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Motivation
Techniques

Non-Inductive Proof
Inductive Proof

Some well-known theorems

Theorems in Number Theory
1 If x and y are two natural numbers and x · y is odd, then x and y are both odd.
2 If a and b are two integers, such that a | b and b | a, then a = b.
3 If n = 25 or n = 100, then n is a perfect square, and n is a sum of two perfect

squares.
4 If x2 + 2 · x − 3 = 0, then x 6= 2.
5 If a and b are two rational numbers, then so is a · b.
6 For every n, (n2 + n) is even.

Observation

Theorems generally have the form P → Q or (∀x)[P(x)→ Q(x)].
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Theorems and conjectures

Domain dependence

Arguments (like theorems) are statements having the form P → Q or more generally
(∀x)[P(x)→ Q(x)].
Therefore, the techniques for proving validity of arguments can be used to prove
theorems.
Note that in Mathematics, we are interested in establishing truth in a specific
interpretation and not all interpretations.
In other words, we are interested in relative truth and not absolute truth.
For instance, Pythagoras’ theorem applies to the domain of right-angle triangles,
Fermat’s theorem applies to number triplets, and so on.

Definition

Arguments which are contextually true (as opposed to being universally true) are
called theorems.
If an argument (contextual or universal) is not yet proven, it is called a conjecture.
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Proof Techniques

Note
How to prove theorems? Simply add additional facts as hypotheses.
Then use rules of predicate logic (or propositional logic)!

Applicable to unstructured domains

(i) Exhaustive proof.
(ii) Direct proof.
(iii) Proof by contraposition.
(iv) Proof by contradiction.
(v) Serendipity.

Applicable to Structured Domains

(i) Mathematical Induction.
(ii) Diagonalization.
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Motivating points
Arithmetic involving addition and multiplication over the natural numbers
N = {0, 1, 2, . . . , } has been studied for centuries.

We focus on Peano arithmetic that permits addition and multiplication
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Peano Arithmetic (PA)

Main Issues

The theory of Peano Arithmetic (TPA) or first-order arithmetic has the signature:

ΣPA : {0, 1, +, ·, =}

where,
(i) 0 and 1 are constants.

(ii) + and · are binary functions.
(iii) = is a binary predicate.
Its axiom set is the following:
(A1.) (∀x) [(x + 1) = 0]′.
(A2.) (∀x)(∀y) [(x + 1) = (y + 1)]→ (x = y).
(A3.) (F [0] ∧ (∀x) (F [x ]→ F [x + 1]))→ (∀x) F [x ].
(A4.) (∀x) (x + 0 = x).
(A5.) (∀x)(∀y) x + (y + 1) = (x + y) + 1.
(A6.) (∀x) x · 0 = 0.
(A7.) (∀x)(∀y) x · (y + 1) = x · y + x .
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Inductive Proof

Auxiliary Definitions

Common Predicates
The “rudimentary” theory discussed above is sufficient for number theory.
However, in order to make mathematics readable, we need additional predicates, such
as even(x), odd(x), and so on.
Here are some first order definitions, which we will assume have been added to the list
of axioms:

We use the symbol 2 for 1 + 1, the symbol 3 for 1 + 1 + 1 and so on.
We use a · x to represent the addition of x with itself a times.
(∀x)[even(x)→ ((∃z) x = 2 · z)].
(∀x)[odd(x)→ even(x)′].
(∀x)(∀y)[x < y → ((∃w) (w = 0)′ ∧ (y = x + w))].
(∀x)(∀y)[x | y → ((∃z) y = x · z)].
(∀x)[prime(x)→ ((1 < x) ∧ (∀z) z | x → ((z = 1) ∨ (z = x)))].
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Subramani Proof Techniques



Motivation
Techniques

Non-Inductive Proof
Inductive Proof

Auxiliary Definitions

Common Predicates
The “rudimentary” theory discussed above is sufficient for number theory.
However, in order to make mathematics readable, we need additional predicates, such
as even(x), odd(x), and so on.
Here are some first order definitions, which we will assume have been added to the list
of axioms:

We use the symbol 2 for 1 + 1, the symbol 3 for 1 + 1 + 1 and so on.
We use a · x to represent the addition of x with itself a times.
(∀x)[even(x)→

((∃z) x = 2 · z)].
(∀x)[odd(x)→ even(x)′].
(∀x)(∀y)[x < y → ((∃w) (w = 0)′ ∧ (y = x + w))].
(∀x)(∀y)[x | y → ((∃z) y = x · z)].
(∀x)[prime(x)→ ((1 < x) ∧ (∀z) z | x → ((z = 1) ∨ (z = x)))].

Subramani Proof Techniques



Motivation
Techniques

Non-Inductive Proof
Inductive Proof

Auxiliary Definitions

Common Predicates
The “rudimentary” theory discussed above is sufficient for number theory.
However, in order to make mathematics readable, we need additional predicates, such
as even(x), odd(x), and so on.
Here are some first order definitions, which we will assume have been added to the list
of axioms:

We use the symbol 2 for 1 + 1, the symbol 3 for 1 + 1 + 1 and so on.
We use a · x to represent the addition of x with itself a times.
(∀x)[even(x)→ ((∃z) x = 2 · z)].

(∀x)[odd(x)→ even(x)′].
(∀x)(∀y)[x < y → ((∃w) (w = 0)′ ∧ (y = x + w))].
(∀x)(∀y)[x | y → ((∃z) y = x · z)].
(∀x)[prime(x)→ ((1 < x) ∧ (∀z) z | x → ((z = 1) ∨ (z = x)))].

Subramani Proof Techniques



Motivation
Techniques

Non-Inductive Proof
Inductive Proof

Auxiliary Definitions

Common Predicates
The “rudimentary” theory discussed above is sufficient for number theory.
However, in order to make mathematics readable, we need additional predicates, such
as even(x), odd(x), and so on.
Here are some first order definitions, which we will assume have been added to the list
of axioms:

We use the symbol 2 for 1 + 1, the symbol 3 for 1 + 1 + 1 and so on.
We use a · x to represent the addition of x with itself a times.
(∀x)[even(x)→ ((∃z) x = 2 · z)].
(∀x)[odd(x)→

even(x)′].
(∀x)(∀y)[x < y → ((∃w) (w = 0)′ ∧ (y = x + w))].
(∀x)(∀y)[x | y → ((∃z) y = x · z)].
(∀x)[prime(x)→ ((1 < x) ∧ (∀z) z | x → ((z = 1) ∨ (z = x)))].

Subramani Proof Techniques



Motivation
Techniques

Non-Inductive Proof
Inductive Proof

Auxiliary Definitions

Common Predicates
The “rudimentary” theory discussed above is sufficient for number theory.
However, in order to make mathematics readable, we need additional predicates, such
as even(x), odd(x), and so on.
Here are some first order definitions, which we will assume have been added to the list
of axioms:

We use the symbol 2 for 1 + 1, the symbol 3 for 1 + 1 + 1 and so on.
We use a · x to represent the addition of x with itself a times.
(∀x)[even(x)→ ((∃z) x = 2 · z)].
(∀x)[odd(x)→ even(x)′].

(∀x)(∀y)[x < y → ((∃w) (w = 0)′ ∧ (y = x + w))].
(∀x)(∀y)[x | y → ((∃z) y = x · z)].
(∀x)[prime(x)→ ((1 < x) ∧ (∀z) z | x → ((z = 1) ∨ (z = x)))].

Subramani Proof Techniques



Motivation
Techniques

Non-Inductive Proof
Inductive Proof

Auxiliary Definitions

Common Predicates
The “rudimentary” theory discussed above is sufficient for number theory.
However, in order to make mathematics readable, we need additional predicates, such
as even(x), odd(x), and so on.
Here are some first order definitions, which we will assume have been added to the list
of axioms:

We use the symbol 2 for 1 + 1, the symbol 3 for 1 + 1 + 1 and so on.
We use a · x to represent the addition of x with itself a times.
(∀x)[even(x)→ ((∃z) x = 2 · z)].
(∀x)[odd(x)→ even(x)′].
(∀x)(∀y)[x < y →

((∃w) (w = 0)′ ∧ (y = x + w))].
(∀x)(∀y)[x | y → ((∃z) y = x · z)].
(∀x)[prime(x)→ ((1 < x) ∧ (∀z) z | x → ((z = 1) ∨ (z = x)))].

Subramani Proof Techniques



Motivation
Techniques

Non-Inductive Proof
Inductive Proof

Auxiliary Definitions

Common Predicates
The “rudimentary” theory discussed above is sufficient for number theory.
However, in order to make mathematics readable, we need additional predicates, such
as even(x), odd(x), and so on.
Here are some first order definitions, which we will assume have been added to the list
of axioms:

We use the symbol 2 for 1 + 1, the symbol 3 for 1 + 1 + 1 and so on.
We use a · x to represent the addition of x with itself a times.
(∀x)[even(x)→ ((∃z) x = 2 · z)].
(∀x)[odd(x)→ even(x)′].
(∀x)(∀y)[x < y → ((∃w) (w = 0)′ ∧ (y = x + w))].

(∀x)(∀y)[x | y → ((∃z) y = x · z)].
(∀x)[prime(x)→ ((1 < x) ∧ (∀z) z | x → ((z = 1) ∨ (z = x)))].

Subramani Proof Techniques



Motivation
Techniques

Non-Inductive Proof
Inductive Proof

Auxiliary Definitions

Common Predicates
The “rudimentary” theory discussed above is sufficient for number theory.
However, in order to make mathematics readable, we need additional predicates, such
as even(x), odd(x), and so on.
Here are some first order definitions, which we will assume have been added to the list
of axioms:

We use the symbol 2 for 1 + 1, the symbol 3 for 1 + 1 + 1 and so on.
We use a · x to represent the addition of x with itself a times.
(∀x)[even(x)→ ((∃z) x = 2 · z)].
(∀x)[odd(x)→ even(x)′].
(∀x)(∀y)[x < y → ((∃w) (w = 0)′ ∧ (y = x + w))].
(∀x)(∀y)[x | y →

((∃z) y = x · z)].
(∀x)[prime(x)→ ((1 < x) ∧ (∀z) z | x → ((z = 1) ∨ (z = x)))].

Subramani Proof Techniques



Motivation
Techniques

Non-Inductive Proof
Inductive Proof

Auxiliary Definitions

Common Predicates
The “rudimentary” theory discussed above is sufficient for number theory.
However, in order to make mathematics readable, we need additional predicates, such
as even(x), odd(x), and so on.
Here are some first order definitions, which we will assume have been added to the list
of axioms:

We use the symbol 2 for 1 + 1, the symbol 3 for 1 + 1 + 1 and so on.
We use a · x to represent the addition of x with itself a times.
(∀x)[even(x)→ ((∃z) x = 2 · z)].
(∀x)[odd(x)→ even(x)′].
(∀x)(∀y)[x < y → ((∃w) (w = 0)′ ∧ (y = x + w))].
(∀x)(∀y)[x | y → ((∃z) y = x · z)].

(∀x)[prime(x)→ ((1 < x) ∧ (∀z) z | x → ((z = 1) ∨ (z = x)))].

Subramani Proof Techniques



Motivation
Techniques

Non-Inductive Proof
Inductive Proof

Auxiliary Definitions

Common Predicates
The “rudimentary” theory discussed above is sufficient for number theory.
However, in order to make mathematics readable, we need additional predicates, such
as even(x), odd(x), and so on.
Here are some first order definitions, which we will assume have been added to the list
of axioms:

We use the symbol 2 for 1 + 1, the symbol 3 for 1 + 1 + 1 and so on.
We use a · x to represent the addition of x with itself a times.
(∀x)[even(x)→ ((∃z) x = 2 · z)].
(∀x)[odd(x)→ even(x)′].
(∀x)(∀y)[x < y → ((∃w) (w = 0)′ ∧ (y = x + w))].
(∀x)(∀y)[x | y → ((∃z) y = x · z)].
(∀x)[prime(x)→

((1 < x) ∧ (∀z) z | x → ((z = 1) ∨ (z = x)))].

Subramani Proof Techniques



Motivation
Techniques

Non-Inductive Proof
Inductive Proof

Auxiliary Definitions

Common Predicates
The “rudimentary” theory discussed above is sufficient for number theory.
However, in order to make mathematics readable, we need additional predicates, such
as even(x), odd(x), and so on.
Here are some first order definitions, which we will assume have been added to the list
of axioms:

We use the symbol 2 for 1 + 1, the symbol 3 for 1 + 1 + 1 and so on.
We use a · x to represent the addition of x with itself a times.
(∀x)[even(x)→ ((∃z) x = 2 · z)].
(∀x)[odd(x)→ even(x)′].
(∀x)(∀y)[x < y → ((∃w) (w = 0)′ ∧ (y = x + w))].
(∀x)(∀y)[x | y → ((∃z) y = x · z)].
(∀x)[prime(x)→ ((1 < x) ∧ (∀z) z | x → ((z = 1) ∨ (z = x)))].

Subramani Proof Techniques



Motivation
Techniques

Non-Inductive Proof
Inductive Proof

Exhaustive Proof

Technique
Simply enumerate all elements of the domain and check if the argument holds for each
element.
If it does, then the conjecture is a theorem.

Example

Let D = {1, 2, 3, 4, 5, 6, 7, 8}.
Conjecture: If x ∈ D and x is divisible by 4, then x is divisible by 2.
Let P(x) ≡ x is divisible by 4, and Q(x) ≡ x is divisible by 2.
The conjecture is (∀x ∈ D)[P(x)→ Q(x)].
Check for x = 1, x = 2, . . . ...

Note
Only works when the domain is finite.
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Example

Let D = {0, 1, 2, 3, 4, 5}.
Consider the following conjecture: For all x ∈ D, x2 ≤ 10 + 5 · x .
Is the conjecture a theorem?
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Non-Inductive Proof
Inductive Proof

Direct Proof

Technique
Given the conjecture P → Q, assume that P is true and show that Q must be true.
This is exactly what we did in Formal Logic!

Example
Show that the product of two even integers is even.
Let us first symbolize the argument:
(∀x)(∀y) (x even ∧ y even)→ x · y even
Is the above symbolization complete?
Formal Proof: On dot-cam.
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Proof of Example

Proof.
We now give an informal but rigorous proof.
Since x is even, x = 2 · k, for some integer k.
Since y is even, y = 2 · r , for some integer r .
Therefore, x · y = (2 · k) · (2 · r) = 2 · (2 · k · r) = 2 · p, for some integer p.
It follows that x · y is even.

Example
Show that if an integer is divisible by 4, then it is divisible by 2.
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Show that if an integer is divisible by 4, then it is divisible by 2.
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Proof by Contraposition

Technique

Given the argument P → Q, use the direct proof technique to show that Q′ → P′.
We know that (P → Q)⇔ (Q′ → P′)!

Example
Show that if the square of an integer is odd, then x must be odd.
Formally, (∀x)(x2 odd)→ (x odd).

Proof.

We will instead show that if x is not odd, then x2 is not odd.
However, if x is not odd, then it must be even. Likewise, with x2.
We thus have to show that if x is even, then so is x2.
But we have already shown that if two numbers are even so is their product!
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Contraposition (contd.)

Example
Show that if 5 apples are given to 4 students, then at least one student will get ≥ 2
apples.
The apples must be given as wholes.

Note
Do not confuse contrapositive with converse.
The converse of P → Q is Q → P.
The converse of a theorem may or may not be true.
For instance, the argument, ”If a > 5, then a > 2” is a theorem.
What about the converse?
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Proof by Contradiction

Main Idea

Observe that [(P ∧ Q′)→ false]→ (P → Q) is a tautology.

It follows that if we show that (P ∧ Q′) is unequivocally false, we have in fact, proven
P → Q.

Definition

A rational number is one that can be expressed in the form p
q , where p and q are

integers, with no common divisor and q 6= 0.
The condition of having no common divisors is denoted by gcd(p, q) = 1.

Example

Show that
√

2 is not rational.
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Proof by Contradiction (contd.)

Proof.

Let
√

2 be rational. Therefore,
√

2 = p
q , gcd(p, q) = 1, q 6= 0.

√
2 · q = p

→ 2 · q2 = p2

→ 2 | p2

→ 2 | p
→ p = 2 · k, for some k
→ p2 = 4 · k2

→ 2 · q2 = 4 · k2

→ q2 = 2 · k2

→ 2 | q2

→ 2 | q
→ Bingo!
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Proof by Contradiction (contd.)

Example

(i) Show that
√

3 is not rational.
(ii) Show that the product of two odd integers is odd. (Can you do it by direct

proof?)
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Technique
Prayer! Good Luck. Coffee.
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Number of games in a tennis tournament.
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Induction

Motivation
Reaching arbitrary rungs of a ladder.

Well-Ordering Principle
Every non-empty set of positive integers has a least element.

Note
Induction can only be applied to a well-ordered domain, where the concept of “next”
is unambiguous, e.g, non-negative integers.
How about all integers?
How about non-negative reals?
How about non-negative rationals?
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The first principle of Mathematical Induction

Principle
Assume that the domain is the set of positive integers.
Let P(n) denote a conjecture (argument) that we need to show holds, for every n ≥ 1.
If

1 P(1) is true.

2 (∀k)[P(k) is true→ P(k + 1) is true]

then,
P(n) is true, for all positive integers n.

Observations

(i) Showing that P(1) is true is called the basis step.
(ii) Assuming that P(k) is true, in order to show that P(k + 1) is true is called the

inductive hypothesis.
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Example

Show that the sum of the first n integers is n·(n+1)
2 .

Formally, (∀n) [
∑n

i=1 i = n·(n+1)
2 ].
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Formal Proof

Proof.

Let P(n) denote the predicate
∑n

i=1 i = n·(n+1)
2 .

We are required to prove the conjecture: (∀n)P(n).
Basis (P(1)):

LHS =
1∑

i=1

i

= 1

RHS =
1 · (1 + 1)

2
=

1 · (2)
2

=
2
2

= 1

Thus, LHS = RHS and P(1) is true.
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Proof (contd.)

Proof.
Observe that,

LHS =
k+1∑
i=1

i

= 1 + 2 + 3 + . . . + k + (k + 1)
= (1 + 2 + 3 + . . . + k) + (k + 1)

=
k · (k + 1)

2
+ (k + 1), using the inductive hypothesis

= (k + 1) · (
k
2

+ 1)

= (k + 1) · (
k + 2

2
)

=
(k + 1) · (k + 2)

2
= RHS.
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Completing the proof

Final Steps

Since, LHS=RHS, we have shown that P(k)→ P(k + 1).
Applying the first principle of mathematical induction, we conclude that the conjecture
is true, i.e., (∀n)P(n) holds.
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Central Theme

Main Ideas

(i) Mathematicize the conjecture.
(ii) Prove the basis (usually P(1) and usually easy.)
(iii) Assume P(k).
(iv) Show P(k + 1). (The hard part. Use mathematical manipulation.)
(v) To show P(k)→ P(k + 1), you may use any of the proof techniques discussed,

including exhaustive proof, direct proof, contraposition, contradiction, serendipity
and induction!
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Another Induction Example

Example

Show that the sum of the squares of the first n integers is n·(n+1)·(2·n+1)
6 , i.e., show

that
∑n

i=1 i2 = n·(n+1)·(2·n+1)
6 .
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Proving the Basis

Proof.

Basis (P(1)):

LHS =
1∑

i=1

i2

= 1

RHS =
1 · (1 + 1) · (2 · 1 + 1)

6

=
1 · (2) · (3)

6

=
6
6

= 1

Thus, LHS = RHS and P(1) is true.
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Induction example (contd.)

Proof.

Let us assume that P(k) is true, i.e., assume that

k∑
i=1

i2 =
k · (k + 1) · (2 · k + 1)

6
.

We need to show that P(k + 1) is true, i.e., we need to show that∑k+1
i=1 i2 = (k+1)·(k+2)·(2·(k+1)+1)

6 .

LHS =
k+1∑
i=1

i2

= 12 + 22 + 32 + . . . + k2 + (k + 1)2

= (12 + 22 + 32 + . . . + k2) + (k + 1)2
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Induction proof (contd.)

Proof.

=
k · (k + 1) · (2 · k + 1)

6
+ (k + 1)2, using the inductive hypothesis

=
k + 1

6
(k · (2 · k + 1) + 6 · (k + 1))

=
k + 1

6
(2 · k2 + k + 6 · k + 6)

=
k + 1

6
(2 · k2 + 7 · k + 6)

=
k + 1

6
(2 · k2 + 4 · k + 3 · k + 6)

=
k + 1

6
(2 · k · (k + 2) + 3 · (k + 2))

=
k + 1

6
(2 · k + 3) · (k + 2))
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Induction Proof (contd.)

Proof.

=
(k + 1) · (k + 2) · (2 · (k + 1) + 1)

6
= RHS.

Since, LHS=RHS, we have shown that P(k)→ P(k + 1).
Applying the first principle of mathematical induction, we conclude that the conjecture
is true.
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Induction Example

Example

Show that the sum of the first n odd integers is n2, i.e., show that∑n
i=1(2 · i − 1) = n2.

Proof.

Basis (P(1)):

LHS =
1∑

i=1

(2 · i − 1)

= 2 · 1− 1
= 1

RHS = 12

= 1

Thus, LHS = RHS and P(1) is true.
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Proof (contd.)

Proof.

Let us assume that P(k) is true, i.e., assume that

k∑
i=1

(2 · i − 1) = k2

We need to show that P(k + 1) is true, i.e., we need to show that∑k+1
i=1 (2 · i − 1) = (k + 1)2.
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Completing the proof

Proof.

LHS =
k+1∑
i=1

(2 · i − 1)

= 1 + 3 + 5 + . . . (2 · k − 1) + (2 · (k + 1)− 1)
= (1 + 3 + 5 + . . . (2 · k − 1)) + (2 · k + 1)
= k2 + (2 · k + 1), using the inductive hypothesis
= (k + 1)2

= RHS

Since LHS = RHS, we have shown that P(k)→ P(k + 1). Applying the first principle
of mathematical induction, we conclude that the conjecture is true.
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One Final Example

Example

Show that 7n − 5n is always an even number for n ≥ 0, i.e., show that 2 | (7n − 5n),
∀n ≥ 0.

Proof.

Basis (P(0)):

LHS = 70 − 50

= 1− 1
= 0

Since the LHS is even, we have proven the basis P(0).
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Proof (contd.)

Proof.

Let us assume that P(k) is true, i.e., assume that (7k − 5k ) is divisible by 2 for some k.
It follows that (7k − 5k ) = 2 ·m, for some integer m.
We need to show that P(k + 1) is true, i.e., (7k+1 − 5k+1) is divisible by 2.
Observe that,

7k+1 − 5k+1 = 7 · 7k − 5 · 5k

= 7 · (2 ·m + 5k )− 5 · 5k , using the inductive hypothesis
= 14 ·m + 7 · 5k − 5 · 5k

= 14 ·m + 5k · (7− 5)
= 14 ·m + 2 · 5k

= 2 · (7 ·m + 5k )
= some even number!

We have thus shown that P(k)→ P(k + 1). Applying the first principle of
mathematical induction, we conclude that the conjecture is true.
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Second Principle of Induction

Principle
Assume that the domain is the set of positive integers.
Let P(n) denote a conjecture which we want to prove holds for every n ≥ 1.
If

(i) P(1) is true, and
(ii) (∀r)(1 ≤ r ≤ k)[P(r) is true]→ P(k + 1) is true]

then,
P(n) is true for all n.

Note
Also called Strong Induction. Is necessary, when the first principle does not help us.
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Example of Strong Induction

Example
Show that every number greater than or equal to 8 can be expressed in the form
5 · a + 3 · b, for suitably chosen a and b.

Proof.

(i) The conjecture is clearly true for 8, 9 and 10.
(ii) Assume that the conjecture holds for all r , 8 ≤ r ≤ k.
(iii) Consider the integer (k + 1).
(iv) Without loss of generality, we assume that (k + 1) ≥ 11.
(v) Observe that (k + 1)− 3 = (k − 2) is at least 8 and less than k.
(vi) As per the inductive hypothesis, (k − 2) can be expressed in the form 3 · a + 5 · b,

for suitably chosen a and b.
(vii) It follows that (k + 1) = (k − 2) + 3 = 3 · a + 5 · b + 3 = 3 · (a + 1) + 5 · b can

also be so expressed.
(viii) Applying the second principle of mathematical induction, we conclude that the

conjecture is true, for all n ≥ 8.
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Another Example

Example

Show that every element in the set S = {2, 3, . . . , } is either a prime number or a
product of primes.

Proof.
1 For the basis, observe that 2 is a prime.
2 Assume that the conjecture holds for all r , 2 ≤ r ≤ k.

In other words, assume that every number in the set Sk = {2, 3, . . . , k} is either a
prime or can be expressed as a product of primes.

3 Now consider the number (k + 1). If (k + 1) is a prime, then we are done.
4 If (k + 1) is composite, then (k + 1) = a · b, where a, b < (k + 1).
5 As per the inductive hypothesis, both a and b are either primes themselves or can

be expressed as products of primes.
6 In either case, it follows that (k + 1) can be expressed as a product of primes.
7 Applying the second principle of mathematical induction, we conclude that the

conjecture is true for all elements in the domain.
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