Propositional Logic

K. Subramani¹

¹Lane Department of Computer Science and Electrical Engineering West Virginia University

12, 14, 19 January 2016

Oerivation Rules for Propositional Logic

Operivation Rules for Propositional Logic

Arguments Derivation Rules for Propositional Logic Verbal Arguments

Building blocks

Arguments Derivation Rules for Propositional Logic Verbal Arguments

Building blocks

Basics

Subramani CS 220 - Discrete Mathematics

Arguments Derivation Rules for Propositional Logic Verbal Arguments

Building blocks

Basics

Subramani CS 220 - Discrete Mathematics

Arguments Derivation Rules for Propositional Logic Verbal Arguments

Building blocks

Basics

Constants -

Arguments Derivation Rules for Propositional Logic Verbal Arguments

Building blocks

Basics

Oconstants - true and false.

Arguments Derivation Rules for Propositional Logic Verbal Arguments

Building blocks

Basics

- Oconstants true and false.
- 2 Atoms Propositions.

Arguments Derivation Rules for Propositional Logic Verbal Arguments

Building blocks

Basics

- Oconstants true and false.
- 2 Atoms Propositions.

Onnectives.

Arguments Derivation Rules for Propositional Logic Verbal Arguments

Building blocks

Basics

- Oconstants true and false.
- 2 Atoms Propositions.

Connectives.

Semantics.

Arguments Derivation Rules for Propositional Logic Verbal Arguments

Propositions

Arguments Derivation Rules for Propositional Logic Verbal Arguments

Propositions

Definition

Arguments Derivation Rules for Propositional Logic Verbal Arguments

Propositions

Definition

Statement (or Atomic Proposition) -

Arguments Derivation Rules for Propositional Logic Verbal Arguments

Propositions

Definition

Statement (or Atomic Proposition) - A sentence that is either true or false.

Arguments Derivation Rules for Propositional Logic Verbal Arguments

Propositions

Definition

Statement (or Atomic Proposition) - A sentence that is either true or false.

Example

Subramani CS 220 - Discrete Mathematics

Arguments Derivation Rules for Propositional Logic Verbal Arguments

Propositions

Definition

Statement (or Atomic Proposition) - A sentence that is either true or false.

Example

Subramani CS 220 - Discrete Mathematics

Arguments Derivation Rules for Propositional Logic Verbal Arguments

Propositions

Definition

Statement (or Atomic Proposition) - A sentence that is either true or false.

Example

(i) The board is black.

Arguments Derivation Rules for Propositional Logic Verbal Arguments

Propositions

Definition

Statement (or Atomic Proposition) - A sentence that is either true or false.

- (i) The board is black.
- (ii) Are you John?

Arguments Derivation Rules for Propositional Logic Verbal Arguments

Propositions

Definition

Statement (or Atomic Proposition) - A sentence that is either true or false.

- (i) The board is black.
- (ii) Are you John?
- (iii) The moon is made of green cheese.

Arguments Derivation Rules for Propositional Logic Verbal Arguments

Propositions

Definition

Statement (or Atomic Proposition) - A sentence that is either true or false.

- (i) The board is black.
- (ii) Are you John?
- (iii) The moon is made of green cheese.
- (iv) I am a liar.

Arguments Derivation Rules for Propositional Logic Verbal Arguments

Propositions

Definition

Statement (or Atomic Proposition) - A sentence that is either true or false.

- (i) The board is black.
- (ii) Are you John?
- (iii) The moon is made of green cheese.
- (iv) I am a liar. (Paradox).

Arguments Derivation Rules for Propositional Logic Verbal Arguments

Boolean Connectives

Motivation

Arguments Derivation Rules for Propositional Logic Verbal Arguments

Boolean Connectives

Motivation

Arguments Derivation Rules for Propositional Logic Verbal Arguments

Boolean Connectives

Motivation

To make compound statements from simple ones.

Arguments Derivation Rules for Propositional Logic Verbal Arguments

Boolean Connectives

Motivation

To make compound statements from simple ones.

Arguments Derivation Rules for Propositional Logic Verbal Arguments

Boolean Connectives

Motivation

To make compound statements from simple ones.

Basic Connectives are:

• conjunction (AND) (\land),

Arguments Derivation Rules for Propositional Logic Verbal Arguments

Boolean Connectives

Motivation

To make compound statements from simple ones.

- conjunction (AND) (\land),
- **2** disjunction (OR) (\lor),

Arguments Derivation Rules for Propositional Logic Verbal Arguments

Boolean Connectives

Motivation

To make compound statements from simple ones.

- conjunction (AND) (\land),
- **3** disjunction (OR) (\lor) ,
- O Negation (NOT) ('),

Arguments Derivation Rules for Propositional Logic Verbal Arguments

Boolean Connectives

Motivation

To make compound statements from simple ones.

- conjunction (AND) (\land),
- **3** disjunction (OR) (\lor) ,
- O Negation (NOT) ('),
- $\textbf{ implication (IF) } (\rightarrow),$

Arguments Derivation Rules for Propositional Logic Verbal Arguments

Boolean Connectives

Motivation

To make compound statements from simple ones.

- conjunction (AND) (\land),
- **3** disjunction (OR) (\lor) ,
- Segation (NOT) ('),
- \bigcirc implication (IF) (\rightarrow), and

Arguments Derivation Rules for Propositional Logic Verbal Arguments

Boolean Connectives

Motivation

To make compound statements from simple ones.

- conjunction (AND) (\land),
- **2** disjunction (OR) (\lor),
- Negation (NOT) ('),
- \bigcirc implication (IF) (\rightarrow), and
- $\textcircled{\ } \textbf{Equivalence} (\mathsf{IF} \mathsf{ AND} \mathsf{ ONLY} \mathsf{ IF}) (\leftrightarrow).$

Arguments Derivation Rules for Propositional Logic Verbal Arguments

Conjunction

Arguments Derivation Rules for Propositional Logic Verbal Arguments

Conjunction

Semantics of Conjunction
Arguments Derivation Rules for Propositional Logic Verbal Arguments

Conjunction

Semantics of Conjunction

Arguments Derivation Rules for Propositional Logic Verbal Arguments

Conjunction

Semantics of Conjunction

Α	В	$A \wedge B$
Т	Т	Т
Т	F	F
F	Т	F
F	F	F

Arguments Derivation Rules for Propositional Logic Verbal Arguments

Conjunction

Semantics of Conjunction

Α	В	$A \wedge B$
Т	Т	Т
Т	F	F
F	Т	F
F	F	F

Note

Arguments Derivation Rules for Propositional Logic Verbal Arguments

Conjunction

Semantics of Conjunction

Α	В	$A \wedge B$
Т	Т	Т
Т	F	F
F	Т	F
F	F	F

Note

The above table is called a truth-table.

Arguments Derivation Rules for Propositional Logic Verbal Arguments

Conjunction

Semantics of Conjunction

Α	В	$A \wedge B$
Т	Т	Т
Т	F	F
F	Т	F
F	F	F

Note

The above table is called a truth-table.

Arguments Derivation Rules for Propositional Logic Verbal Arguments

Disjunction

Arguments Derivation Rules for Propositional Logic Verbal Arguments

Disjunction

Semantics of Disjunction

Arguments Derivation Rules for Propositional Logic Verbal Arguments

Disjunction

Semantics of Disjunction

Arguments Derivation Rules for Propositional Logic Verbal Arguments

Disjunction

Semantics of Disjunction

Α	В	$A \lor B$
Т	Т	Т
Т	F	Т
F	Т	Т
F	F	F

Arguments Derivation Rules for Propositional Logic Verbal Arguments

Arguments Derivation Rules for Propositional Logic Verbal Arguments

Negation

Semantics of Negation

Arguments Derivation Rules for Propositional Logic Verbal Arguments

Negation

Semantics of Negation

Arguments Derivation Rules for Propositional Logic Verbal Arguments

Negation

Semantics of Negation

A	A'
Т	F
F	Т

Arguments Derivation Rules for Propositional Logic Verbal Arguments

Implication

Arguments Derivation Rules for Propositional Logic Verbal Arguments

Implication

Semantics of Implication

Arguments Derivation Rules for Propositional Logic Verbal Arguments

Implication

Semantics of Implication

Arguments Derivation Rules for Propositional Logic Verbal Arguments

Implication

Semantics of Implication

Α	В	$A \rightarrow B$
Т	Т	Т
Т	F	F
F	Т	Т
F	F	Т

Arguments Derivation Rules for Propositional Logic Verbal Arguments

Implication

Semantics of Implication

Note

Arguments Derivation Rules for Propositional Logic Verbal Arguments

Implication

Semantics of Implication

Note

Note that $A \rightarrow B$ is the same as $A' \lor B$.

Arguments Derivation Rules for Propositional Logic Verbal Arguments

Implication

Semantics of Implication

Note

Note that $A \rightarrow B$ is the same as $A' \vee B$.

A is called the antecedent and B is the consequent of the implication.

Arguments Derivation Rules for Propositional Logic Verbal Arguments

Equivalence

Arguments Derivation Rules for Propositional Logic Verbal Arguments

Equivalence

Semantics of Equivalence

Arguments Derivation Rules for Propositional Logic Verbal Arguments

Equivalence

Semantics of Equivalence

A	В	$A \leftrightarrow B$
Т	Т	Т
Т	F	F
F	Т	F
F	F	Т

Arguments Derivation Rules for Propositional Logic Verbal Arguments

Equivalence

Semantics of Equivalence

Α	В	$A \leftrightarrow B$
Т	Т	Т
Т	F	F
F	Т	F
F	F	Т

Note

Arguments Derivation Rules for Propositional Logic Verbal Arguments

Equivalence

Semantics of Equivalence

A	В	$A \leftrightarrow B$
Т	Т	Т
Т	F	F
F	Т	F
F	F	Т

Note

Note that $A \leftrightarrow B$ is the same as $(A \rightarrow B) \land (B \rightarrow A)$.

Arguments Derivation Rules for Propositional Logic Verbal Arguments

Well-formed Formulas

Arguments Derivation Rules for Propositional Logic Verbal Arguments

Well-formed Formulas

Arguments Derivation Rules for Propositional Logic Verbal Arguments

Well-formed Formulas

Definition

(i) A simple proposition is a well-formed formula (wff).

Arguments Derivation Rules for Propositional Logic Verbal Arguments

Well-formed Formulas

- (i) A simple proposition is a well-formed formula (wff).
- (ii) If A is a wff, then so is A'.

Arguments Derivation Rules for Propositional Logic Verbal Arguments

Well-formed Formulas

- (i) A simple proposition is a well-formed formula (wff).
- (ii) If A is a wff, then so is A'.
- (iii) If A and B are wffs, then so are (A), $A \lor B$, $A \land B$, $A \to B$ and $A \leftrightarrow B$.

Arguments Derivation Rules for Propositional Logic Verbal Arguments

Well-formed Formulas

- (i) A simple proposition is a well-formed formula (wff).
- (ii) If A is a wff, then so is A'.
- (iii) If A and B are wffs, then so are (A), $A \lor B$, $A \land B$, $A \to B$ and $A \leftrightarrow B$.
- (iv) These are the only wffs.

Arguments Derivation Rules for Propositional Logic Verbal Arguments

Well-formed Formulas

Definition

- (i) A simple proposition is a well-formed formula (wff).
- (ii) If A is a wff, then so is A'.
- (iii) If A and B are wffs, then so are (A), $A \lor B$, $A \land B$, $A \to B$ and $A \leftrightarrow B$.
- (iv) These are the only wffs.

Example

Arguments Derivation Rules for Propositional Logic Verbal Arguments

Well-formed Formulas

Definition

- (i) A simple proposition is a well-formed formula (wff).
- (ii) If A is a wff, then so is A'.
- (iii) If A and B are wffs, then so are (A), $A \lor B$, $A \land B$, $A \to B$ and $A \leftrightarrow B$.
- (iv) These are the only wffs.

Example

 $A \lor B$ is not a wff.

Arguments Derivation Rules for Propositional Logic Verbal Arguments

Resolving Ambiguity

Arguments Derivation Rules for Propositional Logic Verbal Arguments

Resolving Ambiguity

Precedence

Arguments Derivation Rules for Propositional Logic Verbal Arguments

Resolving Ambiguity

Precedence

Ambiguity is resolved using the following order of precedence.

- (i) parentheses.
- (ii) negation.
- (iii) conjunction, disjunction.
- (iv) implication.
- (v) equivalence.
Arguments Derivation Rules for Propositional Logic Verbal Arguments

Resolving Ambiguity

Precedence

Ambiguity is resolved using the following order of precedence.

- (i) parentheses.
- (ii) negation.
- (iii) conjunction, disjunction.
- (iv) implication.
- (v) equivalence.

Use brackets and forget about precedence!

Arguments Derivation Rules for Propositional Logic Verbal Arguments

Tautologies

Arguments Derivation Rules for Propositional Logic Verbal Arguments

Tautologies

Definition

Arguments Derivation Rules for Propositional Logic Verbal Arguments

Tautologies

Definition

A wff which is always **true** is called a *tautology*, while a wff which is always **false** is called a *contradiction*.

Arguments Derivation Rules for Propositional Logic Verbal Arguments

Tautologies

Definition

A wff which is always **true** is called a *tautology*, while a wff which is always **false** is called a *contradiction*.

Example

Arguments Derivation Rules for Propositional Logic Verbal Arguments

Tautologies

Definition

A wff which is always **true** is called a *tautology*, while a wff which is always **false** is called a *contradiction*.

Example

 $A \rightarrow A$.

Arguments Derivation Rules for Propositional Logic Verbal Arguments

Tautologies

Definition

A wff which is always **true** is called a *tautology*, while a wff which is always **false** is called a *contradiction*.

Example

 $A \rightarrow A.$

Definition

Arguments Derivation Rules for Propositional Logic Verbal Arguments

Tautologies

Definition

A wff which is always **true** is called a *tautology*, while a wff which is always **false** is called a *contradiction*.

Example

 $A \rightarrow A$.

Definition

If *A* and *B* are two wffs, and $A \leftrightarrow B$ is a tautology, then *A* and *B* are said to be **equivalent wffs** (denoted by $A \Leftrightarrow B$) and can be substituted for one another.

Arguments Derivation Rules for Propositional Logic Verbal Arguments

Tautologies

Definition

A wff which is always **true** is called a *tautology*, while a wff which is always **false** is called a *contradiction*.

Example

 $A \rightarrow A$.

Definition

If *A* and *B* are two wffs, and $A \leftrightarrow B$ is a tautology, then *A* and *B* are said to be **equivalent wffs** (denoted by $A \Leftrightarrow B$) and can be substituted for one another.

Tautology checking

Arguments Derivation Rules for Propositional Logic Verbal Arguments

Tautologies

Definition

A wff which is always **true** is called a *tautology*, while a wff which is always **false** is called a *contradiction*.

Example

 $A \rightarrow A$.

Definition

If *A* and *B* are two wffs, and $A \leftrightarrow B$ is a tautology, then *A* and *B* are said to be **equivalent wffs** (denoted by $A \Leftrightarrow B$) and can be substituted for one another.

Tautology checking

How do you check if a wff is a tautology?

Arguments Derivation Rules for Propositional Logic Verbal Arguments

Tautologies

Definition

A wff which is always **true** is called a *tautology*, while a wff which is always **false** is called a *contradiction*.

Example

 $A \rightarrow A$.

Definition

If *A* and *B* are two wffs, and $A \leftrightarrow B$ is a tautology, then *A* and *B* are said to be **equivalent wffs** (denoted by $A \Leftrightarrow B$) and can be substituted for one another.

Tautology checking

How do you check if a wff is a tautology? Truth-tables!

Arguments Derivation Rules for Propositional Logic Verbal Arguments

Tautologies

Definition

A wff which is always **true** is called a *tautology*, while a wff which is always **false** is called a *contradiction*.

Example

 $A \rightarrow A$.

Definition

If *A* and *B* are two wffs, and $A \leftrightarrow B$ is a tautology, then *A* and *B* are said to be **equivalent wffs** (denoted by $A \Leftrightarrow B$) and can be substituted for one another.

Tautology checking

How do you check if a wff is a tautology? Truth-tables!

Example

Arguments Derivation Rules for Propositional Logic Verbal Arguments

Tautologies

Definition

A wff which is always **true** is called a *tautology*, while a wff which is always **false** is called a *contradiction*.

Example

 $A \rightarrow A$.

Definition

If *A* and *B* are two wffs, and $A \leftrightarrow B$ is a tautology, then *A* and *B* are said to be **equivalent wffs** (denoted by $A \Leftrightarrow B$) and can be substituted for one another.

Tautology checking

How do you check if a wff is a tautology? Truth-tables!

Example

$$(A \rightarrow B) \Leftrightarrow (B' \rightarrow A').$$

Arguments Derivation Rules for Propositional Logic Verbal Arguments

Common Tautological Equivalences

Arguments Derivation Rules for Propositional Logic Verbal Arguments

Common Tautological Equivalences

De Morgan's Laws

 $(A \lor B)' \Leftrightarrow (A' \land B')$

Arguments Derivation Rules for Propositional Logic Verbal Arguments

Common Tautological Equivalences

De Morgan's Laws

 $(A \lor B)' \Leftrightarrow (A' \land B')$

 $(A \wedge B)' \Leftrightarrow (A' \vee B')$

Arguments Derivation Rules for Propositional Logic Verbal Arguments

Common Tautological Equivalences

De Morgan's Laws

 $(A \lor B)' \Leftrightarrow (A' \land B')$

 $(A \wedge B)' \Leftrightarrow (A' \vee B')$

Commutativity

 $(A \lor B) \Leftrightarrow (B \lor A)$

Arguments Derivation Rules for Propositional Logic Verbal Arguments

Common Tautological Equivalences

De Morgan's Laws

 $(A \lor B)' \Leftrightarrow (A' \land B')$

 $(A \wedge B)' \Leftrightarrow (A' \vee B')$

Commutativity

 $(A \lor B) \Leftrightarrow (B \lor A)$

 $(A \land B) \Leftrightarrow (B \land A)$

Arguments Derivation Rules for Propositional Logic Verbal Arguments

Common Tautological Equivalences

De Morgan's Laws

 $(A \lor B)' \Leftrightarrow (A' \land B')$

 $(A \wedge B)' \Leftrightarrow (A' \vee B')$

Commutativity

 $(A \lor B) \Leftrightarrow (B \lor A)$

 $(A \land B) \Leftrightarrow (B \land A)$

Associativity

 $(A \lor B) \lor C \Leftrightarrow A \lor (B \lor C)$

Arguments Derivation Rules for Propositional Logic Verbal Arguments

Common Tautological Equivalences

De Morgan's Laws

 $(A \lor B)' \Leftrightarrow (A' \land B')$

 $(A \wedge B)' \Leftrightarrow (A' \vee B')$

Commutativity

 $(A \lor B) \Leftrightarrow (B \lor A)$

 $(A \land B) \Leftrightarrow (B \land A)$

Associativity

 $(A \lor B) \lor C \Leftrightarrow A \lor (B \lor C)$

 $(A \land B) \land C \Leftrightarrow A \land (B \land C)$

Rudiment:

Arguments Derivation Rules for Propositional Logic Verbal Arguments

Common Tautological Equivalences

De Morgan's Laws

 $(A \lor B)' \Leftrightarrow (A' \land B')$

 $(A \wedge B)' \Leftrightarrow (A' \vee B')$

Commutativity

 $(A \lor B) \Leftrightarrow (B \lor A)$

 $(A \land B) \Leftrightarrow (B \land A)$

Associativity

 $(A \lor B) \lor C \Leftrightarrow A \lor (B \lor C)$

 $(A \land B) \land C \Leftrightarrow A \land (B \land C)$

Distributivity

 $A \lor (B \land C) \Leftrightarrow (A \lor B) \land (A \lor C)$

Rudiment:

Arguments Derivation Rules for Propositional Logic Verbal Arguments

Common Tautological Equivalences

De Morgan's Laws

 $(A \lor B)' \Leftrightarrow (A' \land B')$

 $(A \wedge B)' \Leftrightarrow (A' \vee B')$

Commutativity

 $(A \lor B) \Leftrightarrow (B \lor A)$

 $(A \land B) \Leftrightarrow (B \land A)$

Associativity

 $(A \lor B) \lor C \Leftrightarrow A \lor (B \lor C)$

 $(A \land B) \land C \Leftrightarrow A \land (B \land C)$

Distributivity

 $A \lor (B \land C) \Leftrightarrow (A \lor B) \land (A \lor C)$

 $A \wedge (B \vee C) \Leftrightarrow (A \wedge B) \vee (A \wedge C)$

Arguments Derivation Rules for Propositional Logic Verbal Arguments

Common Tautological Equivalences

De Morgan's Laws

 $(A \lor B)' \Leftrightarrow (A' \land B')$

 $(A \wedge B)' \Leftrightarrow (A' \vee B')$

Commutativity

 $(A \lor B) \Leftrightarrow (B \lor A)$

 $(A \land B) \Leftrightarrow (B \land A)$

Associativity

 $(A \lor B) \lor C \Leftrightarrow A \lor (B \lor C)$

 $(A \land B) \land C \Leftrightarrow A \land (B \land C)$

Distributivity

 $A \lor (B \land C) \Leftrightarrow (A \lor B) \land (A \lor C)$

 $A \wedge (B \lor C) \Leftrightarrow (A \land B) \lor (A \land C)$

Exercise

Arguments Derivation Rules for Propositional Logic Verbal Arguments

Common Tautological Equivalences

De Morgan's Laws

 $(A \lor B)' \Leftrightarrow (A' \land B')$

 $(A \wedge B)' \Leftrightarrow (A' \vee B')$

Commutativity

 $(A \lor B) \Leftrightarrow (B \lor A)$

 $(A \land B) \Leftrightarrow (B \land A)$

Associativity

 $(A \lor B) \lor C \Leftrightarrow A \lor (B \lor C)$

 $(A \land B) \land C \Leftrightarrow A \land (B \land C)$

Distributivity

 $A \lor (B \land C) \Leftrightarrow (A \lor B) \land (A \lor C)$

 $A \wedge (B \lor C) \Leftrightarrow (A \land B) \lor (A \land C)$

Exercise

Prove the above assertions.

Arguments

Derivation Rules for Propositional Logic Verbal Arguments

Arguments

Arguments

Derivation Rules for Propositional Logic Verbal Arguments

Arguments

Definition

Arguments

Derivation Rules for Propositional Logic Verbal Arguments

Arguments

Definition

An argument is a statement of the form:

 $(P_1 \land P_2 \land \ldots P_n) \rightarrow Q$

Arguments

Derivation Rules for Propositional Logic Verbal Arguments

Arguments

Definition

An argument is a statement of the form:

$$(P_1 \land P_2 \land \ldots P_n) \rightarrow Q$$

where each of the $P_i s$ and Q are propositions.

Arguments

Derivation Rules for Propositional Logic Verbal Arguments

Arguments

Definition

An argument is a statement of the form:

$$(P_1 \land P_2 \land \ldots P_n) \rightarrow Q$$

where each of the $P_i s$ and Q are propositions.

The $P_i s$ are called the hypotheses and Q is called the conclusion.

Arguments

Derivation Rules for Propositional Logic Verbal Arguments

Arguments

Definition

An argument is a statement of the form:

$$(P_1 \wedge P_2 \wedge \ldots P_n) \rightarrow Q$$

where each of the $P_i s$ and Q are propositions.

The $P_i s$ are called the hypotheses and Q is called the conclusion.

Semantics

Arguments

Derivation Rules for Propositional Logic Verbal Arguments

Arguments

Definition

An argument is a statement of the form:

$$(P_1 \land P_2 \land \ldots P_n) \rightarrow Q$$

where each of the $P_i s$ and Q are propositions.

The $P_i s$ are called the hypotheses and Q is called the conclusion.

Semantics

If all the *P_i* are **true**, is *Q* necessarily **true**?

Arguments

Derivation Rules for Propositional Logic Verbal Arguments

Arguments

Definition

An argument is a statement of the form:

$$(P_1 \wedge P_2 \wedge \ldots P_n) \rightarrow Q$$

where each of the $P_i s$ and Q are propositions.

The $P_i s$ are called the hypotheses and Q is called the conclusion.

Semantics

If all the P_i are true, is Q necessarily true?

When can Q be logically deduced from P_1, P_2, \ldots, P_n ?

Arguments

Derivation Rules for Propositional Logic Verbal Arguments

Valid Arguments

Arguments

Derivation Rules for Propositional Logic Verbal Arguments

Valid Arguments

Definition

Arguments

Derivation Rules for Propositional Logic Verbal Arguments

Valid Arguments

Definition

The argument

$$(P_1 \wedge P_2 \wedge \ldots P_n) \rightarrow Q$$

is said to be valid, if it is a tautology.

Arguments

Derivation Rules for Propositional Logic Verbal Arguments

Valid Arguments

Definition

The argument

$$(P_1 \wedge P_2 \wedge \ldots P_n) \rightarrow Q$$

is said to be valid, if it is a tautology.

Example
Arguments

Derivation Rules for Propositional Logic Verbal Arguments

Valid Arguments

Definition

The argument

$$(P_1 \wedge P_2 \wedge \ldots P_n) \to Q$$

is said to be *valid*, if it is a tautology.

Example

2 + 2 = 4 and 7 + 3 = 10. Therefore, a minute has 60 seconds. Is this valid?

Arguments

Derivation Rules for Propositional Logic Verbal Arguments

Valid Arguments

Definition

The argument

$$(P_1 \wedge P_2 \wedge \ldots P_n) \rightarrow Q$$

is said to be *valid*, if it is a tautology.

Example

2 + 2 = 4 and 7 + 3 = 10. Therefore, a minute has 60 seconds. Is this valid?

Note

The validity of an argument is based purely on its intrinsic structure and not on the specific meanings attached to its constituent propositions.

Arguments

Derivation Rules for Propositional Logic Verbal Arguments

Valid Arguments

Definition

The argument

$$(P_1 \wedge P_2 \wedge \ldots P_n) \rightarrow Q$$

is said to be *valid*, if it is a tautology.

Example

2 + 2 = 4 and 7 + 3 = 10. Therefore, a minute has 60 seconds. Is this valid?

Note

The validity of an argument is based purely on its intrinsic structure and not on the specific meanings attached to its constituent propositions.

Example

Arguments

Derivation Rules for Propositional Logic Verbal Arguments

Valid Arguments

Definition

The argument

$$(P_1 \wedge P_2 \wedge \ldots P_n) \rightarrow Q$$

is said to be *valid*, if it is a tautology.

Example

2 + 2 = 4 and 7 + 3 = 10. Therefore, a minute has 60 seconds. Is this valid?

Note

The validity of an argument is based purely on its intrinsic structure and not on the specific meanings attached to its constituent propositions.

Example

If John is hungry, he will eat. John is hungry. Therefore, he will eat.

Arguments

Derivation Rules for Propositional Logic Verbal Arguments

Valid Arguments

Definition

The argument

$$(P_1 \wedge P_2 \wedge \ldots P_n) \rightarrow Q$$

is said to be *valid*, if it is a tautology.

Example

2 + 2 = 4 and 7 + 3 = 10. Therefore, a minute has 60 seconds. Is this valid?

Note

The validity of an argument is based purely on its intrinsic structure and not on the specific meanings attached to its constituent propositions.

Example

If John is hungry, he will eat. John is hungry. Therefore, he will eat.

Symbolically,

$$[(H \to E) \land H] \to E.$$

Arguments

Derivation Rules for Propositional Logic Verbal Arguments

Checking Validity

rguments

Derivation Rules for Propositional Logic Verbal Arguments

Checking Validity

Truth-table Method

Arguments

Derivation Rules for Propositional Logic Verbal Arguments

Checking Validity

Truth-table Method

Simply check if all rows of the truth-table are true.

Arguments

Derivation Rules for Propositional Logic Verbal Arguments

Checking Validity

Truth-table Method

Simply check if all rows of the truth-table are true. Horribly expensive!

Arguments

Derivation Rules for Propositional Logic Verbal Arguments

Checking Validity

Truth-table Method

Simply check if all rows of the truth-table are true. Horribly expensive!

Derivation Rules

Arguments

Derivation Rules for Propositional Logic Verbal Arguments

Checking Validity

Truth-table Method

Simply check if all rows of the truth-table are true. Horribly expensive!

Derivation Rules

We will use a set of derivation rules and manipulate the hypotheses to arrive at the desired conclusion.

Arguments

Derivation Rules for Propositional Logic Verbal Arguments

Checking Validity

Truth-table Method

Simply check if all rows of the truth-table are true. Horribly expensive!

Derivation Rules

We will use a set of derivation rules and manipulate the hypotheses to arrive at the desired conclusion.

Proof Sequence

Arguments

Derivation Rules for Propositional Logic Verbal Arguments

Checking Validity

Truth-table Method

Simply check if all rows of the truth-table are true. Horribly expensive!

Derivation Rules

We will use a set of derivation rules and manipulate the hypotheses to arrive at the desired conclusion.

Proof Sequence

A proof sequence is a sequence of wffs in which each wff is either a hypothesis or the result of applying one of the formal system's derivation rules to earlier wffs in the sequence.

Derivation Rules

Rule Types

Subramani CS 220 - Discrete Mathematics

Derivation Rules

Rule Types

(i) Equivalence Rules.

Derivation Rules

Rule Types

- (i) Equivalence Rules.
- (ii) Inference Rules.

Equivalence Rules

Equivalence Rules

Equivalence Rules

Subramani CS 220 - Discrete Mathematics

Equivalence Rules

Equivalence Rules

Expression	Equivalent to	Name of Rule
$P \lor Q$	$Q \lor P$	Commutative - comm
$P \wedge Q$	$oldsymbol{Q}\wedge oldsymbol{P}$	
$P \lor (Q \lor R)$	$(P \lor Q) \lor R$	Associative -ass
$P \wedge (Q \wedge R)$	$(P \land Q) \land R$	
$(P \lor Q)'$	$P' \wedge Q'$	De Morgan
$(P \land Q)'$	$P' \lor Q'$	
P ightarrow Q	$P' \lor Q$	Implication - imp
Р	(P')'	Double negation - dn
$P \leftrightarrow Q$	$(P ightarrow Q) \wedge (Q ightarrow P)$	Definition of equivalence

Inference Rules

Inference Rules

Inference Rules

From	Can Derive	Name of Rule
$P, P \rightarrow Q$	Q	Modus Ponens (mp)
P ightarrow Q, Q'	P'	Modus Tollens (mt)
P, Q	$P \wedge Q$	Conjunction
$P \land Q$	P, Q	Simplification
P	$P \lor Q$	Addition

A proof derivation

A proof derivation

Example

Subramani CS 220 - Discrete Mathematics

A proof derivation

Example

Argue that

$$[A \land (B \to C) \land [(A \land B) \to (D \lor C')] \land B] \to D$$

A proof derivation

Example

Argue that

$$[A \land (B \to C) \land [(A \land B) \to (D \lor C')] \land B] \to D$$

is a valid argument.

Proof

A proof derivation

Example

Argue that

$$[A \land (B \to C) \land [(A \land B) \to (D \lor C')] \land B] \to D$$

is a valid argument.

Proof

(i) **A**

hypothesis.

A proof derivation

Example

Argue that

$$[A \land (B \to C) \land [(A \land B) \to (D \lor C')] \land B] \to D$$

Proof	
(i) A	hypothesis.
(ii) <i>B</i>	hypothesis.

A proof derivation

Example

Argue that

$$[A \land (B \to C) \land [(A \land B) \to (D \lor C')] \land B] \to D$$

Proof		
(i) <i>A</i>	hypothesis.	
(ii) B	hypothesis.	
(iii) $B \rightarrow C$	hypothesis.	

A proof derivation

Example

Argue that

$$[A \land (B \to C) \land [(A \land B) \to (D \lor C')] \land B] \to D$$

Proof	
(i) <i>A</i>	hypothesis.
(ii) <i>B</i>	hypothesis.
(iii) $B \rightarrow C$	hypothesis.
(iv) <i>C</i>	(ii), (iii), Modus Ponens.

A proof derivation

Example

Argue that

$$[A \land (B \to C) \land [(A \land B) \to (D \lor C')] \land B] \to D$$

Proof	
(i) <i>A</i>	hypothesis.
(ii) <i>B</i>	hypothesis.
(iii) $B \rightarrow C$	hypothesis.
(iv) <i>C</i>	(ii), (iii), Modus Ponens.
(v) $A \wedge B$	(i), (ii), Conjunction.

A proof derivation

Example

Argue that

$$[A \land (B \to C) \land [(A \land B) \to (D \lor C')] \land B] \to D$$

Proof	
(i) <i>A</i>	hypothesis.
(ii) B	hypothesis.
(iii) $B \rightarrow C$	hypothesis.
(iv) <i>C</i>	(ii), (iii), Modus Ponens.
(v) $A \wedge B$	(i), (ii), Conjunction.
(vi) $(A \land B) \rightarrow (D \lor C')$	hypothesis.

A proof derivation

Example

Argue that

$$[A \land (B \to C) \land [(A \land B) \to (D \lor C')] \land B] \to D$$

Proof	
(i) <i>A</i>	hypothesis.
(ii) <i>B</i>	hypothesis.
(iii) $B \rightarrow C$	hypothesis.
(iv) <i>C</i>	(ii), (iii), Modus Ponens.
(v) $A \wedge B$	(i), (ii), Conjunction.
(vi) $(A \land B) \rightarrow (D \lor C')$	hypothesis.
(vii) $(D \vee C')$	(v), (vi), Modus Ponens,

A proof derivation

Example

Argue that

$$[A \land (B \to C) \land [(A \land B) \to (D \lor C')] \land B] \to D$$

Proof	
(i) <i>A</i>	hypothesis.
(ii) <i>B</i>	hypothesis.
(iii) $B \rightarrow C$	hypothesis.
(iv) <i>C</i>	(ii), (iii), Modus Ponens.
(v) $A \wedge B$	(i), (ii), Conjunction.
(vi) $(A \land B) \rightarrow (D \lor C')$	hypothesis.
(vii) (<i>D</i> ∨ <i>C</i> ′)	(v), (vi), Modus Ponens.
(viii) $(C \rightarrow D)$	(vii), Implication.

A proof derivation

Example

Argue that

$$[A \land (B \to C) \land [(A \land B) \to (D \lor C')] \land B] \to D$$

Proof	
(i) <i>A</i>	hypothesis.
(ii) <i>B</i>	hypothesis.
(iii) $B \rightarrow C$	hypothesis.
(iv) <i>C</i>	(ii), (iii), Modus Ponens.
(v) $A \wedge B$	(i), (ii), Conjunction.
(vi) $(A \land B) \rightarrow (D \lor C')$	hypothesis.
(vii) $(D \vee C')$	(v), (vi), Modus Ponens.
(viii) $(C \rightarrow D)$	(vii), Implication.
(ix) D	(iv), (viii), Modus Ponens.

Two more rules

Two more rules

Deduction Method

Subramani CS 220 - Discrete Mathematics
Two more rules

Deduction Method

Show that $[A \rightarrow (B \rightarrow C)] \Leftrightarrow [(A \land B) \rightarrow C].$

Two more rules

Deduction Method

Show that $[A \rightarrow (B \rightarrow C)] \Leftrightarrow [(A \land B) \rightarrow C].$

This leads us to conclude that the argument $[P_1 \land P_2 \dots P_n] \rightarrow (R \rightarrow S)$ is tautologically equivalent to the argument $[P_1 \land P_2 \dots P_n \land R] \rightarrow S$.

Two more rules

Deduction Method

Show that $[A \rightarrow (B \rightarrow C)] \Leftrightarrow [(A \land B) \rightarrow C].$

This leads us to conclude that the argument $[P_1 \land P_2 \dots P_n] \rightarrow (R \rightarrow S)$ is tautologically equivalent to the argument $[P_1 \land P_2 \dots P_n \land R] \rightarrow S$.

Example

Two more rules

Deduction Method

Show that $[A \rightarrow (B \rightarrow C)] \Leftrightarrow [(A \land B) \rightarrow C].$

This leads us to conclude that the argument $[P_1 \land P_2 \dots P_n] \rightarrow (R \rightarrow S)$ is tautologically equivalent to the argument $[P_1 \land P_2 \dots P_n \land R] \rightarrow S$.

Example

Prove that $[(A \rightarrow B) \land (B \rightarrow C)] \rightarrow (A \rightarrow C)$.

Two more rules

Deduction Method

Show that $[A \rightarrow (B \rightarrow C)] \Leftrightarrow [(A \land B) \rightarrow C].$

This leads us to conclude that the argument $[P_1 \land P_2 \dots P_n] \rightarrow (R \rightarrow S)$ is tautologically equivalent to the argument $[P_1 \land P_2 \dots P_n \land R] \rightarrow S$.

Example

Prove that $[(A \rightarrow B) \land (B \rightarrow C)] \rightarrow (A \rightarrow C).$

Technique

Two more rules

Deduction Method

Show that $[A \rightarrow (B \rightarrow C)] \Leftrightarrow [(A \land B) \rightarrow C]$.

This leads us to conclude that the argument $[P_1 \land P_2 \dots P_n] \rightarrow (R \rightarrow S)$ is tautologically equivalent to the argument $[P_1 \land P_2 \dots P_n \land R] \rightarrow S$.

Example

Prove that $[(A \rightarrow B) \land (B \rightarrow C)] \rightarrow (A \rightarrow C).$

Technique

Using the Deduction Method, the above argument can be rewritten as: $[(A \rightarrow B) \land (B \rightarrow C) \land A] \rightarrow C.$

Two more rules

Deduction Method

Show that $[A \rightarrow (B \rightarrow C)] \Leftrightarrow [(A \land B) \rightarrow C]$.

This leads us to conclude that the argument $[P_1 \land P_2 \dots P_n] \rightarrow (R \rightarrow S)$ is tautologically equivalent to the argument $[P_1 \land P_2 \dots P_n \land R] \rightarrow S$.

Example

Prove that $[(A \rightarrow B) \land (B \rightarrow C)] \rightarrow (A \rightarrow C).$

Technique

Using the Deduction Method, the above argument can be rewritten as: $[(A \rightarrow B) \land (B \rightarrow C) \land A] \rightarrow C.$

Is it easy now?

Two more rules

Deduction Method

Show that $[A \rightarrow (B \rightarrow C)] \Leftrightarrow [(A \land B) \rightarrow C]$.

This leads us to conclude that the argument $[P_1 \land P_2 \dots P_n] \rightarrow (R \rightarrow S)$ is tautologically equivalent to the argument $[P_1 \land P_2 \dots P_n \land R] \rightarrow S$.

Example

Prove that $[(A \rightarrow B) \land (B \rightarrow C)] \rightarrow (A \rightarrow C).$

Technique

Using the Deduction Method, the above argument can be rewritten as: $[(A \rightarrow B) \land (B \rightarrow C) \land A] \rightarrow C.$

Is it easy now?

Note

The rule $[(A \to B) \land (B \to C)] \to (A \to C)$ is called hypothesis syllogism and can be used directly.

Proving validity of Verbal Arguments

Proving validity of Verbal Arguments

Methodology

Subramani CS 220 - Discrete Mathematics

Proving validity of Verbal Arguments

Methodology

(i) Symbolize the argument.

Proving validity of Verbal Arguments

Methodology

- (i) Symbolize the argument.
- (ii) Construct a proof sequence for the symbolic argument.

Proving validity of Verbal Arguments

Methodology

- (i) Symbolize the argument.
- (ii) Construct a proof sequence for the symbolic argument.

Example

Proving validity of Verbal Arguments

Methodology

- (i) Symbolize the argument.
- (ii) Construct a proof sequence for the symbolic argument.

Example

If interest rates drop, the housing market will improve.

Proving validity of Verbal Arguments

Methodology

- (i) Symbolize the argument.
- (ii) Construct a proof sequence for the symbolic argument.

Example

If interest rates drop, the housing market will improve.

Either the federal discount rate will drop or the housing market will not improve.

Proving validity of Verbal Arguments

Methodology

- (i) Symbolize the argument.
- (ii) Construct a proof sequence for the symbolic argument.

Example

If interest rates drop, the housing market will improve.

Either the federal discount rate will drop or the housing market will not improve.

Interest rates will drop. Therefore, the federal discount rate will drop.

Proving validity of Verbal Arguments

Methodology

- (i) Symbolize the argument.
- (ii) Construct a proof sequence for the symbolic argument.

Example

If interest rates drop, the housing market will improve.

Either the federal discount rate will drop or the housing market will not improve.

Interest rates will drop. Therefore, the federal discount rate will drop.

Is this argument valid?

Verbal argument validity

Verbal argument validity

Proof.

Verbal argument validity

Proof.

Let I denote the event that interest rates will drop.

Verbal argument validity

Proof.

Let / denote the event that interest rates will drop.

Let *H* denote the event that the housing market will improve.

Verbal argument validity

Proof.

Let / denote the event that interest rates will drop.

Let *H* denote the event that the housing market will improve.

Let F denote the event that the federal discount rate will drop.

Verbal argument validity

Proof.

Let / denote the event that interest rates will drop.

Let *H* denote the event that the housing market will improve.

Let F denote the event that the federal discount rate will drop.

The symbolic argument is

Verbal argument validity

Proof.

Let / denote the event that interest rates will drop.

Let *H* denote the event that the housing market will improve.

Let F denote the event that the federal discount rate will drop.

The symbolic argument is $[(I \rightarrow H)]$

Verbal argument validity

Proof.

Let / denote the event that interest rates will drop.

Let *H* denote the event that the housing market will improve.

Let F denote the event that the federal discount rate will drop.

The symbolic argument is $[(I \rightarrow H) \land (F \lor H')]$

Verbal argument validity

Proof.

Let / denote the event that interest rates will drop.

Let *H* denote the event that the housing market will improve.

Let F denote the event that the federal discount rate will drop.

The symbolic argument is $[(I \rightarrow H) \land (F \lor H') \land I]$

Verbal argument validity

Proof.

Let I denote the event that interest rates will drop.

Let *H* denote the event that the housing market will improve.

Let F denote the event that the federal discount rate will drop.

The symbolic argument is $[(I \rightarrow H) \land (F \lor H') \land I] \rightarrow F$.

Verbal argument validity

Proof.

Let I denote the event that interest rates will drop.

Let *H* denote the event that the housing market will improve.

Let F denote the event that the federal discount rate will drop.

The symbolic argument is $[(I \rightarrow H) \land (F \lor H') \land I] \rightarrow F$.

Verbal argument validity

Proof.

Let / denote the event that interest rates will drop.

Let H denote the event that the housing market will improve.

Let F denote the event that the federal discount rate will drop.

The symbolic argument is $[(I \rightarrow H) \land (F \lor H') \land I] \rightarrow F$.

Consider the following proof sequence:

1.

Verbal argument validity

Proof.

Let / denote the event that interest rates will drop.

Let H denote the event that the housing market will improve.

Let F denote the event that the federal discount rate will drop.

The symbolic argument is $[(I \rightarrow H) \land (F \lor H') \land I] \rightarrow F$.

- **1**.
- $\bigcirc I \to H.$

Verbal argument validity

Proof.

Let / denote the event that interest rates will drop.

Let H denote the event that the housing market will improve.

Let F denote the event that the federal discount rate will drop.

The symbolic argument is $[(I \rightarrow H) \land (F \lor H') \land I] \rightarrow F$.

- **1**.
- $\bigcirc I \to H.$
- 3 H.

Verbal argument validity

Proof.

Let / denote the event that interest rates will drop.

Let H denote the event that the housing market will improve.

Let F denote the event that the federal discount rate will drop.

The symbolic argument is $[(I \rightarrow H) \land (F \lor H') \land I] \rightarrow F$.

- **1**.
- $\bigcirc I \to H.$
- 3 H.
- $\bigcirc F \vee H'.$

Verbal argument validity

Proof.

Let / denote the event that interest rates will drop.

Let H denote the event that the housing market will improve.

Let F denote the event that the federal discount rate will drop.

The symbolic argument is $[(I \rightarrow H) \land (F \lor H') \land I] \rightarrow F$.

- **1**.
- $\bigcirc I \to H.$
- **③** *H*.
- $\bigcirc F \vee H'.$
- $\bullet H \to F.$

Verbal argument validity

Proof.

Let / denote the event that interest rates will drop.

Let H denote the event that the housing market will improve.

Let F denote the event that the federal discount rate will drop.

The symbolic argument is $[(I \rightarrow H) \land (F \lor H') \land I] \rightarrow F$.

- **1**.
- $\bigcirc I \to H.$
- 3 H.
- $\bigcirc F \vee H'.$
- $\bullet H \to F.$
- 0 F.

One More Example

One More Example

Example

Show that the argument $[A' \land (B \rightarrow A)] \rightarrow B'$ is valid.
One More Example

Example

Show that the argument $[A' \land (B \rightarrow A)] \rightarrow B'$ is valid.

Proof

One More Example

Example

Show that the argument $[A' \land (B \rightarrow A)] \rightarrow B'$ is valid.

Proof

One More Example

Example

Show that the argument $[A' \land (B \rightarrow A)] \rightarrow B'$ is valid.

Proof

Consider the following proof sequence:

(i) $(B \rightarrow A)$ hypothesis.

One More Example

Example

Show that the argument $[A' \land (B \rightarrow A)] \rightarrow B'$ is valid.

Proof

- (i) $(B \rightarrow A)$ hypothesis.
- (ii) $(B' \lor A)$ (i), Implication.

One More Example

Example

Show that the argument $[A' \land (B \rightarrow A)] \rightarrow B'$ is valid.

Proof

- (i) $(B \rightarrow A)$ hypothesis.
- (ii) $(B' \lor A)$ (i), Implication.
- (iii) $(A \lor B')$ (ii), Commutativity.

One More Example

Example

Show that the argument $[A' \land (B \rightarrow A)] \rightarrow B'$ is valid.

Proof

- (i) $(B \rightarrow A)$ hypothesis.
- (ii) $(B' \lor A)$ (i), Implication.
- (iii) $(A \lor B')$ (ii), Commutativity.
- (iv) $(A' \rightarrow B')$ (iii), Implication.

One More Example

Example

Show that the argument $[A' \land (B \rightarrow A)] \rightarrow B'$ is valid.

Proof

- (i) $(B \rightarrow A)$ hypothesis.
- (ii) $(B' \lor A)$ (i), Implication.
- (iii) $(A \lor B')$ (ii), Commutativity.
- (iv) $(A' \rightarrow B')$ (iii), Implication.
- (v) A' hypothesis.

One More Example

Example

Show that the argument $[A' \land (B \rightarrow A)] \rightarrow B'$ is valid.

Proof

- (i) $(B \rightarrow A)$ hypothesis.
- (ii) $(B' \lor A)$ (i), Implication.
- (iii) $(A \lor B')$ (ii), Commutativity.
- (iv) $(A' \rightarrow B')$ (iii), Implication.
- (v) A' hypothesis.
- (vi) B' (iv), (v) Modus Ponens.

Caveat on using Rules

Caveat on using Rules

Caveat

Lots of additional rules are provided on Page 37.

Caveat on using Rules

Caveat

Lots of additional rules are provided on Page 37.

You are not permitted to use any of them "directly" in your quizzes and exams!

Caveat on using Rules

Caveat

Lots of additional rules are provided on Page 37.

You are not permitted to use any of them "directly" in your quizzes and exams!

Indeed, some of your quiz problems may ask you to derive them.

Caveat on using Rules

Caveat

Lots of additional rules are provided on Page 37.

You are not permitted to use any of them "directly" in your quizzes and exams!

Indeed, some of your quiz problems may ask you to derive them.

If you need to use a rule, first prove that it is valid.

Caveat on using Rules

Caveat

Lots of additional rules are provided on Page 37.

You are not permitted to use any of them "directly" in your quizzes and exams!

Indeed, some of your quiz problems may ask you to derive them.

If you need to use a rule, first prove that it is valid.

For instance, we showed that Modus Ponens, Deduction Method and Hypothesis Syllogism are valid.

Caveat on using Rules

Caveat

Lots of additional rules are provided on Page 37.

You are not permitted to use any of them "directly" in your quizzes and exams!

Indeed, some of your quiz problems may ask you to derive them.

If you need to use a rule, first prove that it is valid.

For instance, we showed that Modus Ponens, Deduction Method and Hypothesis Syllogism are valid.

Caveat on using Rules

Caveat

Lots of additional rules are provided on Page 37.

You are not permitted to use any of them "directly" in your quizzes and exams!

Indeed, some of your quiz problems may ask you to derive them.

If you need to use a rule, first prove that it is valid.

For instance, we showed that Modus Ponens, Deduction Method and Hypothesis Syllogism are valid.

Caveat on using Rules

Caveat

Lots of additional rules are provided on Page 37.

You are not permitted to use any of them "directly" in your quizzes and exams!

Indeed, some of your quiz problems may ask you to derive them.

If you need to use a rule, first prove that it is valid.

For instance, we showed that Modus Ponens, Deduction Method and Hypothesis Syllogism are valid.

The only rules that you may use directly are the ones discussed in these slides, viz.,

the rules enumerated in the equivalence rules table,

Caveat on using Rules

Caveat

Lots of additional rules are provided on Page 37.

You are not permitted to use any of them "directly" in your quizzes and exams!

Indeed, some of your quiz problems may ask you to derive them.

If you need to use a rule, first prove that it is valid.

For instance, we showed that Modus Ponens, Deduction Method and Hypothesis Syllogism are valid.

- the rules enumerated in the equivalence rules table,
- 2 the rules enumerated in the inference rules table,

Caveat on using Rules

Caveat

Lots of additional rules are provided on Page 37.

You are not permitted to use any of them "directly" in your quizzes and exams!

Indeed, some of your quiz problems may ask you to derive them.

If you need to use a rule, first prove that it is valid.

For instance, we showed that Modus Ponens, Deduction Method and Hypothesis Syllogism are valid.

- the rules enumerated in the equivalence rules table,
- 2 the rules enumerated in the inference rules table,
- the deduction method, and

Caveat on using Rules

Caveat

Lots of additional rules are provided on Page 37.

You are not permitted to use any of them "directly" in your quizzes and exams!

Indeed, some of your quiz problems may ask you to derive them.

If you need to use a rule, first prove that it is valid.

For instance, we showed that Modus Ponens, Deduction Method and Hypothesis Syllogism are valid.

- the rules enumerated in the equivalence rules table,
- 2 the rules enumerated in the inference rules table,
- the deduction method, and
- hypothesis syllogism.

Additional Exercises

Additional Exercises

Exercise

Show that the following arguments are valid:

- $((A \vee B')' \land (B \to C)) \to (A' \land C).$
- $(C \to D) \to C] \to [(C \to D) \to D)].$
- If Jose took the jewelry or Mrs. Krasov lied, then a crime was committed. Mr. Krasov was not in town.

If a crime was committed, then Mr. Krasov was in town.

Therefore, Jose did not take the jewelry.