
Outline

Permutations, Combinations and The Binomial Theorem

K. Subramani1

1Lane Department of Computer Science and Electrical Engineering
West Virginia University

31 March, 5 April, 7 April 2016

Combinatorics Sets and Combinatorics



Outline

Outline

1 Permutations

2 Combinations

3 The Binomial Theorem

Combinatorics Sets and Combinatorics



Outline

Outline

1 Permutations

2 Combinations

3 The Binomial Theorem

Combinatorics Sets and Combinatorics



Outline

Outline

1 Permutations

2 Combinations

3 The Binomial Theorem

Combinatorics Sets and Combinatorics



Permutations
Combinations

The Binomial Theorem

Motivating Examples

Example

How many 4 digit numbers can you create using the digits 1, 2, 3, and 4, assuming no
digit repeats?

Example

How many 2 digit numbers can you create using the digits 1, 2, 3, and 4, assuming no
digit repeats?

Example

In how many ways can 6 people be seated in a row?

Example

In how many ways can 6 people be seated around a circular table with 6 chairs? (Only
relative positions can be distinguished.)
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Permutations

Definition

A permutation is an ordered arrangement of objects.

The number of distinct permutations of r distinct objects chosen from n distinct objects
is denoted by P(n, r).

Definition

n! =
{

1, if n = 0
n · (n − 1)!, otherwise
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Combinations

The Binomial Theorem

Computing the number of permutations

Computing P(n, r)

Using the multiplication principle,

P(n, r) = n · (n − 1) · . . . (n − r + 1)

= n · (n − 1) · . . . (n − r + 1) ·
(n − r) · (n − r − 1) · . . . 1
(n − r) · (n − r − 1) · . . . 1

=
n!

(n − r)!
, 0 ≤ r ≤ n
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Permutations (contd.)

Example

Compute P(7, 3), P(n, 0), P(n, 1), and P(n, n).

Solution: 210, 1, n, and n!.

Example

How many 3 letter words can be formed using the letters in the word “compiler”?

Solution: P(8, 3).

Example

In how many ways can a president and vice-president be chosen from a group of 20
people?

Solution: P(20, 2).
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Combinations

The Binomial Theorem

One more example

Example

A library has 4 books on programming, 7 on algorithms and 3 on complexity.

In how many ways can the books be ordered on a shelf?

Provided that the books of a subject are required to be together?

Solution

If there is no restriction, the number of arrangements is P(14, 14) = 14!.

Now consider the case in which the books of a given subject are required to be
together.

First arrange the three subjects. This can be done in P(3, 3) = 3! ways.

Corresponding to each such arrangement,

the programming books can be permuted in P(4, 4) = 4! ways,

the algorithms books can be permuted in P(7, 7) = 7! ways,

and the complexity books can be permuted in P(3, 3) = 3! ways.

Using the multiplication principle, the total number of arrangements is 3! · 4! · 7! · 3!.
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Using the multiplication principle, the total number of arrangements is 3! · 4! · 7! · 3!.
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In how many ways can the committee be formed, if
1 The committee must include at least one woman.
2 There cannot be more than two men on the committee.
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Combinations

Definition

A combination is an (unordered) selection of objects.

The number of distinct combinations of r distinct objects chosen from n distinct objects
is denoted by C(n, r).

Computing C(n, r)

Focus on a given combination of r objects chosen from n objects.

The objects in this combination can be permuted in r ! different ways to get r ! distinct
permutations.

It follows that C(n, r) · r ! = P(n, r), i.e., C(n, r) = P(n,r)
r ! = n!

r !·(n−r)! , 0 ≤ r ≤ n.

Example

Compute C(7, 3), C(n, 0), C(n, 1) and C(n, n).

Solution: 35, 1, n, 1.
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r ! = n!

r !·(n−r)! , 0 ≤ r ≤ n.

Example

Compute C(7, 3), C(n, 0), C(n, 1) and C(n, n).

Solution: 35,

1, n, 1.
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Example

A committee of 8 students is to be selected from 19 freshmen and 34 sophomores.

In how many ways, can this committee be formed, if
1 it must contain 3 freshmen and 5 sophomores. Solution: C(19, 3) · C(34, 5).
2 it must contain exactly one freshman. Solution: C(19, 1) · C(34, 7).
3 it can contain at most one freshman. Solution: C(34, 8) + C(19, 1) · C(34, 7).
4 it contains at least one freshman. Solution: C(53, 8)− C(34, 8).
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Handling Duplicates

Permutations

If there are n objects of which a set of n1 are indistinguishable from each other,

a second set of n2 are indistinguishable from each other

and . . . a k th set of nk objects are indistinguishable from each other,

then the number of distinct permutations of the n objects is:

n!
n1! · n2! . . . nk !

Example

In how many distinct ways can the characters in the word MISSISSIPPI be permuted?

Solution:
11!

4! · 4! · 2!
.
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Permutations
Combinations

The Binomial Theorem

Handling Repetitions

Permutations

In how many ways can you select r objects from n, assuming that there is an infinite
supply of all objects?

The number of arrangements of r objects from n objects with repetitions permitted is
simply nr .

Combinations

Consider the following problem:

A jeweler wants to create a ring from 5 stones.

He has at his disposal an infinite supply of rubies, pearls and diamonds.

How many 5-stone sets are possible?

Solution: Let us represent a ring as 〈r, p, d〉.
Some valid rings are: 〈0, 0, 5〉, 〈1, 2, 2〉 and so on.

Is this a permutations problem or a combinations problem?

We want to select 5 objects out of 3 objects, with repetitions allowed.
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The jeweler ring problem

Solution

Think of the ring as laying out the rubies, pearls and diamonds on a straight line.

Use two markers to separate the three different types of stones, making sure that the
total is exactly 5.

Observe that once the separating markers are placed the combination is uniquely
determined.

Thus, the problem reduces to the problem of placing two markers separating the
rubies, pearls and diamonds.

Think of seven placeholders (5 for the stones and 2 for the markers).

We need to choose 2 positions for the markers.

Clearly, this can be done in C(7, 2) ways.
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Generalizing the combinations with repetitions formula

Generalization

Consider the problem of selecting r objects out of n distinct objects with repetitions
allowed.

This problem boils down to the problem of placing (n − 1) distinct markers to separate
the n distinct types, so that the total number of objects selected is r .

Think of (n − 1) + r placeholders (r for the selected objects and (n − 1) for the
markers).

We need to choose (n − 1) of these positions for the markers.

Clearly, this can be done in C(n − 1 + r , n − 1) = C(n + r − 1, n − 1)
= C(n + r − 1, r) ways.
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Example

Example

In how many ways can six children choose one lollipop from a selection of red, green
and yellow lollipops, assuming that we do not care which child gets which?

Solution: Once again think of 2 markers separating the three types of lollipops.

So we have to place select two positions for the markers from a total of 6 (children) +2
placeholders.

Clearly, this can be done in C(6 + 2, 2) = C(8, 2) = C(8, 6) ways.
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Exercises

Identities

1 Argue that P(n, 1) + P(n, 2) = n2, ∀n ≥ 2.
2 Show that for all n ≥ 1, P(n, n) = P(n, n − 1).
3 Prove that for any 0 ≤ r ≤ n, C(n, r) = C(n, n − r).

Word Problems

1 In how many ways, can you seat 11 men and 8 women in a row, so that no two
women sit together?

2 A committee of three has to be chosen from five Democrats, three Republicans
and four independents.

In how many ways can the committee be chosen, if it cannot include both
Democrats and Republicans?
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Permutations
Combinations

The Binomial Theorem

Motivation

Expansions

(i) (a + b)1 = a + b.

(ii) (a + b)2 = a2 + 2 · a · b + b2.

(iii) (a + b)3 = a3 + 3 · a2 · b + 3 · a · b2 + b3.

(iv) (a + b)4 =???

We want a general formula that permits us to write down the terms of (a + b)n without
actual multiplication.
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Permutations
Combinations

The Binomial Theorem

Pascal’s Triangle

The coefficient table

Consider the following table:

Row 0: C(0, 0)

Row 1: C(1, 0) C(1, 1)

Row 2: C(2, 0) C(2, 1) C(2, 2)

Row 3: C(3, 0) C(3, 1) C(3, 2) C(3, 3)

.

.

.
Row n: C(n, 0) C(n, 1) . . . . . . C(n, n − 1) C(n, n)
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Permutations
Combinations

The Binomial Theorem

Pascal’s triangle (contd.)

The Value Table

Writing down the values of the terms gives the following table:

Row 0: 1

Row 1: 1 1

Row 2: 1 2 1

Row 3: 1 3 3 1

.

.

.
Row n: 1 n . . . n 1
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Permutations
Combinations

The Binomial Theorem

Pascal’s formula

Theorem
C(n, k) = C(n − 1, k − 1) + C(n − 1, k), 1 ≤ k ≤ n − 1.

Proof.
Observe that,

C(n − 1, k − 1) + C(n − 1, k) =
(n − 1)!

(k − 1)! · [(n − 1 − (k − 1))!]
+

(n − 1)!

k! · (n − 1 − k)!

=
(n − 1)!

(k − 1)! · (n − k)!
+

(n − 1)!

k! · (n − 1 − k)!

=
k · (n − 1)!

k! · (n − k)!
+

(n − k) · (n − 1)!

k! · (n − k)!

=
(n − 1)!

k! · (n − k)!
[k + (n − k)]

=
n · (n − 1)!

k! · (n − k)!

=
n!

k! · (n − k)!

= C(n, k).
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Alternative Proof

A second Proof

(i) Observe that C(n, k) represents the number of ways in which k objects can be
selected from n objects.

(ii) Focus on a particular object, say o.

(iii) Note that each selection of k objects from the n objects, either includes o or it
does not.

(iv) Let T1 denote the number of ways in which k objects are selected from the n
objects, with o definitely included.

(v) Since o is definitely included, this means that we have to choose the remaining
(k − 1) objects from the remaining (n − 1) objects. It follows that
T1 = C(n − 1, k − 1).

(vi) Let T2 denote the number of ways in which k objects are selected from the n
objects, with o definitely excluded.

(vii) Since o is definitely excluded, all k objects must be selected from the remaining
(n − 1) objects. It follows that T2 = C(n − 1, k).

(viii) Using the addition principle, C(n, k) = T1 + T2 = C(n − 1, k − 1) + C(n − 1, k).
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Note on Proof Techniques

Note

The above proof is called a combinatorial proof and is always preferred on account of
its elegance.

Recall the combinatorial proof for proving that C(n, r) = C(n, n − r).
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The Theorem

Theorem

(a + b)n =
n∑

i=0
C(n, i) · an−i · bi

, ∀n ≥ 0.

Proof.

Let P(n) denote the proposition (a + b)n =
∑n

i=0 C(n, i) · an−i · bi . We are required to prove (∀n)P(n). We use mathematical
induction.

BASIS: At n = 0, the LHS is (a + b)0 = 1 and the RHS is
∑0

i=0 C(0, i) · a0−i · bi .

Since the only value for i is also 0, the RHS is C(0, 0) a0 · b0 = 1.

Thus, LHS = RHS and the basis is proven.
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The Binomial Theorem

Proof (contd.)

Proof.

LHS = C(k, 0) · ak+1 · b0 +
k∑

i=1
C(k, i) · ak+1−i · bi +

k−1∑
i=0

C(k, i) · ak−i · bi+1 + C(k, k) · a0 · bk+1

We focus on the quantity

(F)
k∑

i=1
C(k, i) · ak+1−i · bi + (S)

k−1∑
i=0

C(k, i) · ak−i · bi+1 (1)

Observe that the first k terms in F are ak · b1, ak−1 · b2, . . . , a1 · bk , while the first k terms in S are also

ak · b1, ak−1 · b2, . . . , a1 · bk .
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The Binomial Theorem

Proof (contd.)

Proof.
In other words, the terms in F and S are identical, except for the coefficents.

Further, all the terms can be generated using the term formula, ak+1−p · bp, 1 ≤ p ≤ k .

Observe that the coefficient of ak+1−p · bp is C(k, p) in F and C(k, p − 1) in S. (This requires some thought!)

Accordingly, the coefficient of ak+1−p · bp in the sum (F + S) is C(k, p) + C(k, p − 1), which is C(k + 1, p), using Pascal’s formula.

Thus, the LHS can be written as:

C(k, 0) · ak+1 · b0 +
k∑

i=1
C(k + 1, i) · ak+1−i · bi + C(k, k) · a0 · bk+1

= C(k + 1, 0) · ak+1 · b0 +
k∑

i=1
C(k + 1, i) · ak+1−i · bi + C(k + 1, k + 1) · a0 · bk+1

since C(k, 0) = C(k, k) = C(k + 1, 0) = C(k + 1, k + 1) = 1
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Proof (contd.)

Proof.

It follows that

LHS =
k+1∑
i=0

C(k + 1, i) · ak+1−i · bi

= RHS

We have thus shown that P(k)→ P(k + 1) and hence by applying the first principle of
mathematical induction, we can conclude that P(n) is true, for all n ≥ 0.
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Application

Example

Expand (x − 3)4.

Solution:

(x − 3)4 = C(4, 0) · x4 · (−3)0 + C(4, 1) · x3 · (−3)1 + C(4, 2) · x2 · (−3)2

+C(4, 3) · x1 · (−3)3 + C(4, 4) · x0 · (−3)4

= x4 + 4 · x3 · (−3) + 6 · x2 · (9) + 4 · x · (−27) + 81

= x4 − 12 · x3 + 54 · x2 − 108 · x + 81
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Proof

Proof using the binomial theorem

As per the binomial theorem,

(1 + x)n =
n∑

i=0

C(n, i) · 1n−i · x i

= C(n, 0) · 1n · x0 + C(n, 1)1n−1 · x1 + . . .C(n, n)10 · xn

Substituting x = 1, we get,

(1 + 1)n = C(n, 0) · (1) + C(n, 1) · (1) + . . .C(n, n) · (1)

⇒
n∑

i=0

C(n, i) = 2n
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An alternate proof

Proof using combinatorial arguments

1 Consider a set S having n elements.
2 C(n, i) represents the number of ways in which i elements can be selected from n

elements.
3 It follows that C(n, i) represents the number of distinct subsets of S, which have

cardinality i .
4 The LHS is therefore counting the sum of the number of subsets of cardinality 0,

the number of subsets of cardinality 1 and so on.
5 However, this represents the total number of subsets of S.
6 But we know that the total number of subsets of S is precisely the cardinality of

the power set of S, i.e., 2n.
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A third proof

Proof using induction
BASIS: At n = 0,

LHS =
0∑

i=0
C(0, 0)

= C(0, 0)

= 1

RHS = 20

= 1

Since LHS=RHS, the basis is proven.

INDUCTIVE STEP: Assume that the conjecture is true at n = k , , i.e., assume that

k∑
i=0

C(k, i) = 2k

for some k ≥ 0.
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Inductive proof (contd.)

Inductive Step
We now need to show that

k+1∑
i=0

C(k + 1, i) = 2k+1
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Inductive proof (contd.)

Completing the induction

Observe that,

LHS =

k+1∑
i=0

C(k + 1, i)

= C(k + 1, 0) +
k∑

i=1
C(k + 1, i) + C(k + 1, k + 1)

= 1 +
k∑

i=1
[C(k, i) + C(k, i − 1)] + 1, Pascal′s formula

= (1 +
k∑

i=1
C(k, i)) + (

k∑
i=1

C(k, i − 1) + 1))

= (C(k, 0) +
k∑

i=1
C(k, i)) + (

k−1∑
j=0

C(k, j) + C(k, k))

Combinatorics Sets and Combinatorics



Permutations
Combinations

The Binomial Theorem

Inductive proof (contd.)

Completing the induction
Observe that,

LHS =

k+1∑
i=0

C(k + 1, i)

= C(k + 1, 0) +
k∑

i=1
C(k + 1, i) + C(k + 1, k + 1)

= 1 +
k∑

i=1
[C(k, i) + C(k, i − 1)] + 1, Pascal′s formula

= (1 +
k∑

i=1
C(k, i)) + (

k∑
i=1

C(k, i − 1) + 1))

= (C(k, 0) +
k∑

i=1
C(k, i)) + (

k−1∑
j=0

C(k, j) + C(k, k))

Combinatorics Sets and Combinatorics



Permutations
Combinations

The Binomial Theorem

Inductive proof (contd.)

Completing the induction
Observe that,

LHS =

k+1∑
i=0

C(k + 1, i)

= C(k + 1, 0) +
k∑

i=1
C(k + 1, i) + C(k + 1, k + 1)

= 1 +
k∑

i=1
[C(k, i) + C(k, i − 1)] + 1, Pascal′s formula

= (1 +
k∑

i=1
C(k, i)) + (

k∑
i=1

C(k, i − 1) + 1))

= (C(k, 0) +
k∑

i=1
C(k, i)) + (

k−1∑
j=0

C(k, j) + C(k, k))

Combinatorics Sets and Combinatorics



Permutations
Combinations

The Binomial Theorem

Inductive proof (contd.)

Completing the induction
Observe that,

LHS =

k+1∑
i=0

C(k + 1, i)

= C(k + 1, 0) +
k∑

i=1
C(k + 1, i) + C(k + 1, k + 1)

= 1 +
k∑

i=1
[C(k, i) + C(k, i − 1)] + 1, Pascal′s formula

= (1 +
k∑

i=1
C(k, i)) + (

k∑
i=1

C(k, i − 1) + 1))

= (C(k, 0) +
k∑

i=1
C(k, i)) + (

k−1∑
j=0

C(k, j) + C(k, k))

Combinatorics Sets and Combinatorics



Permutations
Combinations

The Binomial Theorem

Inductive proof (contd.)

Completing the induction
Observe that,

LHS =

k+1∑
i=0

C(k + 1, i)

= C(k + 1, 0) +
k∑

i=1
C(k + 1, i) + C(k + 1, k + 1)

= 1 +
k∑

i=1
[C(k, i) + C(k, i − 1)] + 1, Pascal′s formula

= (1 +
k∑

i=1
C(k, i)) + (

k∑
i=1

C(k, i − 1) + 1))

= (C(k, 0) +
k∑

i=1
C(k, i)) + (

k−1∑
j=0

C(k, j) + C(k, k))

Combinatorics Sets and Combinatorics



Permutations
Combinations

The Binomial Theorem

Inductive proof (contd.)

Completing the induction
Observe that,

LHS =

k+1∑
i=0

C(k + 1, i)

= C(k + 1, 0) +
k∑

i=1
C(k + 1, i) + C(k + 1, k + 1)

= 1 +
k∑

i=1
[C(k, i) + C(k, i − 1)] + 1, Pascal′s formula

= (1 +
k∑

i=1
C(k, i)) + (

k∑
i=1

C(k, i − 1) + 1))

= (C(k, 0) +
k∑

i=1
C(k, i)) + (

k−1∑
j=0

C(k, j) + C(k, k))

Combinatorics Sets and Combinatorics



Permutations
Combinations

The Binomial Theorem

Inductive proof (contd.)

Completing the induction
Observe that,

LHS =

k+1∑
i=0

C(k + 1, i)

= C(k + 1, 0) +
k∑

i=1
C(k + 1, i) + C(k + 1, k + 1)

= 1 +
k∑

i=1
[C(k, i) + C(k, i − 1)] + 1, Pascal′s formula

= (1 +
k∑

i=1
C(k, i)) + (

k∑
i=1

C(k, i − 1) + 1))

= (C(k, 0) +
k∑

i=1
C(k, i)) + (

k−1∑
j=0

C(k, j) + C(k, k))

Combinatorics Sets and Combinatorics



Permutations
Combinations

The Binomial Theorem

Inductive proof (contd.)

Completing the induction
Observe that,

LHS =

k+1∑
i=0

C(k + 1, i)

= C(k + 1, 0) +
k∑

i=1
C(k + 1, i) + C(k + 1, k + 1)

= 1 +
k∑

i=1
[C(k, i) + C(k, i − 1)] + 1, Pascal′s formula

= (1 +
k∑

i=1
C(k, i)) + (

k∑
i=1

C(k, i − 1) + 1))

= (C(k, 0) +
k∑

i=1
C(k, i)) + (

k−1∑
j=0

C(k, j) + C(k, k))

Combinatorics Sets and Combinatorics



Permutations
Combinations

The Binomial Theorem

Inductive proof (contd.)

Completing the induction
Observe that,

LHS =

k+1∑
i=0

C(k + 1, i)

= C(k + 1, 0) +
k∑

i=1
C(k + 1, i) + C(k + 1, k + 1)

= 1 +
k∑

i=1
[C(k, i) + C(k, i − 1)] + 1, Pascal′s formula

= (1 +
k∑

i=1
C(k, i)) + (

k∑
i=1

C(k, i − 1) + 1))

= (C(k, 0) +
k∑

i=1
C(k, i)) + (

k−1∑
j=0

C(k, j) + C(k, k))

Combinatorics Sets and Combinatorics



Permutations
Combinations

The Binomial Theorem

Inductive proof (contd.)

The last steps

=
k∑

i=0
C(k, i) +

k∑
j=0

C(k, j)

= 2 ·
k∑

i=0
C(k, i)

= 2 · 2k
, using the inductive hypothesis

= 2k+1

Thus LHS=RHS and the inductive step is proven.

Applying the first principle of mathematical induction, we conclude that the conjecture is true.
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Example

Prove the following identity:
1

n∑
i=1

i · C(n, i) = n · 2n−1
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Solution

Solution

1 Expand the expression on the LHS for the identity.

We thus need to show that,

C(n, 1) + 2 · C(n, 2) + 3 · C(n, 3) + . . . n · C(n, n) = n · 2n−1.
2 Expand (1 + x)n using the binomial theorem.

(1 + x)n =
n∑

i=0

C(n, i) · 1n−i · x i =
n∑

i=0

C(n, i) · x i

3 Differentiate both sides to get:

n · (1 + x)n−1 =
n∑

i=0

C(n, i) · i · x i−1.

4 Put x = 1 to get the identity.
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C(n, i) · x i

3 Differentiate both sides to get:

n · (1 + x)n−1 =
n∑

i=0

C(n, i) · i · x i−1.

4 Put x = 1 to get the identity.
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