

Example

How many 3 letter words can be formed using the letters in the word "compiler"?

Solution:

Example

```
Compute P(7,3), P(n,0), P(n,1), and P(n,n).
```

```
Solution: 210, 1, n, and n!.
```

Example

How many 3 letter words can be formed using the letters in the word "compiler"? **Solution:** P(8,3).

Example

```
Compute P(7,3), P(n,0), P(n,1), and P(n,n).
```

```
Solution: 210, 1, n, and n!.
```

Example

How many 3 letter words can be formed using the letters in the word "compiler"? **Solution:** P(8,3).

Example

Example

```
Compute P(7,3), P(n,0), P(n,1), and P(n,n).
```

```
Solution: 210, 1, n, and n!.
```

Example

How many 3 letter words can be formed using the letters in the word "compiler"? **Solution:** P(8,3).

Example

In how many ways can a president and vice-president be chosen from a group of 20 people?

Example

```
Compute P(7,3), P(n,0), P(n,1), and P(n,n).
```

```
Solution: 210, 1, n, and n!.
```

Example

How many 3 letter words can be formed using the letters in the word "compiler"? **Solution:** P(8,3).

Example

In how many ways can a president and vice-president be chosen from a group of 20 people?

Solution:

Example

```
Compute P(7,3), P(n,0), P(n,1), and P(n,n).
```

```
Solution: 210, 1, n, and n!.
```

Example

How many 3 letter words can be formed using the letters in the word "compiler"? **Solution:** P(8,3).

Example

In how many ways can a president and vice-president be chosen from a group of 20 people?

```
Solution: P(20, 2).
```

One more example

One more example

Example

Combinatorics Sets and Combinatorics

Example

A library has 4 books on programming, 7 on algorithms and 3 on complexity.

Example

A library has 4 books on programming, 7 on algorithms and 3 on complexity. In how many ways can the books be ordered on a shelf?

Example

A library has 4 books on programming, 7 on algorithms and 3 on complexity.

In how many ways can the books be ordered on a shelf?

Provided that the books of a subject are required to be together?

Example

A library has 4 books on programming, 7 on algorithms and 3 on complexity.

In how many ways can the books be ordered on a shelf?

Provided that the books of a subject are required to be together?

Example

A library has 4 books on programming, 7 on algorithms and 3 on complexity.

In how many ways can the books be ordered on a shelf?

Provided that the books of a subject are required to be together?

Solution

Example

A library has 4 books on programming, 7 on algorithms and 3 on complexity.

In how many ways can the books be ordered on a shelf?

Provided that the books of a subject are required to be together?

Solution

If there is no restriction, the number of arrangements is

Example

A library has 4 books on programming, 7 on algorithms and 3 on complexity.

In how many ways can the books be ordered on a shelf?

Provided that the books of a subject are required to be together?

Solution

If there is no restriction, the number of arrangements is P(14, 14) = 14!.

Example

A library has 4 books on programming, 7 on algorithms and 3 on complexity.

In how many ways can the books be ordered on a shelf?

Provided that the books of a subject are required to be together?

Solution

If there is no restriction, the number of arrangements is P(14, 14) = 14!.

Now consider the case in which the books of a given subject are required to be together.

Example

A library has 4 books on programming, 7 on algorithms and 3 on complexity.

In how many ways can the books be ordered on a shelf?

Provided that the books of a subject are required to be together?

Solution

If there is no restriction, the number of arrangements is P(14, 14) = 14!.

Now consider the case in which the books of a given subject are required to be together.

First arrange the three subjects.

Example

A library has 4 books on programming, 7 on algorithms and 3 on complexity.

In how many ways can the books be ordered on a shelf?

Provided that the books of a subject are required to be together?

Solution

If there is no restriction, the number of arrangements is P(14, 14) = 14!.

Now consider the case in which the books of a given subject are required to be together.

First arrange the three subjects. This can be done in P(3,3) = 3! ways.

Example

A library has 4 books on programming, 7 on algorithms and 3 on complexity.

In how many ways can the books be ordered on a shelf?

Provided that the books of a subject are required to be together?

Solution

If there is no restriction, the number of arrangements is P(14, 14) = 14!.

Now consider the case in which the books of a given subject are required to be together.

First arrange the three subjects. This can be done in P(3,3) = 3! ways.

Corresponding to each such arrangement,

Example

A library has 4 books on programming, 7 on algorithms and 3 on complexity.

In how many ways can the books be ordered on a shelf?

Provided that the books of a subject are required to be together?

Solution

If there is no restriction, the number of arrangements is P(14, 14) = 14!.

Now consider the case in which the books of a given subject are required to be together.

First arrange the three subjects. This can be done in P(3,3) = 3! ways.

Corresponding to each such arrangement,

the programming books can be permuted in

Example

A library has 4 books on programming, 7 on algorithms and 3 on complexity.

In how many ways can the books be ordered on a shelf?

Provided that the books of a subject are required to be together?

Solution

If there is no restriction, the number of arrangements is P(14, 14) = 14!.

Now consider the case in which the books of a given subject are required to be together.

First arrange the three subjects. This can be done in P(3,3) = 3! ways.

Corresponding to each such arrangement,

the programming books can be permuted in P(4, 4) = 4! ways,

Example

A library has 4 books on programming, 7 on algorithms and 3 on complexity.

In how many ways can the books be ordered on a shelf?

Provided that the books of a subject are required to be together?

Solution

If there is no restriction, the number of arrangements is P(14, 14) = 14!.

Now consider the case in which the books of a given subject are required to be together.

First arrange the three subjects. This can be done in P(3,3) = 3! ways.

Corresponding to each such arrangement,

the programming books can be permuted in P(4, 4) = 4! ways,

the algorithms books can be permuted in

Example

A library has 4 books on programming, 7 on algorithms and 3 on complexity.

In how many ways can the books be ordered on a shelf?

Provided that the books of a subject are required to be together?

Solution

If there is no restriction, the number of arrangements is P(14, 14) = 14!.

Now consider the case in which the books of a given subject are required to be together.

First arrange the three subjects. This can be done in P(3,3) = 3! ways.

Corresponding to each such arrangement,

the programming books can be permuted in P(4, 4) = 4! ways,

the algorithms books can be permuted in P(7,7) = 7! ways,

Example

A library has 4 books on programming, 7 on algorithms and 3 on complexity.

In how many ways can the books be ordered on a shelf?

Provided that the books of a subject are required to be together?

Solution

If there is no restriction, the number of arrangements is P(14, 14) = 14!.

Now consider the case in which the books of a given subject are required to be together.

First arrange the three subjects. This can be done in P(3,3) = 3! ways.

Corresponding to each such arrangement,

the programming books can be permuted in P(4, 4) = 4! ways,

the algorithms books can be permuted in P(7,7) = 7! ways,

and the complexity books can be permuted in

Example

A library has 4 books on programming, 7 on algorithms and 3 on complexity.

In how many ways can the books be ordered on a shelf?

Provided that the books of a subject are required to be together?

Solution

If there is no restriction, the number of arrangements is P(14, 14) = 14!.

Now consider the case in which the books of a given subject are required to be together.

First arrange the three subjects. This can be done in P(3,3) = 3! ways.

Corresponding to each such arrangement,

the programming books can be permuted in P(4, 4) = 4! ways,

the algorithms books can be permuted in P(7,7) = 7! ways,

and the complexity books can be permuted in P(3,3) = 3! ways.

Example

A library has 4 books on programming, 7 on algorithms and 3 on complexity.

In how many ways can the books be ordered on a shelf?

Provided that the books of a subject are required to be together?

Solution

If there is no restriction, the number of arrangements is P(14, 14) = 14!.

Now consider the case in which the books of a given subject are required to be together.

First arrange the three subjects. This can be done in P(3,3) = 3! ways.

Corresponding to each such arrangement,

the programming books can be permuted in P(4, 4) = 4! ways,

the algorithms books can be permuted in P(7,7) = 7! ways,

and the complexity books can be permuted in P(3,3) = 3! ways.

Using the multiplication principle, the total number of arrangements is 3! • 4! • 7! • 3!.

More Examples

More Examples

Example

Combinatorics Sets and Combinatorics

More Examples

Example

Solve the motivating examples.

Motivating Examples

Motivating Examples

Example

Combinatorics Sets and Combinatorics

Motivating Examples

Example

How many 5-card hands are possible with a 52 card deck?

Motivating Examples

Example

How many 5-card hands are possible with a 52 card deck?

Example

Example

How many 5-card hands are possible with a 52 card deck?

Example

Ten athletes compete in an Olympic event.

Example

How many 5-card hands are possible with a 52 card deck?

Example

Ten athletes compete in an Olympic event. Three will be declared winners.

Example

How many 5-card hands are possible with a 52 card deck?

Example

Ten athletes compete in an Olympic event. Three will be declared winners.

In how many ways can the winners be selected?

Example

How many 5-card hands are possible with a 52 card deck?

Example

Ten athletes compete in an Olympic event. Three will be declared winners.

In how many ways can the winners be selected?

Example

Example

How many 5-card hands are possible with a 52 card deck?

Example

Ten athletes compete in an Olympic event. Three will be declared winners.

In how many ways can the winners be selected?

Example

A committee of 3 is to be formed from 5 men and 2 women.

Example

How many 5-card hands are possible with a 52 card deck?

Example

Ten athletes compete in an Olympic event. Three will be declared winners.

In how many ways can the winners be selected?

Example

A committee of 3 is to be formed from 5 men and 2 women.

In how many ways can the committee be formed, if

Example

How many 5-card hands are possible with a 52 card deck?

Example

Ten athletes compete in an Olympic event. Three will be declared winners.

In how many ways can the winners be selected?

Example

A committee of 3 is to be formed from 5 men and 2 women.

In how many ways can the committee be formed, if

Example

How many 5-card hands are possible with a 52 card deck?

Example

Ten athletes compete in an Olympic event. Three will be declared winners.

In how many ways can the winners be selected?

Example

A committee of 3 is to be formed from 5 men and 2 women.

In how many ways can the committee be formed, if

The committee must include at least one woman.

Example

How many 5-card hands are possible with a 52 card deck?

Example

Ten athletes compete in an Olympic event. Three will be declared winners.

In how many ways can the winners be selected?

Example

A committee of 3 is to be formed from 5 men and 2 women.

In how many ways can the committee be formed, if

- The committee must include at least one woman.
- O There cannot be more than two men on the committee.

Combinations

Definition

Combinations

Definition

A combination is an (unordered) selection of objects.

Definition

A combination is an (unordered) selection of objects.

The number of distinct combinations of *r* distinct objects chosen from *n* distinct objects is denoted by C(n, r).

Definition

A combination is an (unordered) selection of objects.

The number of distinct combinations of *r* distinct objects chosen from *n* distinct objects is denoted by C(n, r).

Computing C(n, r)

Definition

A combination is an (unordered) selection of objects.

The number of distinct combinations of *r* distinct objects chosen from *n* distinct objects is denoted by C(n, r).

Computing C(n, r)

Focus on a given combination of *r* objects chosen from *n* objects.

Definition

A combination is an (unordered) selection of objects.

The number of distinct combinations of *r* distinct objects chosen from *n* distinct objects is denoted by C(n, r).

Computing C(n, r)

Focus on a given combination of *r* objects chosen from *n* objects.

The objects in this combination can be permuted in r! different ways to get r! distinct permutations.

Definition

A combination is an (unordered) selection of objects.

The number of distinct combinations of *r* distinct objects chosen from *n* distinct objects is denoted by C(n, r).

Computing C(n, r)

Focus on a given combination of *r* objects chosen from *n* objects.

The objects in this combination can be permuted in r! different ways to get r! distinct permutations.

It follows that $C(n, r) \cdot r! = P(n, r)$,

Definition

A combination is an (unordered) selection of objects.

The number of distinct combinations of *r* distinct objects chosen from *n* distinct objects is denoted by C(n, r).

Computing C(n, r)

Focus on a given combination of *r* objects chosen from *n* objects.

The objects in this combination can be permuted in r! different ways to get r! distinct permutations.

It follows that $C(n, r) \cdot r! = P(n, r)$, i.e., $C(n, r) = \frac{P(n, r)}{r!} = \frac{n!}{r! \cdot (n-r)!}, \ 0 \le r \le n$.

Definition

A combination is an (unordered) selection of objects.

The number of distinct combinations of *r* distinct objects chosen from *n* distinct objects is denoted by C(n, r).

Computing C(n, r)

Focus on a given combination of r objects chosen from n objects.

The objects in this combination can be permuted in r! different ways to get r! distinct permutations.

It follows that
$$C(n, r) \cdot r! = P(n, r)$$
, i.e., $C(n, r) = \frac{P(n, r)}{r!} = \frac{n!}{r! \cdot (n-r)!}, \ 0 \le r \le n$.

Example

Definition

A combination is an (unordered) selection of objects.

The number of distinct combinations of *r* distinct objects chosen from *n* distinct objects is denoted by C(n, r).

Computing C(n, r)

Focus on a given combination of *r* objects chosen from *n* objects.

The objects in this combination can be permuted in r! different ways to get r! distinct permutations.

It follows that
$$C(n, r) \cdot r! = P(n, r)$$
, i.e., $C(n, r) = \frac{P(n, r)}{r!} = \frac{n!}{r! \cdot (n-r)!}, \ 0 \le r \le n$.

Example

Compute C(7,3), C(n,0), C(n,1) and C(n,n).

Definition

A combination is an (unordered) selection of objects.

The number of distinct combinations of *r* distinct objects chosen from *n* distinct objects is denoted by C(n, r).

Computing C(n, r)

Focus on a given combination of *r* objects chosen from *n* objects.

The objects in this combination can be permuted in r! different ways to get r! distinct permutations.

It follows that
$$C(n, r) \cdot r! = P(n, r)$$
, i.e., $C(n, r) = \frac{P(n, r)}{r!} = \frac{n!}{r! \cdot (n-r)!}, \ 0 \le r \le n$.

Example

Compute C(7,3), C(n,0), C(n,1) and C(n,n).

Solution:

Definition

A combination is an (unordered) selection of objects.

The number of distinct combinations of *r* distinct objects chosen from *n* distinct objects is denoted by C(n, r).

Computing C(n, r)

Focus on a given combination of *r* objects chosen from *n* objects.

The objects in this combination can be permuted in r! different ways to get r! distinct permutations.

It follows that
$$C(n, r) \cdot r! = P(n, r)$$
, i.e., $C(n, r) = \frac{P(n, r)}{r!} = \frac{n!}{r! \cdot (n-r)!}, \ 0 \le r \le n$.

Example

Compute C(7,3), C(n,0), C(n,1) and C(n,n). Solution: 35,

Definition

A combination is an (unordered) selection of objects.

The number of distinct combinations of *r* distinct objects chosen from *n* distinct objects is denoted by C(n, r).

Computing C(n, r)

Focus on a given combination of *r* objects chosen from *n* objects.

The objects in this combination can be permuted in r! different ways to get r! distinct permutations.

It follows that
$$C(n, r) \cdot r! = P(n, r)$$
, i.e., $C(n, r) = \frac{P(n, r)}{r!} = \frac{n!}{r! \cdot (n-r)!}, \ 0 \le r \le n$.

Example

Compute C(7,3), C(n,0), C(n,1) and C(n,n). Solution: 35, 1,

Definition

A combination is an (unordered) selection of objects.

The number of distinct combinations of *r* distinct objects chosen from *n* distinct objects is denoted by C(n, r).

Computing C(n, r)

Focus on a given combination of *r* objects chosen from *n* objects.

The objects in this combination can be permuted in r! different ways to get r! distinct permutations.

It follows that
$$C(n, r) \cdot r! = P(n, r)$$
, i.e., $C(n, r) = \frac{P(n, r)}{r!} = \frac{n!}{r! \cdot (n-r)!}, \ 0 \le r \le n$.

Example

Compute *C*(7,3), *C*(*n*,0), *C*(*n*,1) and *C*(*n*,*n*). Solution: 35, 1, *n*,

Definition

A combination is an (unordered) selection of objects.

The number of distinct combinations of *r* distinct objects chosen from *n* distinct objects is denoted by C(n, r).

Computing C(n, r)

Focus on a given combination of *r* objects chosen from *n* objects.

The objects in this combination can be permuted in r! different ways to get r! distinct permutations.

It follows that
$$C(n, r) \cdot r! = P(n, r)$$
, i.e., $C(n, r) = \frac{P(n, r)}{r!} = \frac{n!}{r! \cdot (n-r)!}, \ 0 \le r \le n$.

Example

Compute *C*(7,3), *C*(*n*,0), *C*(*n*,1) and *C*(*n*,*n*). **Solution:** 35, 1, *n*, 1.

Permutations

Combination

The Binomial Theorem

Combinations (examples)

Combinations (examples)

Example

Combinatorics Sets and Combinatorics

Combinations (examples)

Example

A committee of 8 students is to be selected from 19 freshmen and 34 sophomores.

Combinations (examples)

Example

A committee of 8 students is to be selected from 19 freshmen and 34 sophomores.

In how many ways, can this committee be formed, if

Combinations (examples)

Example

A committee of 8 students is to be selected from 19 freshmen and 34 sophomores.

In how many ways, can this committee be formed, if

• it must contain 3 freshmen and 5 sophomores.

Combinations (examples)

Example

A committee of 8 students is to be selected from 19 freshmen and 34 sophomores.

In how many ways, can this committee be formed, if

• it must contain 3 freshmen and 5 sophomores. Solution:

Combinations (examples)

Example

A committee of 8 students is to be selected from 19 freshmen and 34 sophomores.

In how many ways, can this committee be formed, if

• it must contain 3 freshmen and 5 sophomores. Solution: $C(19,3) \cdot C(34,5)$.

Combinations (examples)

Example

A committee of 8 students is to be selected from 19 freshmen and 34 sophomores.

In how many ways, can this committee be formed, if

- it must contain 3 freshmen and 5 sophomores. Solution: $C(19,3) \cdot C(34,5)$.
- 2 it must contain exactly one freshman.

Combinations (examples)

Example

A committee of 8 students is to be selected from 19 freshmen and 34 sophomores.

In how many ways, can this committee be formed, if

- it must contain 3 freshmen and 5 sophomores. Solution: $C(19,3) \cdot C(34,5)$.
- 2 it must contain exactly one freshman. Solution:

Combinations (examples)

Example

A committee of 8 students is to be selected from 19 freshmen and 34 sophomores.

- it must contain 3 freshmen and 5 sophomores. Solution: $C(19,3) \cdot C(34,5)$.
- **2** it must contain exactly one freshman. **Solution:** $C(19, 1) \cdot C(34, 7)$.

Combinations (examples)

Example

A committee of 8 students is to be selected from 19 freshmen and 34 sophomores.

- it must contain 3 freshmen and 5 sophomores. Solution: $C(19,3) \cdot C(34,5)$.
- 2 it must contain exactly one freshman. Solution: $C(19, 1) \cdot C(34, 7)$.
- it can contain at most one freshman.

Combinations (examples)

Example

A committee of 8 students is to be selected from 19 freshmen and 34 sophomores.

- it must contain 3 freshmen and 5 sophomores. Solution: $C(19,3) \cdot C(34,5)$.
- **2** it must contain exactly one freshman. **Solution:** $C(19, 1) \cdot C(34, 7)$.
- () it can contain at most one freshman. Solution:

Combinations (examples)

Example

A committee of 8 students is to be selected from 19 freshmen and 34 sophomores.

- it must contain 3 freshmen and 5 sophomores. Solution: $C(19,3) \cdot C(34,5)$.
- **2** it must contain exactly one freshman. **Solution:** $C(19, 1) \cdot C(34, 7)$.
- \bigcirc it can contain at most one freshman. Solution: C(34, 8)

Combinations (examples)

Example

A committee of 8 students is to be selected from 19 freshmen and 34 sophomores.

- it must contain 3 freshmen and 5 sophomores. Solution: $C(19,3) \cdot C(34,5)$.
- **2** it must contain exactly one freshman. **Solution:** $C(19, 1) \cdot C(34, 7)$.
- (a) it can contain at most one freshman. Solution: $C(34, 8) + C(19, 1) \cdot C(34, 7)$.

Combinations (examples)

Example

A committee of 8 students is to be selected from 19 freshmen and 34 sophomores.

- it must contain 3 freshmen and 5 sophomores. Solution: $C(19,3) \cdot C(34,5)$.
- 2 it must contain exactly one freshman. Solution: $C(19, 1) \cdot C(34, 7)$.
- (a) it can contain at most one freshman. Solution: $C(34, 8) + C(19, 1) \cdot C(34, 7)$.
- it contains at least one freshman.

Combinations (examples)

Example

A committee of 8 students is to be selected from 19 freshmen and 34 sophomores.

- it must contain 3 freshmen and 5 sophomores. Solution: $C(19,3) \cdot C(34,5)$.
- 2 it must contain exactly one freshman. Solution: $C(19, 1) \cdot C(34, 7)$.
- it can contain at most one freshman. Solution: $C(34, 8) + C(19, 1) \cdot C(34, 7)$.
- it contains at least one freshman. Solution: C(53, 8) C(34, 8).

More examples

More examples

Example

Combinatorics Sets and Combinatorics

More examples

Example

Solve the motivating examples.

Handling Duplicates

Handling Duplicates

Permutations

Combinatorics Sets and Combinatorics

Permutations

If there are n objects of which a set of n_1 are indistinguishable from each other,

Permutations

If there are *n* objects of which a set of n_1 are indistinguishable from each other, a second set of n_2 are indistinguishable from each other

Permutations

If there are *n* objects of which a set of n_1 are indistinguishable from each other, a second set of n_2 are indistinguishable from each other and ... a k^{th} set of n_k objects are indistinguishable from each other,

Permutations

If there are *n* objects of which a set of n_1 are indistinguishable from each other, a second set of n_2 are indistinguishable from each other and ... a k^{th} set of n_k objects are indistinguishable from each other, then the number of distinct permutations of the *n* objects is:

Permutations

If there are *n* objects of which a set of n_1 are indistinguishable from each other, a second set of n_2 are indistinguishable from each other and ... a k^{th} set of n_k objects are indistinguishable from each other, then the number of distinct permutations of the *n* objects is:

 $\frac{n!}{n_1! \cdot n_2! \dots n_k!}$

Permutations

If there are *n* objects of which a set of n_1 are indistinguishable from each other, a second set of n_2 are indistinguishable from each other and ... a k^{th} set of n_k objects are indistinguishable from each other, then the number of distinct permutations of the *n* objects is:

 $\frac{n!}{n_1! \cdot n_2! \dots n_k!}$

Example

Permutations

If there are *n* objects of which a set of n_1 are indistinguishable from each other, a second set of n_2 are indistinguishable from each other and ... a k^{th} set of n_k objects are indistinguishable from each other, then the number of distinct permutations of the *n* objects is:

 $\frac{n!}{n_1! \cdot n_2! \dots n_k!}$

Example

In how many distinct ways can the characters in the word MISSISSIPPI be permuted?

Permutations

If there are *n* objects of which a set of n_1 are indistinguishable from each other, a second set of n_2 are indistinguishable from each other and ... a k^{th} set of n_k objects are indistinguishable from each other, then the number of distinct permutations of the *n* objects is:

 $\frac{n!}{n_1! \cdot n_2! \dots n_k!}$

Example

In how many distinct ways can the characters in the word MISSISSIPPI be permuted? **Solution:**

Permutations

If there are *n* objects of which a set of n_1 are indistinguishable from each other, a second set of n_2 are indistinguishable from each other and ... a k^{th} set of n_k objects are indistinguishable from each other, then the number of distinct permutations of the *n* objects is:

 $\frac{n!}{n_1! \cdot n_2! \dots n_k!}$

Example

In how many distinct ways can the characters in the word MISSISSIPPI be permuted? **Solution:**

 $\frac{11!}{4!\cdot 4!\cdot 2!}.$

Handling Repetitions

Handling Repetitions

Permutations

Combinatorics Sets and Combinatorics

Handling Repetitions

Permutations

In how many ways can you select r objects from n, assuming that there is an infinite supply of all objects?

Permutations

In how many ways can you select r objects from n, assuming that there is an infinite supply of all objects?

The number of arrangements of r objects from n objects with repetitions permitted is simply

Permutations

In how many ways can you select r objects from n, assuming that there is an infinite supply of all objects?

The number of arrangements of *r* objects from *n* objects with repetitions permitted is simply n^r .

Permutations

In how many ways can you select r objects from n, assuming that there is an infinite supply of all objects?

The number of arrangements of *r* objects from *n* objects with repetitions permitted is simply n^r .

Combinations

Permutations

In how many ways can you select r objects from n, assuming that there is an infinite supply of all objects?

The number of arrangements of *r* objects from *n* objects with repetitions permitted is simply n^r .

Combinations

Consider the following problem:

Permutations

In how many ways can you select r objects from n, assuming that there is an infinite supply of all objects?

The number of arrangements of *r* objects from *n* objects with repetitions permitted is simply n^r .

Combinations

Consider the following problem:

A jeweler wants to create a ring from 5 stones.

Permutations

In how many ways can you select r objects from n, assuming that there is an infinite supply of all objects?

The number of arrangements of *r* objects from *n* objects with repetitions permitted is simply n^r .

Combinations

Consider the following problem:

A jeweler wants to create a ring from 5 stones.

He has at his disposal an infinite supply of rubies, pearls and diamonds.

Permutations

In how many ways can you select r objects from n, assuming that there is an infinite supply of all objects?

The number of arrangements of *r* objects from *n* objects with repetitions permitted is simply n^r .

Combinations

Consider the following problem:

A jeweler wants to create a ring from 5 stones.

He has at his disposal an infinite supply of rubies, pearls and diamonds.

How many 5-stone sets are possible?

Permutations

In how many ways can you select r objects from n, assuming that there is an infinite supply of all objects?

The number of arrangements of *r* objects from *n* objects with repetitions permitted is simply n^r .

Combinations

Consider the following problem:

A jeweler wants to create a ring from 5 stones.

He has at his disposal an infinite supply of rubies, pearls and diamonds.

How many 5-stone sets are possible?

Solution:

Permutations

In how many ways can you select r objects from n, assuming that there is an infinite supply of all objects?

The number of arrangements of *r* objects from *n* objects with repetitions permitted is simply n^r .

Combinations

Consider the following problem:

A jeweler wants to create a ring from 5 stones.

He has at his disposal an infinite supply of rubies, pearls and diamonds.

How many 5-stone sets are possible?

Solution: Let us represent a ring as $\langle \mathbf{r}, \mathbf{p}, \mathbf{d} \rangle$.

Permutations

In how many ways can you select r objects from n, assuming that there is an infinite supply of all objects?

The number of arrangements of *r* objects from *n* objects with repetitions permitted is simply n^r .

Combinations

Consider the following problem:

A jeweler wants to create a ring from 5 stones.

He has at his disposal an infinite supply of rubies, pearls and diamonds.

How many 5-stone sets are possible?

Solution: Let us represent a ring as $\langle \mathbf{r}, \mathbf{p}, \mathbf{d} \rangle$.

Some valid rings are:

Permutations

In how many ways can you select r objects from n, assuming that there is an infinite supply of all objects?

The number of arrangements of *r* objects from *n* objects with repetitions permitted is simply n^r .

Combinations

Consider the following problem:

A jeweler wants to create a ring from 5 stones.

He has at his disposal an infinite supply of rubies, pearls and diamonds.

How many 5-stone sets are possible?

Solution: Let us represent a ring as $\langle \mathbf{r}, \mathbf{p}, \mathbf{d} \rangle$.

Some valid rings are: $\langle 0, 0, 5 \rangle$,

Permutations

In how many ways can you select r objects from n, assuming that there is an infinite supply of all objects?

The number of arrangements of *r* objects from *n* objects with repetitions permitted is simply n^r .

Combinations

Consider the following problem:

A jeweler wants to create a ring from 5 stones.

He has at his disposal an infinite supply of rubies, pearls and diamonds.

How many 5-stone sets are possible?

Solution: Let us represent a ring as $\langle \mathbf{r}, \mathbf{p}, \mathbf{d} \rangle$.

Some valid rings are: (0, 0, 5), (1, 2, 2) and so on.

Handling Repetitions

Permutations

In how many ways can you select r objects from n, assuming that there is an infinite supply of all objects?

The number of arrangements of *r* objects from *n* objects with repetitions permitted is simply n^r .

Combinations

Consider the following problem:

A jeweler wants to create a ring from 5 stones.

He has at his disposal an infinite supply of rubies, pearls and diamonds.

How many 5-stone sets are possible?

Solution: Let us represent a ring as $\langle \mathbf{r}, \mathbf{p}, \mathbf{d} \rangle$.

Some valid rings are: (0, 0, 5), (1, 2, 2) and so on.

Is this a permutations problem or a combinations problem?

Handling Repetitions

Permutations

In how many ways can you select r objects from n, assuming that there is an infinite supply of all objects?

The number of arrangements of *r* objects from *n* objects with repetitions permitted is simply n^r .

Combinations

Consider the following problem:

A jeweler wants to create a ring from 5 stones.

He has at his disposal an infinite supply of rubies, pearls and diamonds.

How many 5-stone sets are possible?

Solution: Let us represent a ring as $\langle \mathbf{r}, \mathbf{p}, \mathbf{d} \rangle$.

Some valid rings are: (0, 0, 5), (1, 2, 2) and so on.

Is this a permutations problem or a combinations problem?

We want to select 5 objects out of 3 objects,

Handling Repetitions

Permutations

In how many ways can you select r objects from n, assuming that there is an infinite supply of all objects?

The number of arrangements of *r* objects from *n* objects with repetitions permitted is simply n^r .

Combinations

Consider the following problem:

A jeweler wants to create a ring from 5 stones.

He has at his disposal an infinite supply of rubies, pearls and diamonds.

How many 5-stone sets are possible?

Solution: Let us represent a ring as $\langle \mathbf{r}, \mathbf{p}, \mathbf{d} \rangle$.

Some valid rings are: (0, 0, 5), (1, 2, 2) and so on.

Is this a permutations problem or a combinations problem?

We want to select 5 objects out of 3 objects, with repetitions allowed.

Permutations

Combinations

The Binomial Theorem

The jeweler ring problem

The jeweler ring problem

Solution

Combinatorics Sets and Combinatorics

The jeweler ring problem

Solution

Think of the ring as laying out the rubies, pearls and diamonds on a straight line.

The jeweler ring problem

Solution

Think of the ring as laying out the rubies, pearls and diamonds on a straight line. Use two markers to separate the three different types of stones, making sure that the total is exactly 5.

Solution

Think of the ring as laying out the rubies, pearls and diamonds on a straight line.

Use two markers to separate the three different types of stones, making sure that the total is exactly 5.

Observe that once the separating markers are placed the combination is uniquely determined.

Solution

Think of the ring as laying out the rubies, pearls and diamonds on a straight line.

Use two markers to separate the three different types of stones, making sure that the total is exactly 5.

Observe that once the separating markers are placed the combination is uniquely determined.

Thus, the problem reduces to the problem of placing two markers separating the rubies, pearls and diamonds.

Solution

Think of the ring as laying out the rubies, pearls and diamonds on a straight line.

Use two markers to separate the three different types of stones, making sure that the total is exactly 5.

Observe that once the separating markers are placed the combination is uniquely determined.

Thus, the problem reduces to the problem of placing two markers separating the rubies, pearls and diamonds.

Think of seven placeholders

Solution

Think of the ring as laying out the rubies, pearls and diamonds on a straight line.

Use two markers to separate the three different types of stones, making sure that the total is exactly 5.

Observe that once the separating markers are placed the combination is uniquely determined.

Thus, the problem reduces to the problem of placing two markers separating the rubies, pearls and diamonds.

Think of seven placeholders (5 for the stones and 2 for the markers).

Solution

Think of the ring as laying out the rubies, pearls and diamonds on a straight line.

Use two markers to separate the three different types of stones, making sure that the total is exactly 5.

Observe that once the separating markers are placed the combination is uniquely determined.

Thus, the problem reduces to the problem of placing two markers separating the rubies, pearls and diamonds.

Think of seven placeholders (5 for the stones and 2 for the markers).

We need to choose 2 positions for the markers.

Solution

Think of the ring as laying out the rubies, pearls and diamonds on a straight line.

Use two markers to separate the three different types of stones, making sure that the total is exactly 5.

Observe that once the separating markers are placed the combination is uniquely determined.

Thus, the problem reduces to the problem of placing two markers separating the rubies, pearls and diamonds.

Think of seven placeholders (5 for the stones and 2 for the markers).

We need to choose 2 positions for the markers.

Clearly, this can be done in

Solution

Think of the ring as laying out the rubies, pearls and diamonds on a straight line.

Use two markers to separate the three different types of stones, making sure that the total is exactly 5.

Observe that once the separating markers are placed the combination is uniquely determined.

Thus, the problem reduces to the problem of placing two markers separating the rubies, pearls and diamonds.

Think of seven placeholders (5 for the stones and 2 for the markers).

We need to choose 2 positions for the markers.

Clearly, this can be done in C(7, 2) ways.

Permutations

Combination

The Binomial Theorem

Generalizing the combinations with repetitions formula

Permutations Combinations

The Binomial Theorem

Generalizing the combinations with repetitions formula

Generalization

Combinatorics Sets and Combinatorics

Generalization

Consider the problem of *selecting* r objects out of n distinct objects with repetitions allowed.

Generalization

Consider the problem of *selecting r* objects out of *n* distinct objects with repetitions allowed.

This problem boils down to the problem of placing (n - 1) distinct markers to separate the *n* distinct types, so that the total number of objects selected is *r*.

Generalization

Consider the problem of *selecting* r objects out of n distinct objects with repetitions allowed.

This problem boils down to the problem of placing (n-1) distinct markers to separate the *n* distinct types, so that the total number of objects selected is *r*.

Think of (n-1) + r placeholders

Generalization

Consider the problem of *selecting* r objects out of n distinct objects with repetitions allowed.

This problem boils down to the problem of placing (n - 1) distinct markers to separate the *n* distinct types, so that the total number of objects selected is *r*.

Think of (n-1) + r placeholders (*r* for the selected objects and (n-1) for the markers).

Generalization

Consider the problem of *selecting* r objects out of n distinct objects with repetitions allowed.

This problem boils down to the problem of placing (n - 1) distinct markers to separate the *n* distinct types, so that the total number of objects selected is *r*.

Think of (n-1) + r placeholders (*r* for the selected objects and (n-1) for the markers).

We need to choose (n - 1) of these positions for the markers.

Generalization

Consider the problem of *selecting* r objects out of n distinct objects with repetitions allowed.

This problem boils down to the problem of placing (n - 1) distinct markers to separate the *n* distinct types, so that the total number of objects selected is *r*.

Think of (n - 1) + r placeholders (*r* for the selected objects and (n - 1) for the markers).

We need to choose (n - 1) of these positions for the markers.

Clearly, this can be done in C(n - 1 + r, n - 1)

Generalization

Consider the problem of *selecting* r objects out of n distinct objects with repetitions allowed.

This problem boils down to the problem of placing (n - 1) distinct markers to separate the *n* distinct types, so that the total number of objects selected is *r*.

Think of (n-1) + r placeholders (*r* for the selected objects and (n-1) for the markers).

We need to choose (n-1) of these positions for the markers.

Clearly, this can be done in C(n-1+r, n-1) = C(n+r-1, n-1)

Generalization

Consider the problem of *selecting* r objects out of n distinct objects with repetitions allowed.

This problem boils down to the problem of placing (n - 1) distinct markers to separate the *n* distinct types, so that the total number of objects selected is *r*.

Think of (n-1) + r placeholders (*r* for the selected objects and (n-1) for the markers).

We need to choose (n - 1) of these positions for the markers.

Clearly, this can be done in C(n - 1 + r, n - 1) = C(n + r - 1, n - 1) = C(n + r - 1, r) ways.

Example

In how many ways can six children choose one lollipop from a selection of red, green and yellow lollipops,

Example

In how many ways can six children choose one lollipop from a selection of red, green and yellow lollipops, assuming that we do not care which child gets which?

Example

In how many ways can six children choose one lollipop from a selection of red, green and yellow lollipops, assuming that we do not care which child gets which?

Solution:

Combinatorics Sets and Combinatorics

Example

In how many ways can six children choose one lollipop from a selection of red, green and yellow lollipops, assuming that we do not care which child gets which?

Solution: Once again think of 2 markers separating the three types of lollipops.

Example

In how many ways can six children choose one lollipop from a selection of red, green and yellow lollipops, assuming that we do not care which child gets which?

Solution: Once again think of 2 markers separating the three types of lollipops.

So we have to place select two positions for the markers from a total of 6 (children) +2 placeholders.

Example

In how many ways can six children choose one lollipop from a selection of red, green and yellow lollipops, assuming that we do not care which child gets which?

Solution: Once again think of 2 markers separating the three types of lollipops.

So we have to place select two positions for the markers from a total of 6 (children) +2 placeholders.

Clearly, this can be done in C(6+2,2)

Example

In how many ways can six children choose one lollipop from a selection of red, green and yellow lollipops, assuming that we do not care which child gets which?

Solution: Once again think of 2 markers separating the three types of lollipops.

So we have to place select two positions for the markers from a total of 6 (children) +2 placeholders.

Clearly, this can be done in C(6+2,2) =

Example

In how many ways can six children choose one lollipop from a selection of red, green and yellow lollipops, assuming that we do not care which child gets which?

Solution: Once again think of 2 markers separating the three types of lollipops.

So we have to place select two positions for the markers from a total of 6 (children) +2 placeholders.

Clearly, this can be done in C(6+2,2) = C(8,2)

Example

In how many ways can six children choose one lollipop from a selection of red, green and yellow lollipops, assuming that we do not care which child gets which?

Solution: Once again think of 2 markers separating the three types of lollipops.

So we have to place select two positions for the markers from a total of 6 (children) +2 placeholders.

Clearly, this can be done in C(6 + 2, 2) = C(8, 2) = C(8, 6) ways.

Exercises

Exercises

Identities

Combinatorics Sets and Combinatorics

Exercises

Identities

• Argue that $P(n, 1) + P(n, 2) = n^2$, $\forall n \ge 2$.

Identities

- Argue that $P(n, 1) + P(n, 2) = n^2$, $\forall n \ge 2$.
- 2 Show that for all $n \ge 1$, P(n, n) = P(n, n-1).

Identities

- Argue that $P(n, 1) + P(n, 2) = n^2$, $\forall n \ge 2$.
- 2 Show that for all $n \ge 1$, P(n, n) = P(n, n-1).
- Solution Prove that for any $0 \le r \le n$, C(n, r) = C(n, n r).

Identities

- Argue that $P(n, 1) + P(n, 2) = n^2$, $\forall n \ge 2$.
- 2 Show that for all $n \ge 1$, P(n, n) = P(n, n-1).
- **③** Prove that for any $0 \le r \le n$, C(n, r) = C(n, n r).

Word Problems

Identities

- Argue that $P(n, 1) + P(n, 2) = n^2$, $\forall n \ge 2$.
- 2 Show that for all $n \ge 1$, P(n, n) = P(n, n-1).
- Solution Prove that for any $0 \le r \le n$, C(n, r) = C(n, n r).

Word Problems

In how many ways, can you seat 11 men and 8 women in a row, so that no two women sit together?

Identities

- Argue that $P(n, 1) + P(n, 2) = n^2$, $\forall n \ge 2$.
- 2 Show that for all $n \ge 1$, P(n, n) = P(n, n-1).
- **③** Prove that for any $0 \le r \le n$, C(n, r) = C(n, n r).

Word Problems

- In how many ways, can you seat 11 men and 8 women in a row, so that no two women sit together?
- A committee of three has to be chosen from five Democrats, three Republicans and four independents.

Identities

- Argue that $P(n, 1) + P(n, 2) = n^2$, $\forall n \ge 2$.
- 2 Show that for all $n \ge 1$, P(n, n) = P(n, n-1).
- **③** Prove that for any $0 \le r \le n$, C(n, r) = C(n, n r).

Word Problems

- In how many ways, can you seat 11 men and 8 women in a row, so that no two women sit together?
- A committee of three has to be chosen from five Democrats, three Republicans and four independents.

In how many ways can the committee be chosen, if it cannot include both Democrats and Republicans?

Motivation

Expansions

Motivation

Expansions

(i) $(a+b)^1 =$

Motivation

Expansions

(i)
$$(a+b)^1 = a+b$$
.

Motivation

Expansions

(i)
$$(a+b)^1 = a+b$$

(ii) $(a+b)^2 =$

Motivation

(i)
$$(a+b)^1 = a+b$$
.
(ii) $(a+b)^2 = a^2 + 2 \cdot a \cdot b + b^2$

Motivation

(i)
$$(a+b)^1 = a+b$$
.
(ii) $(a+b)^2 = a^2 + 2 \cdot a \cdot b + b^2$.
(iii) $(a+b)^3 =$

Motivation

(i)
$$(a+b)^1 = a+b$$
.
(ii) $(a+b)^2 = a^2 + 2 \cdot a \cdot b + b^2$.
(iii) $(a+b)^3 = a^3 + 3 \cdot a^2 \cdot b + 3 \cdot a \cdot b^2 + b^3$

Motivation

(i)
$$(a+b)^1 = a+b$$
.
(ii) $(a+b)^2 = a^2 + 2 \cdot a \cdot b + b^2$.
(iii) $(a+b)^3 = a^3 + 3 \cdot a^2 \cdot b + 3 \cdot a \cdot b^2 + b^3$.
(iv) $(a+b)^4 = ???$

Motivation

Expansions

- (i) $(a+b)^1 = a+b$.
- (ii) $(a+b)^2 = a^2 + 2 \cdot a \cdot b + b^2$.
- (iii) $(a+b)^3 = a^3 + 3 \cdot a^2 \cdot b + 3 \cdot a \cdot b^2 + b^3$.

(iv)
$$(a+b)^4 = ???$$

We want a general formula that permits us to write down the terms of $(a + b)^n$ without actual multiplication.

Pascal's Triangle

Pascal's Triangle

The coefficient table

Pascal's Triangle

The coefficient table

Consider the following table:

Pascal's Triangle

The coefficient table

Consider the following table:

Row 0:

C(0, 0)

Pascal's Triangle

The coefficient table

Row 0:		<i>C</i> (0, 0)				
Row 1:	C(1, 0)	C(1, 1)				

Pascal's Triangle

The coefficient table

Row 0:			C(0, 0)		
Row 1:		C(1,0)		C(1, 1)	
Row 2:	C(2, 0)		C(2, 1)		C(2, 2)

Pascal's Triangle

The coefficient table

Row 0:				C(0, 0)			
Row 1:			C(1,0)		C(1, 1)		
Row 2:		C(2, 0)		C(2, 1)		C(2, 2)	
Row 3:	C(3, 0)		C(3, 1)		C(3, 2)		C(3, 3)

Pascal's Triangle

The coefficient table

Row 0:				C(0, 0)			
Row 1:			C(1,0)		<i>C</i> (1, 1)		
Row 2:		C(2, 0)		C(2, 1)		C(2, 2)	
Row 3:	C(3, 0)		C(3, 1)		C(3, 2)		C(3, 3)
:							

Pascal's Triangle

The coefficient table

Row 0:					C(0, 0)				
Row 1:				C(1,0)		<i>C</i> (1, 1)			
Row 2:			C(2, 0)		C(2, 1)		C(2, 2)		
Row 3:		C(3, 0)		C(3, 1)		C(3, 2)		C(3, 3)	
Row <i>n</i> :	C(n, 0)		C(n, 1)				<i>C</i> (<i>n</i> , <i>n</i> – 1)		C(n, n)

Pascal's triangle (contd.)

Pascal's triangle (contd.)

The Value Table

Pascal's triangle (contd.)

The Value Table

Pascal's triangle (contd.)

The Value Table

Writing down the values of the terms gives the following table:

Row 0:

1

Pascal's triangle (contd.)

The Value Table

Writing down the values of the terms gives the following table:

Row 0: 1 Row 1: 1 1

Pascal's triangle (contd.)

The Value Table

Row 0:			1		
Row 1:		1		1	
Row 2:	1		2		1

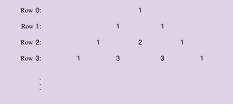
Pascal's triangle (contd.)

The Value Table

Row 0:				1			
Row 1:			1		1		
Row 2:		1		2		1	
Row 3:	1		3		3		1

Pascal's triangle (contd.)

The Value Table



Pascal's triangle (contd.)

The Value Table

1
1

Pascal's formula

Pascal's formula

Theorem

Pascal's formula

Theorem

 $C(n, k) = C(n - 1, k - 1) + C(n - 1, k), 1 \le k \le n - 1.$

Pascal's formula

Theorem

 $C(n, k) = C(n - 1, k - 1) + C(n - 1, k), 1 \le k \le n - 1.$

Proof.

Combinatorics Sets and Combinatorics

Pascal's formula

Theorem

 $C(n, k) = C(n - 1, k - 1) + C(n - 1, k), 1 \le k \le n - 1.$

Proof.

Pascal's formula

Theorem

 $C(n, k) = C(n - 1, k - 1) + C(n - 1, k), 1 \le k \le n - 1.$

Proof.

Observe that,

C(n-1, k-1) + C(n-1, k) =

Pascal's formula

Theorem

 $C(n, k) = C(n - 1, k - 1) + C(n - 1, k), 1 \le k \le n - 1.$

Proof.

$$C(n-1, k-1) + C(n-1, k) = \frac{(n-1)!}{(k-1)! \cdot [(n-1-(k-1))!]} + \frac{(n-1)!}{k! \cdot (n-1-k)!}$$

Pascal's formula

Theorem

 $C(n, k) = C(n - 1, k - 1) + C(n - 1, k), 1 \le k \le n - 1.$

Proof.

$$C(n-1, k-1) + C(n-1, k) = \frac{(n-1)!}{(k-1)! \cdot [(n-1-(k-1))!]} + \frac{(n-1)!}{k! \cdot (n-1-k)!}$$
$$= \frac{(n-1)!}{(k-1)! \cdot (n-k)!} + \frac{(n-1)!}{k! \cdot (n-1-k)!}$$

Pascal's formula

Theorem

 $C(n, k) = C(n - 1, k - 1) + C(n - 1, k), 1 \le k \le n - 1.$

Proof.

$$\begin{aligned} C(n-1, k-1) + C(n-1, k) &= \frac{(n-1)!}{(k-1)! \cdot [(n-1-(k-1))!]} + \frac{(n-1)!}{k! \cdot (n-1-k)!} \\ &= \frac{(n-1)!}{(k-1)! \cdot (n-k)!} + \frac{(n-1)!}{k! \cdot (n-1-k)!} \\ &= \frac{k \cdot (n-1)!}{k! \cdot (n-k)!} + \frac{(n-k) \cdot (n-1)!}{k! \cdot (n-k)!} \end{aligned}$$

Pascal's formula

Theorem

 $C(n, k) = C(n - 1, k - 1) + C(n - 1, k), 1 \le k \le n - 1.$

Proof.

$$\begin{aligned} C(n-1,k-1)+C(n-1,k) &= \frac{(n-1)!}{(k-1)!\cdot[(n-1-(k-1))!]} + \frac{(n-1)!}{k!\cdot(n-1-k)!} \\ &= \frac{(n-1)!}{(k-1)!\cdot(n-k)!} + \frac{(n-1)!}{k!\cdot(n-1-k)!} \\ &= \frac{k\cdot(n-1)!}{k!\cdot(n-k)!} + \frac{(n-k)\cdot(n-1)!}{k!\cdot(n-k)!} \\ &= \frac{(n-1)!}{k!\cdot(n-k)!}[k+(n-k)] \end{aligned}$$

Pascal's formula

Theorem

 $C(n, k) = C(n - 1, k - 1) + C(n - 1, k), 1 \le k \le n - 1.$

Proof.

$$C(n-1, k-1) + C(n-1, k) = \frac{(n-1)!}{(k-1)! \cdot [(n-1-(k-1))!]} + \frac{(n-1)!}{k! \cdot (n-1-k)!}$$

$$= \frac{(n-1)!}{(k-1)! \cdot (n-k)!} + \frac{(n-1)!}{k! \cdot (n-1-k)!}$$

$$= \frac{k \cdot (n-1)!}{k! \cdot (n-k)!} + \frac{(n-k) \cdot (n-1)!}{k! \cdot (n-k)!}$$

$$= \frac{(n-1)!}{k! \cdot (n-k)!} [k + (n-k)]$$

$$= \frac{n \cdot (n-1)!}{k! \cdot (n-k)!}$$

Pascal's formula

Theorem

 $C(n, k) = C(n - 1, k - 1) + C(n - 1, k), 1 \le k \le n - 1.$

Proof.

$$C(n-1, k-1) + C(n-1, k) = \frac{(n-1)!}{(k-1)! \cdot [(n-1-(k-1))!]} + \frac{(n-1)!}{k! \cdot (n-1-k)!}$$

$$= \frac{(n-1)!}{(k-1)! \cdot (n-k)!} + \frac{(n-1)!}{k! \cdot (n-1-k)!}$$

$$= \frac{k \cdot (n-1)!}{k! \cdot (n-k)!} + \frac{(n-k) \cdot (n-1)!}{k! \cdot (n-k)!}$$

$$= \frac{(n-1)!}{k! \cdot (n-k)!} [k + (n-k)]$$

$$= \frac{n \cdot (n-1)!}{k! \cdot (n-k)!}$$

$$= \frac{n!}{k! \cdot (n-k)!}$$

Pascal's formula

Theorem

 $C(n, k) = C(n - 1, k - 1) + C(n - 1, k), 1 \le k \le n - 1.$

Proof.

$$C(n-1, k-1) + C(n-1, k) = \frac{(n-1)!}{(k-1)! \cdot [(n-1-(k-1))!]} + \frac{(n-1)!}{k! \cdot (n-1-k)!}$$

$$= \frac{(n-1)!}{(k-1)! \cdot (n-k)!} + \frac{(n-1)!}{k! \cdot (n-1-k)!}$$

$$= \frac{k \cdot (n-1)!}{k! \cdot (n-k)!} + \frac{(n-k) \cdot (n-1)!}{k! \cdot (n-k)!}$$

$$= \frac{(n-1)!}{k! \cdot (n-k)!} [k + (n-k)]$$

$$= \frac{n \cdot (n-1)!}{k! \cdot (n-k)!}$$

$$= \frac{n!}{k! \cdot (n-k)!}$$

$$= C(n, k).$$

Alternative Proof

Alternative Proof

Alternative Proof

Alternative Proof

A second Proof

(i) Observe that C(n, k) represents the number of ways in which k objects can be selected from n objects.

Alternative Proof

- (i) Observe that C(n, k) represents the number of ways in which k objects can be selected from n objects.
- (ii) Focus on a particular object, say o.

- (i) Observe that C(n, k) represents the number of ways in which k objects can be selected from n objects.
- (ii) Focus on a particular object, say o.
- (iii) Note that each selection of *k* objects from the *n* objects, either includes *o* or it does not.

- (i) Observe that C(n, k) represents the number of ways in which k objects can be selected from n objects.
- (ii) Focus on a particular object, say o.
- (iii) Note that each selection of *k* objects from the *n* objects, either includes *o* or it does not.
- (iv) Let T_1 denote the number of ways in which k objects are selected from the n objects, with o definitely included.

- (i) Observe that C(n, k) represents the number of ways in which k objects can be selected from *n* objects.
- (ii) Focus on a particular object, say o.
- (iii) Note that each selection of *k* objects from the *n* objects, either includes *o* or it does not.
- (iv) Let T_1 denote the number of ways in which k objects are selected from the n objects, with o definitely included.
- (v) Since *o* is definitely included, this means that we have to choose the remaining (k-1) objects from the remaining (n-1) objects.

- (i) Observe that C(n, k) represents the number of ways in which k objects can be selected from *n* objects.
- (ii) Focus on a particular object, say o.
- (iii) Note that each selection of *k* objects from the *n* objects, either includes *o* or it does not.
- (iv) Let T_1 denote the number of ways in which k objects are selected from the n objects, with o definitely included.
- (v) Since *o* is definitely included, this means that we have to choose the remaining (k 1) objects from the remaining (n 1) objects. It follows that $T_1 =$

- (i) Observe that C(n, k) represents the number of ways in which k objects can be selected from n objects.
- (ii) Focus on a particular object, say o.
- (iii) Note that each selection of *k* objects from the *n* objects, either includes *o* or it does not.
- (iv) Let T_1 denote the number of ways in which k objects are selected from the n objects, with o definitely included.
- (v) Since *o* is definitely included, this means that we have to choose the remaining (k 1) objects from the remaining (n 1) objects. It follows that $T_1 = C(n 1, k 1)$.

- (i) Observe that C(n, k) represents the number of ways in which k objects can be selected from n objects.
- (ii) Focus on a particular object, say o.
- (iii) Note that each selection of *k* objects from the *n* objects, either includes *o* or it does not.
- (iv) Let T_1 denote the number of ways in which k objects are selected from the n objects, with o definitely included.
- (v) Since *o* is definitely included, this means that we have to choose the remaining (k 1) objects from the remaining (n 1) objects. It follows that $T_1 = C(n 1, k 1)$.
- (vi) Let T_2 denote the number of ways in which k objects are selected from the n objects, with o definitely excluded.

- (i) Observe that C(n, k) represents the number of ways in which k objects can be selected from *n* objects.
- (ii) Focus on a particular object, say o.
- (iii) Note that each selection of *k* objects from the *n* objects, either includes *o* or it does not.
- (iv) Let T_1 denote the number of ways in which k objects are selected from the n objects, with o definitely included.
- (v) Since *o* is definitely included, this means that we have to choose the remaining (k 1) objects from the remaining (n 1) objects. It follows that $T_1 = C(n 1, k 1)$.
- (vi) Let T_2 denote the number of ways in which k objects are selected from the n objects, with o definitely excluded.
- (vii) Since *o* is definitely excluded, all *k* objects must be selected from the remaining (n-1) objects. It follows that $T_2 =$

- (i) Observe that C(n, k) represents the number of ways in which k objects can be selected from *n* objects.
- (ii) Focus on a particular object, say o.
- (iii) Note that each selection of *k* objects from the *n* objects, either includes *o* or it does not.
- (iv) Let T_1 denote the number of ways in which k objects are selected from the n objects, with o definitely included.
- (v) Since *o* is definitely included, this means that we have to choose the remaining (k 1) objects from the remaining (n 1) objects. It follows that $T_1 = C(n 1, k 1)$.
- (vi) Let T_2 denote the number of ways in which k objects are selected from the n objects, with o definitely excluded.
- (vii) Since *o* is definitely excluded, all *k* objects must be selected from the remaining (n-1) objects. It follows that $T_2 = C(n-1, k)$.

- (i) Observe that C(n, k) represents the number of ways in which k objects can be selected from *n* objects.
- (ii) Focus on a particular object, say o.
- (iii) Note that each selection of *k* objects from the *n* objects, either includes *o* or it does not.
- (iv) Let T_1 denote the number of ways in which k objects are selected from the n objects, with o definitely included.
- (v) Since *o* is definitely included, this means that we have to choose the remaining (k 1) objects from the remaining (n 1) objects. It follows that $T_1 = C(n 1, k 1)$.
- (vi) Let T_2 denote the number of ways in which k objects are selected from the n objects, with o definitely excluded.
- (vii) Since *o* is definitely excluded, all *k* objects must be selected from the remaining (n-1) objects. It follows that $T_2 = C(n-1, k)$.
- (viii) Using the addition principle, $C(n, k) = T_1 + T_2 = C(n-1, k-1) + C(n-1, k)$.

Note on Proof Techniques

Note on Proof Techniques

Note

Combinatorics Sets and Combinatorics

Note on Proof Techniques

Note

The above proof is called a combinatorial proof and is always preferred on account of its elegance.

Note on Proof Techniques

Note

The above proof is called a combinatorial proof and is always preferred on account of its elegance.

Recall the combinatorial proof for proving that C(n, r) = C(n, n - r).

The Theorem

The Theorem

Theorem

Combinatorics Sets and Combinatorics

The Theorem

Theorem

 $(a + b)^{n} =$

The Theorem

Theorem

$$(a+b)^n = \sum_{i=0}^n C(n,i) \cdot a^{n-i} \cdot b^i, \ \forall n \ge 0.$$

The Theorem

Theorem

$$(a+b)^n = \sum_{i=0}^n C(n,i) \cdot a^{n-i} \cdot b^i, \ \forall n \ge 0.$$

Proof.

Combinatorics Sets and Combinatorics

The Theorem

Theorem

$$(a+b)^n = \sum_{i=0}^n C(n,i) \cdot a^{n-i} \cdot b^i, \forall n \ge 0.$$

Proof.

Let P(n) denote the proposition $(a + b)^n = \sum_{i=0}^n C(n, i) \cdot a^{n-i} \cdot b^i$.

The Theorem

Theorem

$$(a+b)^n = \sum_{i=0}^n C(n,i) \cdot a^{n-i} \cdot b^i, \ \forall n \ge 0.$$

Proof.

Let P(n) denote the proposition $(a + b)^n = \sum_{i=0}^n C(n, i) \cdot a^{n-i} \cdot b^i$. We are required to prove $(\forall n)P(n)$.

The Theorem

Theorem

$$(a+b)^n = \sum_{i=0}^n C(n,i) \cdot a^{n-i} \cdot b^i, \ \forall n \ge 0.$$

Proof.

Let P(n) denote the proposition $(a + b)^n = \sum_{i=0}^n C(n, i) \cdot a^{n-i} \cdot b^i$. We are required to prove $(\forall n)P(n)$. We use mathematical induction.

The Theorem

Theorem

$$(a+b)^n = \sum_{i=0}^n C(n,i) \cdot a^{n-i} \cdot b^i, \ \forall n \ge 0.$$

Proof.

Let P(n) denote the proposition $(a + b)^n = \sum_{i=0}^n C(n, i) \cdot a^{n-i} \cdot b^i$. We are required to prove $(\forall n)P(n)$. We use mathematical induction.

BASIS:

Theorem

$$(a+b)^n = \sum_{i=0}^n C(n,i) \cdot a^{n-i} \cdot b^i, \ \forall n \ge 0.$$

Proof.

Let P(n) denote the proposition $(a + b)^n = \sum_{i=0}^n C(n, i) \cdot a^{n-i} \cdot b^i$. We are required to prove $(\forall n)P(n)$. We use mathematical induction.

BASIS: At n = 0, the LHS is $(a + b)^0 = 1$

Theorem

$$(a+b)^n = \sum_{i=0}^n C(n,i) \cdot a^{n-i} \cdot b^i, \ \forall n \ge 0.$$

Proof.

Let P(n) denote the proposition $(a + b)^n = \sum_{i=0}^n C(n, i) \cdot a^{n-i} \cdot b^i$. We are required to prove $(\forall n)P(n)$. We use mathematical induction.

BASIS: At n = 0, the LHS is $(a + b)^0 = 1$ and the RHS is $\sum_{i=0}^0 C(0, i) \cdot a^{0-i} \cdot b^i$.

Theorem

$$(a+b)^n = \sum_{i=0}^n C(n,i) \cdot a^{n-i} \cdot b^i, \ \forall n \ge 0.$$

Proof.

Let P(n) denote the proposition $(a + b)^n = \sum_{i=0}^n C(n, i) \cdot a^{n-i} \cdot b^i$. We are required to prove $(\forall n)P(n)$. We use mathematical induction.

BASIS: At n = 0, the LHS is $(a + b)^0 = 1$ and the RHS is $\sum_{i=0}^{0} C(0, i) \cdot a^{0-i} \cdot b^i$.

Since the only value for *i* is also 0, the RHS is $C(0, 0) a^0 \cdot b^0 = 1$.

Theorem

$$(a+b)^n = \sum_{i=0}^n C(n,i) \cdot a^{n-i} \cdot b^i, \ \forall n \ge 0.$$

Proof.

Let P(n) denote the proposition $(a + b)^n = \sum_{i=0}^n C(n, i) \cdot a^{n-i} \cdot b^i$. We are required to prove $(\forall n)P(n)$. We use mathematical induction.

BASIS: At n = 0, the LHS is $(a + b)^0 = 1$ and the RHS is $\sum_{i=0}^{0} C(0, i) \cdot a^{0-i} \cdot b^i$.

Since the only value for *i* is also 0, the RHS is $C(0, 0) a^0 \cdot b^0 = 1$.

Thus, LHS = RHS and the basis is proven.

Proof of Binomial Theorem

Proof of Binomial Theorem

Proof.

Combinatorics Sets and Combinatorics

Proof of Binomial Theorem

Proof.

INDUCTIVE STEP: Assume that P(k) is true, for some $k \ge 0$, i.e., assume that

Proof of Binomial Theorem

Proof.

INDUCTIVE STEP: Assume that P(k) is true, for some $k \ge 0$, i.e., assume that

 $(a + b)^{k} =$

Proof of Binomial Theorem

Proof.

INDUCTIVE STEP: Assume that P(k) is true, for some $k \ge 0$, i.e., assume that

$$(a+b)^k = \sum_{i=0}^k C(k,i) \cdot a^{k-i} \cdot b^i$$
, for some $k \ge 0$.

Proof of Binomial Theorem

Proof.

INDUCTIVE STEP: Assume that P(k) is true, for some $k \ge 0$, i.e., assume that

$$(a+b)^k = \sum_{i=0}^k C(k,i) \cdot a^{k-i} \cdot b^i$$
, for some $k \ge 0$.

Proof of Binomial Theorem

Proof.

INDUCTIVE STEP: Assume that P(k) is true, for some $k \ge 0$, i.e., assume that

$$(a+b)^k = \sum_{i=0}^k C(k,i) \cdot a^{k-i} \cdot b^i$$
, for some $k \ge 0$.

At n = k + 1, we have,

LHS =

Proof of Binomial Theorem

Proof.

INDUCTIVE STEP: Assume that P(k) is true, for some $k \ge 0$, i.e., assume that

$$(a+b)^k = \sum_{i=0}^k C(k,i) \cdot a^{k-i} \cdot b^i$$
, for some $k \ge 0$.

At n = k + 1, we have,

 $LHS = (a+b)^{k+1}$

Proof of Binomial Theorem

Proof.

INDUCTIVE STEP: Assume that P(k) is true, for some $k \ge 0$, i.e., assume that

$$(a+b)^k = \sum_{i=0}^k C(k,i) \cdot a^{k-i} \cdot b^i$$
, for some $k \ge 0$.

LHS =
$$(a + b)^{k+1}$$

= $(a + b)^k \cdot (a + b)^k$

Proof of Binomial Theorem

Proof.

INDUCTIVE STEP: Assume that P(k) is true, for some $k \ge 0$, i.e., assume that

$$(a+b)^k = \sum_{i=0}^k C(k,i) \cdot a^{k-i} \cdot b^i$$
, for some $k \ge 0$.

$$HS = (a+b)^{k+1}$$

= $(a+b)^k \cdot (a+b)$
= $(\sum_{i=0}^k \cdot C(k,i) \cdot a^{k-i} \cdot b^i) \cdot (a+b),$

Proof.

INDUCTIVE STEP: Assume that P(k) is true, for some $k \ge 0$, i.e., assume that

$$(a+b)^k = \sum_{i=0}^k C(k,i) \cdot a^{k-i} \cdot b^i$$
, for some $k \ge 0$.

LHS =
$$(a + b)^{k+1}$$

= $(a + b)^k \cdot (a + b)$
= $(\sum_{i=0}^k \cdot C(k, i) \cdot a^{k-i} \cdot b^i) \cdot (a + b)$, using the inductive hypothesis

Proof.

INDUCTIVE STEP: Assume that P(k) is true, for some $k \ge 0$, i.e., assume that

$$(a+b)^k = \sum_{i=0}^k C(k,i) \cdot a^{k-i} \cdot b^i$$
, for some $k \ge 0$.

$$HS = (a + b)^{k+1}$$

= $(a + b)^{k} \cdot (a + b)$
= $(\sum_{i=0}^{k} \cdot C(k, i) \cdot a^{k-i} \cdot b^{i}) \cdot (a + b)$, using the inductive hypothesis
= $a \cdot (\sum_{i=0}^{k} C(k, i) \cdot a^{k-i} \cdot b^{i}) + b \cdot (\sum_{i=0}^{k} C(k, i) \cdot a^{k-i} \cdot b^{i})$

Proof.

INDUCTIVE STEP: Assume that P(k) is true, for some $k \ge 0$, i.e., assume that

$$(a+b)^k = \sum_{i=0}^k C(k,i) \cdot a^{k-i} \cdot b^i$$
, for some $k \ge 0$.

$$HS = (a + b)^{k+1}$$

$$= (a + b)^{k} \cdot (a + b)$$

$$= (\sum_{i=0}^{k} \cdot C(k, i) \cdot a^{k-i} \cdot b^{i}) \cdot (a + b), \text{ using the inductive hypothesis}$$

$$= a \cdot (\sum_{i=0}^{k} C(k, i) \cdot a^{k-i} \cdot b^{i}) + b \cdot (\sum_{i=0}^{k} C(k, i) \cdot a^{k-i} \cdot b^{i})$$

$$= \sum_{i=0}^{k} C(k, i) \cdot a^{k+1-i} \cdot b^{i} + \sum_{i=0}^{k} C(k, i) \cdot a^{k-i} \cdot b^{i+1}$$

Proof.

INDUCTIVE STEP: Assume that P(k) is true, for some $k \ge 0$, i.e., assume that

$$(a+b)^k = \sum_{i=0}^k C(k,i) \cdot a^{k-i} \cdot b^i$$
, for some $k \ge 0$.

$$HS = (a + b)^{k+1}$$

$$= (a + b)^{k} \cdot (a + b)$$

$$= (\sum_{i=0}^{k} \cdot C(k, i) \cdot a^{k-i} \cdot b^{i}) \cdot (a + b), \text{ using the inductive hypothesis}$$

$$= a \cdot (\sum_{i=0}^{k} C(k, i) \cdot a^{k-i} \cdot b^{i}) + b \cdot (\sum_{i=0}^{k} C(k, i) \cdot a^{k-i} \cdot b^{i})$$

$$= \sum_{i=0}^{k} C(k, i) \cdot a^{k+1-i} \cdot b^{i} + \sum_{i=0}^{k} C(k, i) \cdot a^{k-i} \cdot b^{i+1}$$

Proof.

Combinatorics Sets and Combinatorics

Proof (contd.)

Proof.

$$LHS = C(k, 0) \cdot a^{k+1} \cdot b^{0} + \sum_{i=1}^{k} C(k, i) \cdot a^{k+1-i} \cdot b^{i} + \sum_{i=0}^{k-1} C(k, i) \cdot a^{k-i} \cdot b^{i+1} + C(k, k) \cdot a^{0} \cdot b^{k+1}$$

Proof (contd.)

Proof.

$$LHS = C(k, 0) \cdot a^{k+1} \cdot b^{0} + \sum_{i=1}^{k} C(k, i) \cdot a^{k+1-i} \cdot b^{i} + \sum_{i=0}^{k-1} C(k, i) \cdot a^{k-i} \cdot b^{i+1} + C(k, k) \cdot a^{0} \cdot b^{k+1}$$

We focus on the quantity

(F)
$$\sum_{i=1}^{k} C(k, i) \cdot a^{k+1-i} \cdot b^{i} + (S) \sum_{i=0}^{k-1} C(k, i) \cdot a^{k-i} \cdot b^{i+1}$$
 (1)

Proof (contd.)

Proof.

$$LHS = C(k, 0) \cdot a^{k+1} \cdot b^0 + \sum_{i=1}^{k} C(k, i) \cdot a^{k+1-i} \cdot b^i + \sum_{i=0}^{k-1} C(k, i) \cdot a^{k-i} \cdot b^{i+1} + C(k, k) \cdot a^0 \cdot b^{k+1}$$

We focus on the quantity

(F)
$$\sum_{i=1}^{k} C(k,i) \cdot a^{k+1-i} \cdot b^{i} + (\mathbf{S}) \sum_{i=0}^{k-1} C(k,i) \cdot a^{k-i} \cdot b^{i+1}$$
 (1)

Observe that the first k terms in **F** are $a^k \cdot b^1$, $a^{k-1} \cdot b^2$, ..., $a^1 \cdot b^k$, while the first k terms in **S** are also $a^k \cdot b^1$, $a^{k-1} \cdot b^2$, ..., $a^1 \cdot b^k$.

Proof (contd.)

Proof.

In other words, the terms in F and S are identical, except for the coefficents.

Proof.

In other words, the terms in F and S are identical, except for the coefficents.

Further, all the terms can be generated using the term formula, $a^{k+1-p} \cdot b^p$, $1 \le p \le k$.

Proof.

In other words, the terms in F and S are identical, except for the coefficents.

Further, all the terms can be generated using the term formula, $a^{k+1-p} \cdot b^p$, $1 \le p \le k$.

Observe that the coefficient of $a^{k+1-p} \cdot b^p$ is C(k, p) in **F** and C(k, p-1) in **S**. (This requires some thought!)

Proof.

In other words, the terms in F and S are identical, except for the coefficents.

Further, all the terms can be generated using the term formula, $a^{k+1-p} \cdot b^p$, $1 \le p \le k$.

Observe that the coefficient of $a^{k+1-p} \cdot b^p$ is C(k, p) in **F** and C(k, p-1) in **S**. (This requires some thought!)

Accordingly, the coefficient of $a^{k+1-p} \cdot b^p$ in the sum (**F** + **S**) is C(k, p) + C(k, p-1),

Proof.

In other words, the terms in F and S are identical, except for the coefficents.

Further, all the terms can be generated using the term formula, $a^{k+1-p} \cdot b^p$, $1 \le p \le k$.

Observe that the coefficient of $a^{k+1-p} \cdot b^p$ is C(k, p) in **F** and C(k, p-1) in **S**. (This requires some thought!)

Accordingly, the coefficient of $a^{k+1-p} \cdot b^p$ in the sum (**F** + **S**) is C(k, p) + C(k, p-1), which is

Proof.

In other words, the terms in F and S are identical, except for the coefficents.

Further, all the terms can be generated using the term formula, $a^{k+1-p} \cdot b^p$, $1 \le p \le k$.

Observe that the coefficient of $a^{k+1-p} \cdot b^p$ is C(k, p) in **F** and C(k, p-1) in **S**. (This requires some thought!)

Accordingly, the coefficient of $a^{k+1-p} \cdot b^p$ in the sum (**F** + **S**) is C(k, p) + C(k, p-1), which is C(k+1, p),

Proof.

In other words, the terms in F and S are identical, except for the coefficents.

Further, all the terms can be generated using the term formula, $a^{k+1-p} \cdot b^p$, $1 \le p \le k$.

Observe that the coefficient of $a^{k+1-p} \cdot b^p$ is C(k, p) in **F** and C(k, p-1) in **S**. (This requires some thought!)

Accordingly, the coefficient of $a^{k+1-p} \cdot b^p$ in the sum (**F** + **S**) is C(k, p) + C(k, p - 1), which is C(k + 1, p), using Pascal's formula.

Proof.

In other words, the terms in F and S are identical, except for the coefficents.

Further, all the terms can be generated using the term formula, $a^{k+1-p} \cdot b^p$, $1 \le p \le k$.

Observe that the coefficient of $a^{k+1-p} \cdot b^p$ is C(k, p) in **F** and C(k, p-1) in **S**. (This requires some thought!)

Accordingly, the coefficient of $a^{k+1-p} \cdot b^p$ in the sum (**F** + **S**) is C(k, p) + C(k, p - 1), which is C(k + 1, p), using Pascal's formula.

Proof.

In other words, the terms in F and S are identical, except for the coefficents.

Further, all the terms can be generated using the term formula, $a^{k+1-p} \cdot b^p$, $1 \le p \le k$.

Observe that the coefficient of $a^{k+1-p} \cdot b^p$ is C(k, p) in **F** and C(k, p-1) in **S**. (This requires some thought!)

Accordingly, the coefficient of $a^{k+1-p} \cdot b^p$ in the sum (**F** + **S**) is C(k, p) + C(k, p - 1), which is C(k + 1, p), using Pascal's formula.

$$C(k, 0) \cdot a^{k+1} \cdot b^0 + \sum_{i=1}^{k} C(k+1, i) \cdot a^{k+1-i} \cdot b^i + C(k, k) \cdot a^0 \cdot b^{k+1}$$

Proof.

In other words, the terms in F and S are identical, except for the coefficents.

Further, all the terms can be generated using the term formula, $a^{k+1-p} \cdot b^p$, $1 \le p \le k$.

Observe that the coefficient of $a^{k+1-p} \cdot b^p$ is C(k, p) in **F** and C(k, p-1) in **S**. (This requires some thought!)

Accordingly, the coefficient of $a^{k+1-p} \cdot b^p$ in the sum (**F** + **S**) is C(k, p) + C(k, p - 1), which is C(k + 1, p), using Pascal's formula.

$$C(k, 0) \cdot a^{k+1} \cdot b^{0} + \sum_{i=1}^{k} C(k+1, i) \cdot a^{k+1-i} \cdot b^{i} + C(k, k) \cdot a^{0} \cdot b^{k+1}$$

= $C(k+1, 0) \cdot a^{k+1} \cdot b^{0} + \sum_{i=1}^{k} C(k+1, i) \cdot a^{k+1-i} \cdot b^{i} + C(k+1, k+1) \cdot a^{0} \cdot b^{k+1}$

Proof.

In other words, the terms in F and S are identical, except for the coefficents.

Further, all the terms can be generated using the term formula, $a^{k+1-p} \cdot b^p$, $1 \le p \le k$.

Observe that the coefficient of $a^{k+1-p} \cdot b^p$ is C(k, p) in **F** and C(k, p-1) in **S**. (This requires some thought!)

Accordingly, the coefficient of $a^{k+1-p} \cdot b^p$ in the sum (**F** + **S**) is C(k, p) + C(k, p - 1), which is C(k + 1, p), using Pascal's formula.

$$C(k, 0) \cdot a^{k+1} \cdot b^{0} + \sum_{i=1}^{k} C(k+1, i) \cdot a^{k+1-i} \cdot b^{i} + C(k, k) \cdot a^{0} \cdot b^{k+1}$$

$$= C(k+1, 0) \cdot a^{k+1} \cdot b^{0} + \sum_{i=1}^{k} C(k+1, i) \cdot a^{k+1-i} \cdot b^{i} + C(k+1, k+1) \cdot a^{0} \cdot b^{k+1}$$
since $C(k, 0) = C(k, k) = C(k+1, 0) = C(k+1, k+1) = 1$

Proof.

Combinatorics Sets and Combinatorics

Proof (contd.)

Proof.

It follows that

LHS =
$$\sum_{i=0}^{k+1} C(k+1,i) \cdot a^{k+1-i} \cdot b^{i}$$

Proof (contd.)

Proof.

It follows that

$$LHS = \sum_{i=0}^{k+1} C(k+1,i) \cdot a^{k+1-i} \cdot b^{i}$$
$$= RHS$$

Proof (contd.)

Proof.

It follows that

LHS =
$$\sum_{i=0}^{k+1} C(k+1,i) \cdot a^{k+1-i} \cdot b^{i}$$

= RHS

We have thus shown that $P(k) \rightarrow P(k+1)$ and hence by applying the first principle of mathematical induction, we can conclude that P(n) is true, for all $n \ge 0$.

Example

Combinatorics Sets and Combinatorics

Example

Expand $(x - 3)^4$.

Combinatorics Sets and Combinatorics

Application

Example

Expand $(x-3)^4$.

Solution:

$$\begin{array}{rcl} (x-3)^4 & = & C(4,0) \cdot x^4 \cdot (-3)^0 + C(4,1) \cdot x^3 \cdot (-3)^1 + C(4,2) \cdot x^2 \cdot (-3)^2 \\ & & + C(4,3) \cdot x^1 \cdot (-3)^3 + C(4,4) \cdot x^0 \cdot (-3)^4 \end{array}$$

Application

Example

Expand $(x-3)^4$.

Solution:

$$\begin{aligned} (x-3)^4 &= C(4,0) \cdot x^4 \cdot (-3)^0 + C(4,1) \cdot x^3 \cdot (-3)^1 + C(4,2) \cdot x^2 \cdot (-3)^2 \\ &+ C(4,3) \cdot x^1 \cdot (-3)^3 + C(4,4) \cdot x^0 \cdot (-3)^4 \\ &= x^4 + 4 \cdot x^3 \cdot (-3) + 6 \cdot x^2 \cdot (9) + 4 \cdot x \cdot (-27) + 81 \end{aligned}$$

Application

Example

Expand $(x-3)^4$.

Solution:

$$(x-3)^4 = C(4,0) \cdot x^4 \cdot (-3)^0 + C(4,1) \cdot x^3 \cdot (-3)^1 + C(4,2) \cdot x^2 \cdot (-3)^2 + C(4,3) \cdot x^1 \cdot (-3)^3 + C(4,4) \cdot x^0 \cdot (-3)^4 = x^4 + 4 \cdot x^3 \cdot (-3) + 6 \cdot x^2 \cdot (9) + 4 \cdot x \cdot (-27) + 81 = x^4 - 12 \cdot x^3 + 54 \cdot x^2 - 108 \cdot x + 81$$

One more example

One more example

Example

Combinatorics Sets and Combinatorics

One more example

Example

Show that

One more example

Example

Show that

$$\sum_{i=0}^{n} C(n,i) = 2^{n}$$

Proof using the binomial theorem

Proof using the binomial theorem

Proof using the binomial theorem

$$(1+x)^n =$$

Proof using the binomial theorem

$$(1+x)^n = \sum_{i=0}^n C(n,i) \cdot 1^{n-i} \cdot x^i$$

Proof using the binomial theorem

$$(1+x)^n = \sum_{i=0}^n C(n,i) \cdot 1^{n-i} \cdot x^i$$

= $C(n,0) \cdot 1^n \cdot x^0 + C(n,1) 1^{n-1} \cdot x^1 + \dots C(n,n) 1^0 \cdot x^n$

Proof using the binomial theorem

$$(1+x)^n = \sum_{i=0}^n C(n,i) \cdot 1^{n-i} \cdot x^i$$

= $C(n,0) \cdot 1^n \cdot x^0 + C(n,1) 1^{n-1} \cdot x^1 + \dots C(n,n) 1^0 \cdot x^n$

Proof using the binomial theorem

As per the binomial theorem,

$$(1+x)^n = \sum_{i=0}^n C(n,i) \cdot 1^{n-i} \cdot x^i$$

= $C(n,0) \cdot 1^n \cdot x^0 + C(n,1) 1^{n-1} \cdot x^1 + \dots C(n,n) 1^0 \cdot x^n$

Proof using the binomial theorem

As per the binomial theorem,

$$(1+x)^n = \sum_{i=0}^n C(n,i) \cdot 1^{n-i} \cdot x^i$$

= $C(n,0) \cdot 1^n \cdot x^0 + C(n,1) 1^{n-1} \cdot x^1 + \dots C(n,n) 1^0 \cdot x^n$

$$(1+1)^n =$$

Proof using the binomial theorem

As per the binomial theorem,

$$(1+x)^n = \sum_{i=0}^n C(n,i) \cdot 1^{n-i} \cdot x^i$$

= $C(n,0) \cdot 1^n \cdot x^0 + C(n,1) 1^{n-1} \cdot x^1 + \dots + C(n,n) 1^0 \cdot x^n$

$$(1+1)^n = C(n,0) \cdot (1) + C(n,1) \cdot (1) + \dots + C(n,n) \cdot (1)$$

Proof using the binomial theorem

As per the binomial theorem,

$$(1+x)^n = \sum_{i=0}^n C(n,i) \cdot 1^{n-i} \cdot x^i$$

= $C(n,0) \cdot 1^n \cdot x^0 + C(n,1) 1^{n-1} \cdot x^1 + \dots + C(n,n) 1^0 \cdot x^n$

$$(1+1)^n = C(n,0) \cdot (1) + C(n,1) \cdot (1) + \dots + C(n,n) \cdot (1)$$

$$\Rightarrow \sum_{i=0}^n C(n,i) =$$

Proof using the binomial theorem

As per the binomial theorem,

$$(1+x)^n = \sum_{i=0}^n C(n,i) \cdot 1^{n-i} \cdot x^i$$

= $C(n,0) \cdot 1^n \cdot x^0 + C(n,1) 1^{n-1} \cdot x^1 + \dots + C(n,n) 1^0 \cdot x^n$

$$(1+1)^n = C(n,0) \cdot (1) + C(n,1) \cdot (1) + \dots + C(n,n) \cdot (1)$$

$$\Rightarrow \sum_{i=0}^n C(n,i) = 2^n$$

An alternate proof

An alternate proof

An alternate proof

Proof using combinatorial arguments

• Consider a set *S* having *n* elements.

- Oconsider a set *S* having *n* elements.
- **2** C(n, i) represents the number of ways in which *i* elements can be selected from *n* elements.

- Oconsider a set *S* having *n* elements.
- **2** C(n, i) represents the number of ways in which *i* elements can be selected from *n* elements.
- **9** It follows that C(n, i) represents the number of distinct subsets of *S*, which have cardinality *i*.

- Oconsider a set *S* having *n* elements.
- **2** C(n, i) represents the number of ways in which *i* elements can be selected from *n* elements.
- **9** It follows that C(n, i) represents the number of distinct subsets of *S*, which have cardinality *i*.
- The LHS is therefore counting the sum of the number of subsets of cardinality 0, the number of subsets of cardinality 1 and so on.

- Oconsider a set S having n elements.
- **2** C(n, i) represents the number of ways in which *i* elements can be selected from *n* elements.
- **9** It follows that C(n, i) represents the number of distinct subsets of *S*, which have cardinality *i*.
- The LHS is therefore counting the sum of the number of subsets of cardinality 0, the number of subsets of cardinality 1 and so on.
- O However, this represents the total number of subsets of S.

- Oconsider a set S having n elements.
- **2** C(n, i) represents the number of ways in which *i* elements can be selected from *n* elements.
- **9** It follows that C(n, i) represents the number of distinct subsets of *S*, which have cardinality *i*.
- The LHS is therefore counting the sum of the number of subsets of cardinality 0, the number of subsets of cardinality 1 and so on.
- S However, this represents the total number of subsets of S.
- But we know that the total number of subsets of *S* is precisely the cardinality of the power set of *S*,

- Oconsider a set S having n elements.
- **2** C(n, i) represents the number of ways in which *i* elements can be selected from *n* elements.
- **9** It follows that C(n, i) represents the number of distinct subsets of *S*, which have cardinality *i*.
- The LHS is therefore counting the sum of the number of subsets of cardinality 0, the number of subsets of cardinality 1 and so on.
- However, this represents the total number of subsets of S.
- But we know that the total number of subsets of S is precisely the cardinality of the power set of S, i.e., 2ⁿ.

A third proof

A third proof

Proof using induction

A third proof

Proof using induction

A third proof

Proof using induction

BASIS: At n = 0,

LHS =

A third proof

Proof using induction

$$HS = \sum_{i=0}^{0} C(0, 0)$$

A third proof

Proof using induction

LHS =
$$\sum_{i=0}^{0} C(0, 0)$$

= $C(0, 0)$

A third proof

Proof using induction

LHS =
$$\sum_{i=0}^{0} C(0, 0)$$

= $C(0, 0)$
= 1

A third proof

Proof using induction

BASIS: At n = 0,

LHS =
$$\sum_{i=0}^{0} C(0, 0)$$

= $C(0, 0)$
= 1

RHS =

A third proof

Proof using induction

LHS =
$$\sum_{i=0}^{0} C(0, 0)$$

= $C(0, 0)$
= 1

RHS =
$$2^0$$

A third proof

Proof using induction

$$HS = \sum_{i=0}^{0} C(0, 0)$$

= $C(0, 0)$
= 1

$$RHS = 2^0$$

A third proof

Proof using induction

BASIS: At n = 0,

LHS =
$$\sum_{i=0}^{0} C(0, 0)$$

= $C(0, 0)$
= 1

$$RHS = 2^{0}$$

= 1

Since LHS=RHS, the basis is proven.

A third proof

Proof using induction

BASIS: At n = 0,

$$HS = \sum_{i=0}^{0} C(0, 0)$$

= $C(0, 0)$
= 1

$$RHS = 2^0$$

= 1

Since LHS=RHS, the basis is proven.

INDUCTIVE STEP: Assume that the conjecture is true at n = k,

A third proof

Proof using induction

BASIS: At n = 0,

$$HS = \sum_{i=0}^{0} C(0, 0)$$

= $C(0, 0)$
= 1

$$RHS = 2^0$$
$$= 1$$

Since LHS=RHS, the basis is proven.

INDUCTIVE STEP: Assume that the conjecture is true at n = k, , i.e., assume that

A third proof

Proof using induction

BASIS: At n = 0,

$$HS = \sum_{i=0}^{0} C(0, 0)$$

= $C(0, 0)$
= 1

$$RHS = 2^0$$

= 1

Since LHS=RHS, the basis is proven.

INDUCTIVE STEP: Assume that the conjecture is true at n = k, , i.e., assume that

$$\sum_{k=0}^{k} C(k, i) =$$

A third proof

Proof using induction

BASIS: At n = 0,

$$HS = \sum_{i=0}^{0} C(0, 0)$$

= $C(0, 0)$
= 1

$$RHS = 2^0$$

= 1

Since LHS=RHS, the basis is proven.

INDUCTIVE STEP: Assume that the conjecture is true at n = k, , i.e., assume that

$$\sum_{k=0}^{k} C(k, i) = 2^{k}$$

for some $k \ge 0$.

A third proof

Proof using induction

BASIS: At n = 0,

$$HS = \sum_{i=0}^{0} C(0, 0)$$

= $C(0, 0)$
= 1

$$RHS = 2^0$$

= 1

Since LHS=RHS, the basis is proven.

INDUCTIVE STEP: Assume that the conjecture is true at n = k, , i.e., assume that

$$\sum_{k=0}^{k} C(k, i) = 2^{k}$$

for some $k \ge 0$.

Inductive proof (contd.)

Inductive proof (contd.)

Inductive Step

Combinatorics Sets and Combinatorics

Inductive proof (contd.)

Inductive Step

We now need to show that

$$\sum_{i=0}^{k+1} C(k+1, i) =$$

Inductive proof (contd.)

Inductive Step

We now need to show that

$$\sum_{i=0}^{k+1} C(k+1, i) = 2^{k+1}$$

Inductive proof (contd.)

Completing the induction

Inductive proof (contd.)

Completing the induction

Inductive proof (contd.)

Completing the induction

Observe that,

LHS =

Inductive proof (contd.)

Completing the induction

$$LHS = \sum_{i=0}^{k+1} C(k+1, i)$$

Inductive proof (contd.)

Completing the induction

$$HS = \sum_{i=0}^{k+1} C(k+1, i)$$

= $C(k+1, 0) + \sum_{i=1}^{k} C(k+1, i) + C(k+1, k+1)$

Inductive proof (contd.)

Completing the induction

$$HS = \sum_{i=0}^{k+1} C(k+1, i)$$

= $C(k+1, 0) + \sum_{i=1}^{k} C(k+1, i) + C(k+1, k+1)$
= $1 + \sum_{i=1}^{k} [C(k, i) + C(k, i-1)] + 1$, Pascal's formula

Inductive proof (contd.)

Completing the induction

$$HS = \sum_{i=0}^{k+1} C(k+1, i)$$

= $C(k+1, 0) + \sum_{i=1}^{k} C(k+1, i) + C(k+1, k+1)$
= $1 + \sum_{i=1}^{k} [C(k, i) + C(k, i-1)] + 1$, Pascal's formula
= $(1 + \sum_{i=1}^{k} C(k, i)) + (\sum_{i=1}^{k} C(k, i-1) + 1))$

Inductive proof (contd.)

Completing the induction

Lŀ

$$dS = \sum_{i=0}^{k+1} C(k+1, i)$$

$$= C(k+1, 0) + \sum_{i=1}^{k} C(k+1, i) + C(k+1, k+1)$$

$$= 1 + \sum_{i=1}^{k} [C(k, i) + C(k, i-1)] + 1, \text{ Pascal's formula}$$

$$= (1 + \sum_{i=1}^{k} C(k, i)) + (\sum_{i=1}^{k} C(k, i-1) + 1))$$

$$= (C(k, 0) + \sum_{i=1}^{k} C(k, i)) + (\sum_{j=0}^{k-1} C(k, j) + C(k, k))$$

Inductive proof (contd.)

Completing the induction

Lŀ

$$dS = \sum_{i=0}^{k+1} C(k+1, i)$$

$$= C(k+1, 0) + \sum_{i=1}^{k} C(k+1, i) + C(k+1, k+1)$$

$$= 1 + \sum_{i=1}^{k} [C(k, i) + C(k, i-1)] + 1, \text{ Pascal's formula}$$

$$= (1 + \sum_{i=1}^{k} C(k, i)) + (\sum_{i=1}^{k} C(k, i-1) + 1))$$

$$= (C(k, 0) + \sum_{i=1}^{k} C(k, i)) + (\sum_{j=0}^{k-1} C(k, j) + C(k, k))$$

Inductive proof (contd.)

The last steps

Combinatorics Sets and Combinatorics

Inductive proof (contd.)

The last steps

$$= \sum_{i=0}^{k} C(k, i) + \sum_{j=0}^{k} C(k, j)$$

Combinatorics Sets and Combinatorics

Inductive proof (contd.)

The last steps

$$= \sum_{i=0}^{k} C(k, i) + \sum_{j=0}^{k} C(k, j)$$
$$= 2 \cdot \sum_{i=0}^{k} C(k, i)$$

Inductive proof (contd.)

The last steps

$$= \sum_{i=0}^{k} C(k, i) + \sum_{j=0}^{k} C(k, j)$$
$$= 2 \cdot \sum_{i=0}^{k} C(k, i)$$
$$= 2 \cdot 2^{k}, \text{ using the inductive hypothesis}$$

Inductive proof (contd.)

The last steps

$$= \sum_{i=0}^{k} C(k, i) + \sum_{j=0}^{k} C(k, j)$$
$$= 2 \cdot \sum_{i=0}^{k} C(k, i)$$
$$= 2 \cdot 2^{k}, \text{ using the inductive hypothesis}$$

Thus LHS=RHS and the inductive step is proven.

Inductive proof (contd.)

The last steps

$$= \sum_{i=0}^{k} C(k, i) + \sum_{j=0}^{k} C(k, j)$$

$$= 2 \cdot \sum_{i=0}^{k} C(k, i)$$

$$= 2 \cdot 2^{k}, \text{ using the inductive hypothesi}$$

$$= 2^{k+1}$$

Thus LHS=RHS and the inductive step is proven.

Applying the first principle of mathematical induction, we conclude that the conjecture is true.

Example

Combinatorics Sets and Combinatorics

Example

Prove the following identity:

Combinatorics Sets and Combinatorics

Example

Prove the following identity:

Combinatorics Sets and Combinatorics

Example

Example

Prove the following identity:

0

$$\sum_{i=1}^{n} i \cdot C(n,i) = n \cdot 2^{n-1}$$

Solution

Solution

Solution

Solution

• Expand the expression on the LHS for the identity.

Solution

Solution

• Expand the expression on the LHS for the identity.

We thus need to show that,

Solution

Solution

• Expand the expression on the LHS for the identity.

We thus need to show that,

Solution

Expand the expression on the LHS for the identity.

We thus need to show that,

 $C(n, 1) + 2 \cdot C(n, 2) + 3 \cdot C(n, 3) + \ldots n \cdot C(n, n) = n \cdot 2^{n-1}.$

Solution

• Expand the expression on the LHS for the identity.

We thus need to show that,

 $C(n, 1) + 2 \cdot C(n, 2) + 3 \cdot C(n, 3) + \ldots n \cdot C(n, n) = n \cdot 2^{n-1}.$

Solution

 $C(n, 1) + 2 \cdot C(n, 2) + 3 \cdot C(n, 3) + \ldots n \cdot C(n, n) = n \cdot 2^{n-1}.$

$$(1 + x)^n =$$

Solution

Expand the expression on the LHS for the identity.

We thus need to show that,

$$C(n,1) + 2 \cdot C(n,2) + 3 \cdot C(n,3) + \ldots n \cdot C(n,n) = n \cdot 2^{n-1}.$$

$$(1+x)^n = \sum_{i=0}^n C(n,i) \cdot 1^{n-i} \cdot x^i =$$

Solution

Expand the expression on the LHS for the identity.

We thus need to show that,

 $C(n, 1) + 2 \cdot C(n, 2) + 3 \cdot C(n, 3) + \ldots n \cdot C(n, n) = n \cdot 2^{n-1}.$

$$(1+x)^n = \sum_{i=0}^n C(n,i) \cdot 1^{n-i} \cdot x^i = \sum_{i=0}^n C(n,i) \cdot x^i$$

Solution

Expand the expression on the LHS for the identity.

We thus need to show that,

 $C(n, 1) + 2 \cdot C(n, 2) + 3 \cdot C(n, 3) + \ldots n \cdot C(n, n) = n \cdot 2^{n-1}.$

2 Expand $(1 + x)^n$ using the binomial theorem.

$$(1+x)^n = \sum_{i=0}^n C(n,i) \cdot 1^{n-i} \cdot x^i = \sum_{i=0}^n C(n,i) \cdot x^i$$

Oifferentiate both sides to get:

Solution

Expand the expression on the LHS for the identity.

We thus need to show that,

 $C(n, 1) + 2 \cdot C(n, 2) + 3 \cdot C(n, 3) + \ldots n \cdot C(n, n) = n \cdot 2^{n-1}.$

2 Expand $(1 + x)^n$ using the binomial theorem.

$$(1+x)^n = \sum_{i=0}^n C(n,i) \cdot 1^{n-i} \cdot x^i = \sum_{i=0}^n C(n,i) \cdot x^i$$

Oifferentiate both sides to get:

$$n \cdot (1+x)^{n-1} =$$

Solution

Expand the expression on the LHS for the identity.

We thus need to show that,

 $C(n, 1) + 2 \cdot C(n, 2) + 3 \cdot C(n, 3) + \ldots n \cdot C(n, n) = n \cdot 2^{n-1}.$

2 Expand $(1 + x)^n$ using the binomial theorem.

$$(1 + x)^n = \sum_{i=0}^n C(n, i) \cdot 1^{n-i} \cdot x^i = \sum_{i=0}^n C(n, i) \cdot x^i$$

Oifferentiate both sides to get:

$$n \cdot (1+x)^{n-1} = \sum_{i=0}^{n} C(n,i) \cdot i \cdot x^{i-1}.$$

Solution

Expand the expression on the LHS for the identity.

We thus need to show that,

 $C(n, 1) + 2 \cdot C(n, 2) + 3 \cdot C(n, 3) + \ldots n \cdot C(n, n) = n \cdot 2^{n-1}.$

2 Expand $(1 + x)^n$ using the binomial theorem.

$$(1 + x)^n = \sum_{i=0}^n C(n, i) \cdot 1^{n-i} \cdot x^i = \sum_{i=0}^n C(n, i) \cdot x^i$$

Oifferentiate both sides to get:

$$n \cdot (1+x)^{n-1} = \sum_{i=0}^{n} C(n,i) \cdot i \cdot x^{i-1}.$$

• Put x = 1 to get the identity.