Recursion and Recurrence Relations

K. Subramani¹

¹Lane Department of Computer Science and Electrical Engineering West Virginia University

18, 23 February, 2016

Recursive Definitions

Recursive Definitions

Definition

Discrete Mathematics Recursion

Definition

A recursive definition (or inductive definition) is one, in which the object being defined is part of the definition.

Definition

A recursive definition (or inductive definition) is one, in which the object being defined is part of the definition.

Parts of a recursive definition

Definition

A recursive definition (or inductive definition) is one, in which the object being defined is part of the definition.

Parts of a recursive definition

Definition

A recursive definition (or inductive definition) is one, in which the object being defined is part of the definition.

Parts of a recursive definition

(i) A basis, where some simple cases of the object being defined are explicitly provided,

Definition

A recursive definition (or inductive definition) is one, in which the object being defined is part of the definition.

Parts of a recursive definition

- (i) A basis, where some simple cases of the object being defined are explicitly provided,
- (ii) An inductive or recursive step, where new cases of the item being defined are given in terms of previous cases.

Definition

A recursive definition (or inductive definition) is one, in which the object being defined is part of the definition.

Parts of a recursive definition

- A basis, where some simple cases of the object being defined are explicitly provided,
- (ii) An inductive or recursive step, where new cases of the item being defined are given in terms of previous cases.

Note

Definition

A recursive definition (or inductive definition) is one, in which the object being defined is part of the definition.

Parts of a recursive definition

- A basis, where some simple cases of the object being defined are explicitly provided,
- (ii) An inductive or recursive step, where new cases of the item being defined are given in terms of previous cases.

Note

Strong connection between induction and recursion.

Types of objects defined recursively

Types of objects defined recursively

Recursive Objects

Discrete Mathematics Recursion

Types of objects defined recursively

Recursive Objects

Discrete Mathematics Recursion

Types of objects defined recursively

Recursive Objects

(i) Sequences.

Types of objects defined recursively

Recursive Objects

(i) Sequences.

(ii) Sets.

Types of objects defined recursively

Recursive Objects

- (i) Sequences.
- (ii) Sets.
- (iii) Operations.

Types of objects defined recursively

Recursive Objects

- (i) Sequences.
- (ii) Sets.
- (iii) Operations.
- (iv) Algorithms.

Sequences

Definition

Definition

A sequence is a list of objects that is enumerated in some order.

Definition

A sequence is a list of objects that is enumerated in some order.

Example

Definition

A sequence is a list of objects that is enumerated in some order.

Example

Definition

A sequence is a list of objects that is enumerated in some order.

Example

$$S(1) = 2$$

Definition

A sequence is a list of objects that is enumerated in some order.

Example

$$S(1) = 2$$

 $S(n) = 2 \cdot S(n-1), n \ge 2.$

Definition

A sequence is a list of objects that is enumerated in some order.

Example

Write down the first 5 elements of the following recursively defined sequence:

$$S(1) = 2$$

 $S(n) = 2 \cdot S(n-1), n \ge 2.$

The second part of the definition is called a recurrence relation.

Definition

A sequence is a list of objects that is enumerated in some order.

Example

Write down the first 5 elements of the following recursively defined sequence:

$$S(1) = 2$$

 $S(n) = 2 \cdot S(n-1), n \ge 2.$

The second part of the definition is called a recurrence relation.

Example

Definition

A sequence is a list of objects that is enumerated in some order.

Example

Write down the first 5 elements of the following recursively defined sequence:

$$S(1) = 2$$

 $S(n) = 2 \cdot S(n-1), n \ge 2.$

The second part of the definition is called a recurrence relation.

Example

Definition

A sequence is a list of objects that is enumerated in some order.

Example

Write down the first 5 elements of the following recursively defined sequence:

$$S(1) = 2$$

 $S(n) = 2 \cdot S(n-1), n \ge 2.$

The second part of the definition is called a recurrence relation.

Example

$$T(1) = 1$$

Definition

A sequence is a list of objects that is enumerated in some order.

Example

Write down the first 5 elements of the following recursively defined sequence:

$$S(1) = 2$$

 $S(n) = 2 \cdot S(n-1), n \ge 2.$

The second part of the definition is called a recurrence relation.

Example

$$\begin{array}{rcl} T(1) & = & 1 \\ T(n) & = & T(n-1) + 3, \ n \geq 2. \end{array}$$

Sequences (contd.)

Sequences (contd.)

Sequences (contd.)

$$F(1) = 1$$

Sequences (contd.)

$$F(1) = 1$$

 $F(2) = 1$

Sequences (contd.)

$$F(1) = 1$$

$$F(2) = 1$$

$$F(n) = F(n-1) + F(n-2), n \ge 3$$
Fibonacci Sequence

$$F(1) = 1$$

$$F(2) = 1$$

$$F(n) = F(n-1) + F(n-2), n \ge 3$$

Example

Fibonacci Sequence

$$F(1) = 1$$

$$F(2) = 1$$

$$F(n) = F(n-1) + F(n-2), n \ge 3$$

Example

Enumerate the first 5 elements of the Fibonacci sequence.

Fibonacci Sequence

$$F(1) = 1$$

$$F(2) = 1$$

$$F(n) = F(n-1) + F(n-2), n \ge 3$$

Example

Enumerate the first 5 elements of the Fibonacci sequence. Show that

Fibonacci Sequence

$$F(1) = 1$$

$$F(2) = 1$$

$$F(n) = F(n-1) + F(n-2), n \ge 3$$

Example

Enumerate the first 5 elements of the Fibonacci sequence. Show that

$$F(n+4) = 3 \cdot F(n+2) - F(n)$$
, for all $n \ge 1$

Fibonacci Sequence

Fibonacci Sequence

Proof.

Discrete Mathematics Recursion

Proof.

We provide an inductive proof.

Proof.

We provide an inductive proof. For the basis, show that the conjecture is true at n = 1 and n = 2.

Proof.

We provide an inductive proof. For the basis, show that the conjecture is true at n = 1 and n = 2.

Assume that the conjecture is true for all $r, 2 \le r \le k$, i.e.,

Proof.

We provide an inductive proof. For the basis, show that the conjecture is true at n = 1 and n = 2.

Assume that the conjecture is true for all $r, 2 \le r \le k$, i.e.,

$$F(r + 4) = 3 \cdot F(r + 2) - F(r)$$

Proof.

We provide an inductive proof. For the basis, show that the conjecture is true at n = 1 and n = 2.

Assume that the conjecture is true for all $r, 2 \le r \le k$, i.e.,

$$F(r + 4) = 3 \cdot F(r + 2) - F(r)$$

We now need to show that

Proof.

We provide an inductive proof. For the basis, show that the conjecture is true at n = 1 and n = 2.

Assume that the conjecture is true for all $r, 2 \le r \le k$, i.e.,

$$F(r + 4) = 3 \cdot F(r + 2) - F(r)$$

We now need to show that

F(k + 1 + 4) =

Proof.

We provide an inductive proof. For the basis, show that the conjecture is true at n = 1 and n = 2.

Assume that the conjecture is true for all $r, 2 \leq r \leq k$, i.e.,

$$F(r + 4) = 3 \cdot F(r + 2) - F(r)$$

We now need to show that

 $F(k + 1 + 4) = 3 \cdot F(k + 1 + 2) - F(k + 1)$

Proof.

We provide an inductive proof. For the basis, show that the conjecture is true at n = 1 and n = 2.

Assume that the conjecture is true for all $r, 2 \leq r \leq k$, i.e.,

$$F(r + 4) = 3 \cdot F(r + 2) - F(r)$$

We now need to show that

 $F(k + 1 + 4) = 3 \cdot F(k + 1 + 2) - F(k + 1)$

Proof.

We provide an inductive proof. For the basis, show that the conjecture is true at n = 1 and n = 2.

Assume that the conjecture is true for all $r, 2 \leq r \leq k$, i.e.,

$$F(r + 4) = 3 \cdot F(r + 2) - F(r)$$

We now need to show that

 $F(k + 1 + 4) = 3 \cdot F(k + 1 + 2) - F(k + 1)$

$$F(k + 1 + 4) =$$

Proof.

We provide an inductive proof. For the basis, show that the conjecture is true at n = 1 and n = 2.

Assume that the conjecture is true for all $r, 2 \le r \le k$, i.e.,

$$F(r + 4) = 3 \cdot F(r + 2) - F(r)$$

We now need to show that

$$F(k + 1 + 4) = 3 \cdot F(k + 1 + 2) - F(k + 1)$$

$$F(k + 1 + 4) = F(k + 5)$$

Proof.

We provide an inductive proof. For the basis, show that the conjecture is true at n = 1 and n = 2.

Assume that the conjecture is true for all $r, 2 \leq r \leq k$, i.e.,

$$F(r + 4) = 3 \cdot F(r + 2) - F(r)$$

We now need to show that

 $F(k + 1 + 4) = 3 \cdot F(k + 1 + 2) - F(k + 1)$

Observe that,

F(k + 1 + 4) = F(k + 5)= F(k + 4) + F(k + 3), by definition

Proof.

We provide an inductive proof. For the basis, show that the conjecture is true at n = 1 and n = 2.

Assume that the conjecture is true for all $r, 2 \le r \le k$, i.e.,

$$F(r + 4) = 3 \cdot F(r + 2) - F(r)$$

We now need to show that

 $F(k + 1 + 4) = 3 \cdot F(k + 1 + 2) - F(k + 1)$

$$F(k + 1 + 4) = F(k + 5)$$

= $F(k + 4) + F(k + 3)$, by definition
= $F(k + 4) + F((k - 1) + 4)$

Proof.

We provide an inductive proof. For the basis, show that the conjecture is true at n = 1 and n = 2.

Assume that the conjecture is true for all $r, 2 \le r \le k$, i.e.,

$$F(r + 4) = 3 \cdot F(r + 2) - F(r)$$

We now need to show that

$$F(k + 1 + 4) = 3 \cdot F(k + 1 + 2) - F(k + 1)$$

$$F(k + 1 + 4) = F(k + 5)$$

$$= F(k + 4) + F(k + 3), \text{ by definition}$$

$$= F(k + 4) + F((k - 1) + 4))$$

$$= 3 \cdot F(k + 2) - F(k) + 3 \cdot F((k - 1) + 2) - F(k - 1), \text{ using the i. b.}$$

Proof.

We provide an inductive proof. For the basis, show that the conjecture is true at n = 1 and n = 2.

Assume that the conjecture is true for all $r, 2 \le r \le k$, i.e.,

$$F(r + 4) = 3 \cdot F(r + 2) - F(r)$$

We now need to show that

$$F(k + 1 + 4) = 3 \cdot F(k + 1 + 2) - F(k + 1)$$

$$\begin{array}{lcl} F(k+1+4) & = & F(k+5) \\ & = & F(k+4)+F(k+3), & \mbox{by definition} \\ & = & F(k+4)+F((k-1)+4)) \\ & = & 3 \cdot F(k+2)-F(k)+3 \cdot F((k-1)+2)-F(k-1), & \mbox{using the i.h.} \\ & = & 3 \cdot F(k+2)-F(k)+3 \cdot F(k+1)-F(k-1) \end{array}$$

Proof.

We provide an inductive proof. For the basis, show that the conjecture is true at n = 1 and n = 2.

Assume that the conjecture is true for all $r, 2 \le r \le k$, i.e.,

$$F(r + 4) = 3 \cdot F(r + 2) - F(r)$$

We now need to show that

$$F(k + 1 + 4) = 3 \cdot F(k + 1 + 2) - F(k + 1)$$

Proof.

We provide an inductive proof. For the basis, show that the conjecture is true at n = 1 and n = 2.

Assume that the conjecture is true for all $r, 2 \le r \le k$, i.e.,

$$F(r + 4) = 3 \cdot F(r + 2) - F(r)$$

We now need to show that

$$F(k + 1 + 4) = 3 \cdot F(k + 1 + 2) - F(k + 1)$$

$$\begin{array}{lcl} F(k+1+4) & = & F(k+5) \\ & = & F(k+4) + F(k+3), & \text{by definition} \\ & = & F(k+4) + F((k-1)+4)) \\ & = & 3 \cdot F(k+2) - F(k) + 3 \cdot F((k-1)+2) - F(k-1), & \text{using the i.h.} \\ & = & 3 \cdot F(k+2) - F(k) + 3 \cdot F(k+1) - F(k-1) \\ & = & 3 \cdot (F(k+2) + F(k+1)) - (F(k) + F(k-1)) \\ & = & 3 \cdot F(k+3) - F(k+1) \end{array}$$

Proof.

We provide an inductive proof. For the basis, show that the conjecture is true at n = 1 and n = 2.

Assume that the conjecture is true for all $r, 2 \le r \le k$, i.e.,

$$F(r + 4) = 3 \cdot F(r + 2) - F(r)$$

We now need to show that

$$F(k + 1 + 4) = 3 \cdot F(k + 1 + 2) - F(k + 1)$$

$$\begin{array}{lcl} F(k+1+4) & = & F(k+5) \\ & = & F(k+4)+F(k+3), & \text{by definition} \\ & = & F(k+4)+F((k-1)+4)) \\ & = & 3 \cdot F(k+2)-F(k)+3 \cdot F((k-1)+2)-F(k-1), & \text{using the i.h.} \\ & = & 3 \cdot F(k+2)-F(k)+3 \cdot F(k+1)-F(k-1) \\ & = & 3 \cdot (F(k+2)+F(k+1))-(F(k)+F(k-1)) \\ & = & 3 \cdot F(k+3)-F(k+1) \\ & = & 3 \cdot F(k+1+2)-F(k+1) \end{array}$$

Proof.

We provide an inductive proof. For the basis, show that the conjecture is true at n = 1 and n = 2.

Assume that the conjecture is true for all $r, 2 \leq r \leq k$, i.e.,

$$F(r + 4) = 3 \cdot F(r + 2) - F(r)$$

We now need to show that

 $F(k + 1 + 4) = 3 \cdot F(k + 1 + 2) - F(k + 1)$

Observe that,

$$\begin{array}{lcl} F(k+1+4) & = & F(k+5) \\ & = & F(k+4) + F(k+3), & \text{by definition} \\ & = & F(k+4) + F((k-1)+4)) \\ & = & 3 \cdot F(k+2) - F(k) + 3 \cdot F((k-1)+2) - F(k-1), & \text{using the i.h.} \\ & = & 3 \cdot F(k+2) - F(k) + 3 \cdot F(k+1) - F(k-1) \\ & = & 3 \cdot F(k+2) + F(k+1)) - (F(k) + F(k-1)) \\ & = & 3 \cdot F(k+3) - F(k+1) \\ & = & 3 \cdot F(k+1+2) - F(k+1) \end{array}$$

Applying the second principle of mathematical induction, we conclude that the conjecture is true for all $n \ge 1$.

Direct proof

Direct proof

Proof.

Discrete Mathematics Recursion

Direct proof

$$F(n+4) = F(n+3) + F(n+2)$$

Direct proof

$$F(n+4) = F(n+3) + F(n+2)$$

= F(n+2) + F(n+1) + F(n+2)

Direct proof

$$F(n+4) = F(n+3) + F(n+2)$$

= F(n+2) + F(n+1) + F(n+2)
= 2 \cdot F(n+2) + F(n+1)

Direct proof

$$F(n+4) = F(n+3) + F(n+2)$$

= $F(n+2) + F(n+1) + F(n+2)$
= $2 \cdot F(n+2) + F(n+1)$
= $2 \cdot F(n+2) + (F(n+2) - F(n))$

Direct proof

$$F(n+4) = F(n+3) + F(n+2)$$

= $F(n+2) + F(n+1) + F(n+2)$
= $2 \cdot F(n+2) + F(n+1)$
= $2 \cdot F(n+2) + (F(n+2) - F(n))$
= $3 \cdot F(n+2) - F(n)$

Recursively Defined Sets

Recursively Defined Sets

Example

Discrete Mathematics Recursion

Recursively Defined Sets

Example

Define the set of ancestors of John.

Recursively Defined Sets

Example

Define the set of ancestors of John.

(i) John's parents are his ancestors.

Recursively Defined Sets

Example

Define the set of ancestors of John.

- (i) John's parents are his ancestors.
- (ii) If x is an ancestor of John and y is the parent of x, then y is an ancestor of John.
Recursively Defined Sets

Example

Define the set of ancestors of John.

- (i) John's parents are his ancestors.
- (ii) If x is an ancestor of John and y is the parent of x, then y is an ancestor of John.

Example

Example

Define the set of ancestors of John.

- (i) John's parents are his ancestors.
- (ii) If x is an ancestor of John and y is the parent of x, then y is an ancestor of John.

Example

Define the set of all possible word combinations using small-case letters from the English alphabet.

Example

Define the set of ancestors of John.

- (i) John's parents are his ancestors.
- (ii) If x is an ancestor of John and y is the parent of x, then y is an ancestor of John.

Example

Define the set of all possible word combinations using small-case letters from the English alphabet.

(i) The empty string λ is a word.

Example

Define the set of ancestors of John.

- (i) John's parents are his ancestors.
- (ii) If x is an ancestor of John and y is the parent of x, then y is an ancestor of John.

Example

Define the set of all possible word combinations using small-case letters from the English alphabet.

- (i) The empty string λ is a word.
- (ii) $\{a, b, c, \dots, z\}$ are words.

Example

Define the set of ancestors of John.

- (i) John's parents are his ancestors.
- (ii) If x is an ancestor of John and y is the parent of x, then y is an ancestor of John.

Example

Define the set of all possible word combinations using small-case letters from the English alphabet.

- (i) The empty string λ is a word.
- (ii) $\{a, b, c, \dots, z\}$ are words.
- (iii) If x and y are words, then so is $x \cdot y$.

Recursively Defined Sets (contd.)

Recursively Defined Sets (contd.)

Example

Discrete Mathematics Recursion

Recursively Defined Sets (contd.)

Example

Define the set of binary palindromes.

Recursively Defined Sets (contd.)

Example

Define the set of binary palindromes.

(i) The empty string λ is a palindrome.

Recursively Defined Sets (contd.)

Example

Define the set of binary palindromes.

- (i) The empty string λ is a palindrome.
- (ii) 0 and 1 are palindromes.

Recursively Defined Sets (contd.)

Example

Define the set of binary palindromes.

- (i) The empty string λ is a palindrome.
- (ii) 0 and 1 are palindromes.
- (iii) If x is a palindrome, then so are $0 \cdot x \cdot 0$ and $1 \cdot x \cdot 1$.

Recursively Defined Operations

Recursively Defined Operations

Note

Recursively Defined Operations

Note

Certain binary operations can be defined recursively in terms of "less powerful" operations.

Recursively Defined Operations

Note

Certain binary operations can be defined recursively in terms of "less powerful" operations.

Example

Recursively Defined Operations

Note

Certain binary operations can be defined recursively in terms of "less powerful" operations.

Example

Define exponentiation in terms of multiplication.

Recursively Defined Operations

Note

Certain binary operations can be defined recursively in terms of "less powerful" operations.

Example

Define exponentiation in terms of multiplication.

$$a^0 = 1$$

Note

Certain binary operations can be defined recursively in terms of "less powerful" operations.

Example

Define exponentiation in terms of multiplication.

$$a^0 = 1$$

 $a^m = a \cdot (a^{m-1}), m > 1.$

Note

Certain binary operations can be defined recursively in terms of "less powerful" operations.

Example

Define exponentiation in terms of multiplication.

$$a^0 = 1$$

 $a^m = a \cdot (a^{m-1}), m > 1.$

Example

Note

Certain binary operations can be defined recursively in terms of "less powerful" operations.

Example

Define exponentiation in terms of multiplication.

$$a^0 = 1$$

 $a^m = a \cdot (a^{m-1}), m > 1.$

Example

Define multiplication in terms of addition.

Note

Certain binary operations can be defined recursively in terms of "less powerful" operations.

Example

Define exponentiation in terms of multiplication.

$$a^0 = 1$$

 $a^m = a \cdot (a^{m-1}), m > 1.$

Example

Define multiplication in terms of addition.

$$x \cdot 0 = 0$$

Note

Certain binary operations can be defined recursively in terms of "less powerful" operations.

Example

Define exponentiation in terms of multiplication.

$$a^0 = 1$$

 $a^m = a \cdot (a^{m-1}), m > 1.$

Example

Define multiplication in terms of addition.

$$\begin{array}{rcl} x \cdot 0 & = & 0 \\ x \cdot y & = & x + x \cdot (y - 1), \ y \geq 1. \end{array}$$

Recursively Defined Algorithms

Recursively Defined Algorithms

Function MAX(a, b)

- 1: if $(a \ge b)$ then
- 2: **return**(*a*).
- 3: **else**
- 4: **return**(*b*).
- 5: end if

Recursively Defined Algorithms

Function MAX(a, b)

- 1: if $(a \ge b)$ then
- 2: **return**(*a*).
- 3: **else**
- 4: **return**(*b*).
- 5: end if

The Find-Max Algorithm

Recursively Defined Algorithms

Function MAX(a, b)

- 1: if $(a \ge b)$ then
- 2: **return**(*a*).
- 3: **else**
- 4: **return**(*b*).
- 5: end if

The Find-Max Algorithm

```
Function FIND-MAX(A, n)
```

```
1: if (n = 1) then
```

```
2: return(A[1]).
```

```
3: else
```

```
4: return(MAX(A[n], FIND-MAX(A, n - 1))).
```

5: end if

Recursively Defined Algorithms

Function MAX(a, b)

- 1: if $(a \ge b)$ then
- 2: **return**(*a*).
- 3: **else**
- 4: **return**(*b*).
- 5: end if

The Find-Max Algorithm

```
Function FIND-MAX(A, n)
```

```
1: if (n = 1) then
```

```
2: return(A[1]).
```

```
3: else
```

```
4: return(MAX(A[n], FIND-MAX(A, n - 1))).
```

```
5: end if
```

Note

Recursively Defined Algorithms

Function MAX(a, b)

- 1: if $(a \ge b)$ then
- 2: **return**(*a*).
- 3: **else**
- 4: **return**(*b*).
- 5: end if

The Find-Max Algorithm

```
Function FIND-MAX(A, n)
```

```
1: if (n = 1) then
```

```
2: return(A[1]).
```

```
3: else
```

```
4: return(MAX(A[n], FIND-MAX(A, n - 1))).
```

```
5: end if
```

Note

Can you prove the correctness of the above algorithm?

Recursive Definitions

Solving recurrences

Solving recurrences

Problem definition

Discrete Mathematics Recursion

Problem definition

Given a recurrence relation describing a function, say T(n),

Problem definition

Given a recurrence relation describing a function, say T(n),

we want to find a closed form expression which exactly describes T(n),

Problem definition

Given a recurrence relation describing a function, say T(n),

we want to find a closed form expression which exactly describes T(n),

i.e., an expression not involving calls to the function T().

Problem definition

Given a recurrence relation describing a function, say T(n),

we want to find a closed form expression which exactly describes T(n),

i.e., an expression not involving calls to the function T().

Two methods

Problem definition

Given a recurrence relation describing a function, say T(n),

we want to find a closed form expression which exactly describes T(n),

i.e., an expression not involving calls to the function T().

Two methods

(i) Expand-Guess-Verify (EGV).

Problem definition

Given a recurrence relation describing a function, say T(n),

we want to find a closed form expression which exactly describes T(n),

i.e., an expression not involving calls to the function T().

Two methods

- (i) Expand-Guess-Verify (EGV).
- (ii) Formula.
Expand-Guess-Verify

Expand-Guess-Verify

Example

Discrete Mathematics Recursio

Expand-Guess-Verify

Example

Expand-Guess-Verify

Example

Consider the recurrence:

S(1) = 1

Expand-Guess-Verify

Example

$$S(1) = 1$$

 $S(n) = S(n-1) + 1, n > 2.$

Expand-Guess-Verify

Example

Consider the recurrence:

S(1) = 1 $S(n) = S(n-1) + 1, n \ge 2.$

(i) Expand: S(1) = 1,

Expand-Guess-Verify

Example

Consider the recurrence:

S(1) = 1S(n) = S(n-1) + 1, n > 2.

(i) Expand: S(1) = 1, S(2) =

Expand-Guess-Verify

Example

Consider the recurrence:

$$S(1) = 1$$

 $S(n) = S(n-1) + 1, n > 2.$

(i) Expand: S(1) = 1, S(2) = S(1) + 1 = 2,

Expand-Guess-Verify

Example

Consider the recurrence:

$$S(1) = 1$$

 $S(n) = S(n-1) + 1, n > 2.$

(i) Expand: S(1) = 1, S(2) = S(1) + 1 = 2, S(3) =

Example

Consider the recurrence:

$$S(1) = 1$$

 $S(n) = S(n-1) + 1, n > 2.$

(i) Expand: S(1) = 1, S(2) = S(1) + 1 = 2, S(3) = S(2) + 1 = 3,

Example

Consider the recurrence:

$$S(1) = 1$$

 $S(n) = S(n-1) + 1, n > 2.$

(i) Expand: S(1) = 1, S(2) = S(1) + 1 = 2, S(3) = S(2) + 1 = 3,

Example

$$S(1) = 1$$

 $S(n) = S(n-1) + 1, n > 2.$

- (i) Expand: S(1) = 1, S(2) = S(1) + 1 = 2, S(3) = S(2) + 1 = 3,
- (ii) Guess: S(n) =

Example

$$S(1) = 1$$

 $S(n) = S(n-1) + 1, n > 2.$

- (i) Expand: S(1) = 1, S(2) = S(1) + 1 = 2, S(3) = S(2) + 1 = 3,
- (ii) Guess: S(n) = n.

Example

- S(1) = 1S(n) = S(n-1) + 1, n > 2.
- (i) Expand: S(1) = 1, S(2) = S(1) + 1 = 2, S(3) = S(2) + 1 = 3, ...
- (ii) Guess: S(n) = n.
- (iii) Verify:

Example

- S(1) = 1S(n) = S(n-1) + 1, n > 2.
- (i) Expand: S(1) = 1, S(2) = S(1) + 1 = 2, S(3) = S(2) + 1 = 3,
- (ii) Guess: S(n) = n.
- (iii) Verify: Using Induction!

Example

- $\begin{array}{rcl} S(1) & = & 1 \\ S(n) & = & S(n-1)+1, \ n > 2. \end{array}$
- (i) Expand: S(1) = 1, S(2) = S(1) + 1 = 2, S(3) = S(2) + 1 = 3,
- (ii) Guess: S(n) = n.
- (iii) Verify: Using Induction! BASIS: n = 1

Example

Consider the recurrence:

- $\begin{array}{rcl} S(1) & = & 1 \\ S(n) & = & S(n-1)+1, \ n > 2. \end{array}$
- (i) Expand: S(1) = 1, S(2) = S(1) + 1 = 2, S(3) = S(2) + 1 = 3,
- (ii) Guess: S(n) = n.
- (iii) Verify: Using Induction! BASIS: n = 1

LHS =

Example

Consider the recurrence:

- $\begin{array}{rcl} S(1) & = & 1 \\ S(n) & = & S(n-1)+1, \ n > 2. \end{array}$
- (i) Expand: S(1) = 1, S(2) = S(1) + 1 = 2, S(3) = S(2) + 1 = 3,
- (ii) Guess: S(n) = n.
- (iii) Verify: Using Induction! BASIS: n = 1

LHS = 1

Example

Consider the recurrence:

- $\begin{array}{rcl} S(1) & = & 1 \\ S(n) & = & S(n-1)+1, \ n > 2. \end{array}$
- (i) Expand: S(1) = 1, S(2) = S(1) + 1 = 2, S(3) = S(2) + 1 = 3,
- (ii) Guess: S(n) = n.
- (iii) Verify: Using Induction! BASIS: n = 1

LHS = 1RHS =

Example

Consider the recurrence:

- $\begin{array}{rcl} S(1) & = & 1 \\ S(n) & = & S(n-1)+1, \ n > 2. \end{array}$
- (i) Expand: S(1) = 1, S(2) = S(1) + 1 = 2, S(3) = S(2) + 1 = 3,
- (ii) Guess: S(n) = n.
- (iii) Verify: Using Induction! BASIS: n = 1

LHS = 1RHS = 1

Example

Consider the recurrence:

- $\begin{array}{rcl} S(1) & = & 1 \\ S(n) & = & S(n-1)+1, \ n > 2. \end{array}$
- (i) Expand: S(1) = 1, S(2) = S(1) + 1 = 2, S(3) = S(2) + 1 = 3,
- (ii) Guess: S(n) = n.
- (iii) Verify: Using Induction! BASIS: n = 1

LHS = 1RHS = 1

Since LHS=RHS, the basis is proven.

Example

Consider the recurrence:

S(1) = 1 $S(n) = S(n-1) + 1, n \ge 2.$

- (i) Expand: S(1) = 1, S(2) = S(1) + 1 = 2, S(3) = S(2) + 1 = 3,
- (ii) Guess: S(n) = n.
- (iii) Verify: Using Induction! BASIS: n = 1

LHS = 1RHS = 1

Since LHS=RHS, the basis is proven. INDUCTIVE STEP: Assume that S(k) = k.

Example

Consider the recurrence:

- $\begin{array}{rcl} S(1) & = & 1 \\ S(n) & = & S(n-1)+1, \ n > 2. \end{array}$
- (i) Expand: S(1) = 1, S(2) = S(1) + 1 = 2, S(3) = S(2) + 1 = 3,
- (ii) Guess: S(n) = n.
- (iii) Verify: Using Induction! BASIS: n = 1

LHS = 1RHS = 1

Since LHS=RHS, the basis is proven. INDUCTIVE STEP: Assume that S(k) = k. We need to show that S(k + 1) = (k + 1).

Example

Consider the recurrence:

- $\begin{array}{rcl} S(1) & = & 1 \\ S(n) & = & S(n-1)+1, \ n > 2. \end{array}$
- (i) Expand: S(1) = 1, S(2) = S(1) + 1 = 2, S(3) = S(2) + 1 = 3,
- (ii) Guess: S(n) = n.
- (iii) Verify: Using Induction! BASIS: n = 1

LHS = 1RHS = 1

Since LHS=RHS, the basis is proven. INDUCTIVE STEP: Assume that S(k) = k. We need to show that S(k + 1) = (k + 1). Observe that,

Example

Consider the recurrence:

- $\begin{array}{rcl} S(1) & = & 1 \\ S(n) & = & S(n-1)+1, \ n > 2. \end{array}$
- (i) Expand: S(1) = 1, S(2) = S(1) + 1 = 2, S(3) = S(2) + 1 = 3,
- (ii) Guess: S(n) = n.
- (iii) Verify: Using Induction! BASIS: n = 1

LHS = 1RHS = 1

Since LHS=RHS, the basis is proven. INDUCTIVE STEP: Assume that S(k) = k. We need to show that S(k + 1) = (k + 1). Observe that,

$$S(k + 1) =$$

Example

Consider the recurrence:

- $\begin{array}{rcl} S(1) & = & 1 \\ S(n) & = & S(n-1)+1, \ n > 2. \end{array}$
- (i) Expand: S(1) = 1, S(2) = S(1) + 1 = 2, S(3) = S(2) + 1 = 3,
- (ii) Guess: S(n) = n.
- (iii) Verify: Using Induction! BASIS: n = 1

LHS = 1RHS = 1

Since LHS=RHS, the basis is proven.

INDUCTIVE STEP: Assume that S(k) = k. We need to show that S(k + 1) = (k + 1). Observe that,

S(k+1) = S(k) + 1, by definition

Example

Consider the recurrence:

- S(1) = 1S(n) = S(n-1) + 1, n > 2.
- (i) Expand: S(1) = 1, S(2) = S(1) + 1 = 2, S(3) = S(2) + 1 = 3,
- (ii) Guess: S(n) = n.
- (iii) Verify: Using Induction! BASIS: n = 1

LHS = 1RHS = 1

Since LHS=RHS, the basis is proven.

INDUCTIVE STEP: Assume that S(k) = k. We need to show that S(k + 1) = (k + 1). Observe that,

S(k + 1) = S(k) + 1, by definition = k + 1, by inductive hypothesis

Example

Consider the recurrence:

- S(1) = 1S(n) = S(n-1) + 1, n > 2.
- (i) Expand: S(1) = 1, S(2) = S(1) + 1 = 2, S(3) = S(2) + 1 = 3,
- (ii) Guess: S(n) = n.
- (iii) Verify: Using Induction! BASIS: n = 1

LHS = 1RHS = 1

Since LHS=RHS, the basis is proven.

INDUCTIVE STEP: Assume that S(k) = k. We need to show that S(k + 1) = (k + 1). Observe that,

S(k + 1) = S(k) + 1, by definition = k + 1, by inductive hypothesis

Example

Consider the recurrence:

- $\begin{array}{rcl} S(1) & = & 1 \\ S(n) & = & S(n-1)+1, \ n > 2. \end{array}$
- (i) Expand: S(1) = 1, S(2) = S(1) + 1 = 2, S(3) = S(2) + 1 = 3,
- (ii) Guess: S(n) = n.
- (iii) Verify: Using Induction! BASIS: n = 1

LHS = 1RHS = 1

Since LHS=RHS, the basis is proven.

INDUCTIVE STEP: Assume that S(k) = k. We need to show that S(k + 1) = (k + 1). Observe that,

S(k + 1) = S(k) + 1, by definition = k + 1, by inductive hypothesis

Applying the first principle of mathematical induction, we conclude that S(n) = n.

EGV (contd.)

Example

Discrete Mathematics Recursion

EGV (contd.)

Example

Example

Consider the recurrence:

S(1) = 2

Example

Consider the recurrence:

S(1) = 2 $S(n) = 2 \cdot S(n-1), n \ge 2.$

Example

Consider the recurrence:

S(1) = 2 $S(n) = 2 \cdot S(n-1), n \ge 2.$

(i) Expand: S(1) =

Example

Consider the recurrence:

 $\begin{array}{rcl} S(1) & = & 2 \\ S(n) & = & 2 \cdot S(n-1), \ n \geq 2. \end{array}$

(i) Expand: S(1) = 2,
Example

Consider the recurrence:

S(1) = 2 $S(n) = 2 \cdot S(n-1), n \ge 2.$

(i) Expand: S(1) = 2, S(2) =

Example

Consider the recurrence:

S(1) = 2 $S(n) = 2 \cdot S(n-1), n \ge 2.$

(i) Expand: S(1) = 2, $S(2) = 2 \cdot S(2) = 4$,

Example

- S(1) = 2 $S(n) = 2 \cdot S(n-1), n \ge 2.$
- (i) Expand: S(1) = 2, $S(2) = 2 \cdot S(2) = 4$, S(3) = 4

Example

Consider the recurrence:

S(1) = 2 $S(n) = 2 \cdot S(n-1), n \ge 2.$

(i) Expand: S(1) = 2, $S(2) = 2 \cdot S(2) = 4$, $S(3) = 2 \cdot S(2) = 8$,

Example

- S(1) = 2 $S(n) = 2 \cdot S(n-1), n \ge 2.$
- (i) Expand: $S(1) = 2, S(2) = 2 \cdot S(2) = 4, S(3) = 2 \cdot S(2) = 8, \dots$

Example

- S(1) = 2 $S(n) = 2 \cdot S(n-1), n \ge 2.$
- (i) Expand: $S(1) = 2, S(2) = 2 \cdot S(2) = 4, S(3) = 2 \cdot S(2) = 8, \dots$
- (ii) Guess:

Example

- S(1) = 2 $S(n) = 2 \cdot S(n-1), n \ge 2.$
- (i) Expand: $S(1) = 2, S(2) = 2 \cdot S(2) = 4, S(3) = 2 \cdot S(2) = 8, \dots$
- (ii) Guess: $S(n) = 2^n$.

Example

- S(1) = 2 $S(n) = 2 \cdot S(n-1), n \ge 2.$
- (i) Expand: $S(1) = 2, S(2) = 2 \cdot S(2) = 4, S(3) = 2 \cdot S(2) = 8, \dots$
- (ii) Guess: $S(n) = 2^n$.
- (iii) Verify:

Example

- S(1) = 2 $S(n) = 2 \cdot S(n-1), n \ge 2.$
- (i) Expand: $S(1) = 2, S(2) = 2 \cdot S(2) = 4, S(3) = 2 \cdot S(2) = 8, \dots$
- (ii) Guess: $S(n) = 2^n$.
- (iii) Verify: Using Induction!

Example

- S(1) = 2 $S(n) = 2 \cdot S(n-1), n \ge 2.$
- (i) Expand: $S(1) = 2, S(2) = 2 \cdot S(2) = 4, S(3) = 2 \cdot S(2) = 8, \dots$
- (ii) Guess: $S(n) = 2^n$.
- (iii) Verify: Using Induction! BASIS: n = 1

Example

Consider the recurrence:

- S(1) = 2 $S(n) = 2 \cdot S(n-1), n \ge 2.$
- (i) Expand: $S(1) = 2, S(2) = 2 \cdot S(2) = 4, S(3) = 2 \cdot S(2) = 8, \dots$
- (ii) Guess: $S(n) = 2^n$.
- (iii) Verify: Using Induction! BASIS: n = 1

LHS = 2

Example

- S(1) = 2 $S(n) = 2 \cdot S(n-1), n \ge 2.$
- (i) Expand: $S(1) = 2, S(2) = 2 \cdot S(2) = 4, S(3) = 2 \cdot S(2) = 8, \dots$
- (ii) Guess: $S(n) = 2^n$.
- (iii) Verify: Using Induction! BASIS: n = 1

$$LHS = 2$$

 $RHS = 2^1$

Example

- S(1) = 2 $S(n) = 2 \cdot S(n-1), n \ge 2.$
- (i) Expand: $S(1) = 2, S(2) = 2 \cdot S(2) = 4, S(3) = 2 \cdot S(2) = 8, \dots$
- (ii) Guess: $S(n) = 2^n$.
- (iii) Verify: Using Induction! BASIS: n = 1

$$LHS = 2$$
$$RHS = 2^{1}$$
$$= 2$$

Example

Consider the recurrence:

- $\begin{array}{rcl} S(1) & = & 2 \\ S(n) & = & 2 \cdot S(n-1), \ n \geq 2. \end{array}$
- (i) Expand: $S(1) = 2, S(2) = 2 \cdot S(2) = 4, S(3) = 2 \cdot S(2) = 8, \dots$
- (ii) Guess: $S(n) = 2^n$.
- (iii) Verify: Using Induction! BASIS: n = 1

$$LHS = 2$$

 $RHS = 2^1$
 $= 2$

Since LHS=RHS, the basis is proven.

Example

Consider the recurrence:

- S(1) = 2 $S(n) = 2 \cdot S(n-1), n \ge 2.$
- (i) Expand: $S(1) = 2, S(2) = 2 \cdot S(2) = 4, S(3) = 2 \cdot S(2) = 8, \dots$
- (ii) Guess: $S(n) = 2^n$.
- (iii) Verify: Using Induction! BASIS: n = 1

LHS = 2 $RHS = 2^{1}$ = 2

Since LHS=RHS, the basis is proven. INDUCTIVE STEP: Assume that $S(k) = 2^k$.

Example

Consider the recurrence:

- S(1) = 2 $S(n) = 2 \cdot S(n-1), n \ge 2.$
- (i) Expand: S(1) = 2, $S(2) = 2 \cdot S(2) = 4$, $S(3) = 2 \cdot S(2) = 8$,
- (ii) Guess: $S(n) = 2^n$.
- (iii) Verify: Using Induction! BASIS: n = 1

LHS = 2 $RHS = 2^{1}$ = 2

Since LHS=RHS, the basis is proven. INDUCTIVE STEP: Assume that $S(k) = 2^k$. We need to show that $S(k + 1) = 2^{k+1}$.

Example

Consider the recurrence:

- S(1) = 2 $S(n) = 2 \cdot S(n-1), n \ge 2.$
- (i) Expand: S(1) = 2, $S(2) = 2 \cdot S(2) = 4$, $S(3) = 2 \cdot S(2) = 8$,
- (ii) Guess: $S(n) = 2^n$.
- (iii) Verify: Using Induction! BASIS: n = 1

LHS = 2 $RHS = 2^{1}$ = 2

Since LHS=RHS, the basis is proven.

INDUCTIVE STEP: Assume that $S(k) = 2^k$. We need to show that $S(k + 1) = 2^{k+1}$. Observe that,

Example

Consider the recurrence:

- S(1) = 2 $S(n) = 2 \cdot S(n-1), n \ge 2.$
- (i) Expand: S(1) = 2, $S(2) = 2 \cdot S(2) = 4$, $S(3) = 2 \cdot S(2) = 8$,
- (ii) Guess: $S(n) = 2^n$.
- (iii) Verify: Using Induction! BASIS: n = 1

LHS = 2 $RHS = 2^{1}$ = 2

Since LHS=RHS, the basis is proven.

INDUCTIVE STEP: Assume that $S(k) = 2^k$. We need to show that $S(k + 1) = 2^{k+1}$. Observe that,

$$S(k + 1) =$$

Example

Consider the recurrence:

- S(1) = 2 $S(n) = 2 \cdot S(n-1), n \ge 2.$
- (i) Expand: $S(1) = 2, S(2) = 2 \cdot S(2) = 4, S(3) = 2 \cdot S(2) = 8, \dots$
- (ii) Guess: $S(n) = 2^n$.
- (iii) Verify: Using Induction! BASIS: n = 1

LHS = 2 $RHS = 2^{1}$ = 2

Since LHS=RHS, the basis is proven.

INDUCTIVE STEP: Assume that $S(k) = 2^k$. We need to show that $S(k + 1) = 2^{k+1}$. Observe that,

 $S(k+1) = 2 \cdot S(k)$, by definition

Example

Consider the recurrence:

- S(1) = 2 $S(n) = 2 \cdot S(n-1), n \ge 2.$
- (i) Expand: S(1) = 2, $S(2) = 2 \cdot S(2) = 4$, $S(3) = 2 \cdot S(2) = 8$,
- (ii) Guess: $S(n) = 2^n$.
- (iii) Verify: Using Induction! BASIS: n = 1

LHS = 2 $RHS = 2^{1}$ = 2

Since LHS=RHS, the basis is proven.

INDUCTIVE STEP: Assume that $S(k) = 2^k$. We need to show that $S(k + 1) = 2^{k+1}$. Observe that,

$$S(k + 1) = 2 \cdot S(k)$$
, by definition
= $2 \cdot 2^k$, by inductive hypothesis

Example

Consider the recurrence:

- S(1) = 2 $S(n) = 2 \cdot S(n-1), n \ge 2.$
- (i) Expand: S(1) = 2, $S(2) = 2 \cdot S(2) = 4$, $S(3) = 2 \cdot S(2) = 8$,
- (ii) Guess: $S(n) = 2^n$.
- (iii) Verify: Using Induction! BASIS: n = 1

LHS = 2 $RHS = 2^{1}$ = 2

Since LHS=RHS, the basis is proven.

INDUCTIVE STEP: Assume that $S(k) = 2^k$. We need to show that $S(k + 1) = 2^{k+1}$. Observe that,

$$S(k + 1) = 2 \cdot S(k), \text{ by definition}$$

= 2 \cdot 2^k, by inductive hypothesis
= 2^{k+1}.

Example

Consider the recurrence:

- S(1) = 2 $S(n) = 2 \cdot S(n-1), n \ge 2.$
- (i) Expand: $S(1) = 2, S(2) = 2 \cdot S(2) = 4, S(3) = 2 \cdot S(2) = 8, \dots$
- (ii) Guess: $S(n) = 2^n$.
- (iii) Verify: Using Induction! BASIS: *n* = 1

LHS = 2 $RHS = 2^{1}$ = 2

Since LHS=RHS, the basis is proven.

INDUCTIVE STEP: Assume that $S(k) = 2^k$. We need to show that $S(k + 1) = 2^{k+1}$. Observe that,

$$S(k + 1) = 2 \cdot S(k), \text{ by definition}$$

= $2 \cdot 2^k$, by inductive hypothesis
= 2^{k+1} .

Applying the first principle of mathematical induction, we conclude that $S(n) = 2^{n}$.

Example

Discrete Mathematics Recursion

Example

Example

Solve the recurrence:

T(1) = 1

Example

$$T(1) = 1$$

 $T(n) = T(n-1) + 3, n \ge 2.$

Example

Solve the recurrence:

$$T(1) = 1$$

$$T(n) = T(n-1) + 3, n \ge 2.$$

(i) Expand: T(1) = 1,

Example

$$T(1) = 1$$

$$T(n) = T(n-1) + 3, n \ge 2.$$

(i) Expand:
$$T(1) = 1$$
, $T(2) = T(1) + 3 = 4$,

Example

Solve the recurrence:

$$T(1) = 1$$

 $T(n) = T(n-1) + 3, n \ge 2.$

(i) Expand: T(1) = 1, T(2) = T(1) + 3 = 4, T(3) = T(2) + 3 = 7,

Example

Solve the recurrence:

$$T(1) = 1$$

 $T(n) = T(n-1) + 3, n \ge 2.$

(i) Expand: T(1) = 1, T(2) = T(1) + 3 = 4, T(3) = T(2) + 3 = 7, ...

Example

$$T(1) = 1$$

 $T(n) = T(n-1) + 3, n \ge 2.$

Example

$$T(1) = 1$$

 $T(n) = T(n-1) + 3, n \ge 2.$

(i) Expand:
$$T(1) = 1$$
, $T(2) = T(1) + 3 = 4$, $T(3) = T(2) + 3 = 7$, ...
(ii) Guess: $T(n) = 3 \cdot n - 2$.

Example

$$T(1) = 1$$

$$T(n) = T(n-1) + 3, n \ge 2.$$

(i) Expand:
$$T(1) = 1$$
, $T(2) = T(1) + 3 = 4$, $T(3) = T(2) + 3 = 7$, ...

- (ii) Guess: $T(n) = 3 \cdot n 2$.
- (iii) Verify: Somebody from class!

Formula approach

Formula approach

Definition

Discrete Mathematics Recursion
Definition

A general linear recurrence has the form:

Definition

A general linear recurrence has the form:

$$S(n) = f_1(n) \cdot S(n-1) + f_2(n) \cdot S(n-2) + \dots + f_k(n) \cdot S(n-k) + g(n)$$

Definition

A general linear recurrence has the form:

$$S(n) = f_1(n) \cdot S(n-1) + f_2(n) \cdot S(n-2) + \dots + f_k(n) \cdot S(n-k) + g(n)$$

Note

Definition

A general linear recurrence has the form:

$$S(n) = f_1(n) \cdot S(n-1) + f_2(n) \cdot S(n-2) + \dots + f_k(n) \cdot S(n-k) + g(n)$$

Note

The above formula is called linear, because the S() terms occur only in the first power.

Definition

A general linear recurrence has the form:

$$S(n) = f_1(n) \cdot S(n-1) + f_2(n) \cdot S(n-2) + \dots + f_k(n) \cdot S(n-k) + g(n)$$

Note

The above formula is called linear, because the S() terms occur only in the first power. It is called first-order, if S(n) depends only on S(n - 1).

Definition

A general linear recurrence has the form:

$$S(n) = f_1(n) \cdot S(n-1) + f_2(n) \cdot S(n-2) + \dots + f_k(n) \cdot S(n-k) + g(n)$$

Note

The above formula is called linear, because the S() terms occur only in the first power. It is called first-order, if S(n) depends only on S(n - 1). For example, $S(n) = c \cdot S(n - 1) + g(n)$.

Definition

A general linear recurrence has the form:

$$S(n) = f_1(n) \cdot S(n-1) + f_2(n) \cdot S(n-2) + \dots + f_k(n) \cdot S(n-k) + g(n)$$

Note

The above formula is called linear, because the S() terms occur only in the first power.

It is called first-order, if S(n) depends only on S(n-1). For example, $S(n) = c \cdot S(n-1) + g(n)$.

The recurrence is called homogeneous, if g(n) = 0, for all n.

Solving Recurrences

Linear first-order recurrence with constant coefficients

Linear first-order recurrence with constant coefficients

Linear first-order recurrence with constant coefficients

$$S(1) = k_0$$

Linear first-order recurrence with constant coefficients

$$S(1) = k_0$$

 $S(n) = c \cdot S(n-1) + g(n)$

Linear first-order recurrence with constant coefficients

Formula for Linear first-order recurrence

$$S(1) = k_0$$

 $S(n) = c \cdot S(n-1) + g(n)$

 \Rightarrow S(n) =

Linear first-order recurrence with constant coefficients

Formula for Linear first-order recurrence

$$S(1) = k_0$$

 $S(n) = c \cdot S(n-1) + g(n)$

 $\Rightarrow S(n) = c^{n-1} \cdot k_0 +$

Linear first-order recurrence with constant coefficients

$$S(1) = k_0$$

$$S(n) = c \cdot S(n-1) + g(n)$$

$$\Rightarrow S(n) = c^{n-1} \cdot k_0 + \sum_{i=2}^n c^{n-i} \cdot g(i).$$

Example

Discrete Mathematics Recursion

Example

Example

$$S(1) = 2$$

Example

Example

$$S(1) = 2$$

 $S(n) = 2 \cdot S(n-1), n \ge 2.$

Example

$$S(1) = 2$$

 $S(n) = 2 \cdot S(n-1), n \ge 2.$

As per the formula,

Example

$$S(1) = 2$$

 $S(n) = 2 \cdot S(n-1), n \ge 2.$

As per the formula, $k_0 =$

Example

$$S(1) = 2$$

 $S(n) = 2 \cdot S(n-1), n \ge 2.$

As per the formula, $k_0 = 2$,

Example

$$S(1) = 2$$

 $S(n) = 2 \cdot S(n-1), n \ge 2.$

As per the formula, $k_0 = 2$, g(n) =

Example

$$S(1) = 2$$

 $S(n) = 2 \cdot S(n-1), n \ge 2.$

As per the formula, $k_0 = 2$, g(n) = 0 and

Example

$$S(1) = 2$$

 $S(n) = 2 \cdot S(n-1), n \ge 2.$

Example

$$S(1) = 2$$

 $S(n) = 2 \cdot S(n-1), n \ge 2.$

Example

$$S(1) = 2$$

 $S(n) = 2 \cdot S(n-1), n \ge 2.$

$$S(n) =$$

Example

$$S(1) = 2$$

 $S(n) = 2 \cdot S(n-1), n \ge 2.$

$$S(n) = 2^{n-1} \cdot 2 +$$

Example

$$S(1) = 2$$

 $S(n) = 2 \cdot S(n-1), n \ge 2.$

$$S(n) = 2^{n-1} \cdot 2 + \sum_{i=2}^{n} 2^{n-i} \cdot 0$$

Example

$$S(1) = 2$$

 $S(n) = 2 \cdot S(n-1), n \ge 2.$

$$S(n) = 2^{n-1} \cdot 2 + \sum_{i=2}^{n} 2^{n-i} \cdot 0$$

= 2ⁿ.

Another Example

Another Example

Example

Example

Solve the recurrence:

Example

Solve the recurrence:

$$S(1) = 4$$

Example

Solve the recurrence:

$$S(1) = 4$$

 $S(n) = 2 \cdot S(n-1) + 3, n \ge 2.$

Example

Solve the recurrence:

$$S(1) = 4$$

 $S(n) = 2 \cdot S(n-1) + 3, n \ge 2.$

As per the formula,

Example

Solve the recurrence:

$$S(1) = 4$$

 $S(n) = 2 \cdot S(n-1) + 3, n \ge 2.$

As per the formula, $k_0 =$
Example

Solve the recurrence:

$$S(1) = 4$$

 $S(n) = 2 \cdot S(n-1) + 3, n \ge 2.$

As per the formula, $k_0 = 4$,

Example

Solve the recurrence:

$$S(1) = 4$$

 $S(n) = 2 \cdot S(n-1) + 3, n \ge 2.$

As per the formula, $k_0 = 4$, g(n) =

Example

Solve the recurrence:

$$S(1) = 4$$

 $S(n) = 2 \cdot S(n-1) + 3, n \ge 2.$

As per the formula, $k_0 = 4$, g(n) = 3 and

Example

Solve the recurrence:

$$S(1) = 4$$

 $S(n) = 2 \cdot S(n-1) + 3, n \ge 2.$

Example

Solve the recurrence:

$$S(1) = 4$$

 $S(n) = 2 \cdot S(n-1) + 3, n \ge 2.$

Example

Solve the recurrence:

$$S(1) = 4$$

 $S(n) = 2 \cdot S(n-1) + 3, n \ge 2.$

$$S(n) =$$

Example

Solve the recurrence:

$$S(1) = 4$$

 $S(n) = 2 \cdot S(n-1) + 3, n \ge 2.$

$$S(n) = 2^{n-1} \cdot 4 +$$

Example

Solve the recurrence:

$$S(1) = 4$$

 $S(n) = 2 \cdot S(n-1) + 3, n \ge 2.$

$$S(n) = 2^{n-1} \cdot 4 + \sum_{i=2}^{n} 2^{n-i} \cdot 3$$

Example

Solve the recurrence:

$$S(1) = 4$$

 $S(n) = 2 \cdot S(n-1) + 3, n \ge 2.$

$$S(n) = 2^{n-1} \cdot 4 + \sum_{i=2}^{n} 2^{n-i} \cdot 3$$
$$= 2^{n+1} + 3 \cdot \sum_{i=2}^{n} 2^{n-i}$$

Example

Solve the recurrence:

$$S(1) = 4$$

 $S(n) = 2 \cdot S(n-1) + 3, n \ge 2.$

$$S(n) = 2^{n-1} \cdot 4 + \sum_{i=2}^{n} 2^{n-i} \cdot 3$$
$$= 2^{n+1} + 3 \cdot \sum_{i=2}^{n} 2^{n-i}$$
$$= 2^{n+1} + 3 \cdot [2^{n-2} + 2^{n-3} + \dots + 2^{0}]$$

Example

Solve the recurrence:

$$S(1) = 4$$

 $S(n) = 2 \cdot S(n-1) + 3, n \ge 2.$

$$S(n) = 2^{n-1} \cdot 4 + \sum_{i=2}^{n} 2^{n-i} \cdot 3$$

= $2^{n+1} + 3 \cdot \sum_{i=2}^{n} 2^{n-i}$
= $2^{n+1} + 3 \cdot [2^{n-2} + 2^{n-3} + \dots + 2^{0}]$
= $2^{n+1} + 3 \cdot [2^{n-1} - 1]$

Example

Solve the recurrence:

$$S(1) = 4$$

 $S(n) = 2 \cdot S(n-1) + 3, n \ge 2.$

$$S(n) = 2^{n-1} \cdot 4 + \sum_{i=2}^{n} 2^{n-i} \cdot 3$$

= $2^{n+1} + 3 \cdot \sum_{i=2}^{n} 2^{n-i}$
= $2^{n+1} + 3 \cdot [2^{n-2} + 2^{n-3} + \dots + 2^{0}]$
= $2^{n+1} + 3 \cdot [2^{n-1} - 1]$ (Recall Scrimmage II.

Second Order homogeneous Linear Recurrence with constant coefficients

Second Order homogeneous Linear Recurrence with constant coefficients

Formula

Discrete Mathematics Recursion

Second Order homogeneous Linear Recurrence with constant coefficients

Formula

Discrete Mathematics Recursion

Second Order homogeneous Linear Recurrence with constant coefficients

Formula

(i) Form: $S(n) = c_1 \cdot S(n-1) + c_2 \cdot S(n-2)$, subject to some initial conditions

Second Order homogeneous Linear Recurrence with constant coefficients

Formula

(i) Form: $S(n) = c_1 \cdot S(n-1) + c_2 \cdot S(n-2)$, subject to some initial conditions (usually S(1) and S(2)).

- (i) Form: $S(n) = c_1 \cdot S(n-1) + c_2 \cdot S(n-2)$, subject to some initial conditions (usually S(1) and S(2)).
- (ii) Solve the characteristic equation: $t^2 c_1 \cdot t c_2 = 0$.

- (i) Form: $S(n) = c_1 \cdot S(n-1) + c_2 \cdot S(n-2)$, subject to some initial conditions (usually S(1) and S(2)).
- (ii) Solve the characteristic equation: $t^2 c_1 \cdot t c_2 = 0$. Let r_1 and r_2 denote the roots.

- (i) Form: $S(n) = c_1 \cdot S(n-1) + c_2 \cdot S(n-2)$, subject to some initial conditions (usually S(1) and S(2)).
- (ii) Solve the characteristic equation: $t^2 c_1 \cdot t c_2 = 0$. Let r_1 and r_2 denote the roots.

- (i) Form: $S(n) = c_1 \cdot S(n-1) + c_2 \cdot S(n-2)$, subject to some initial conditions (usually S(1) and S(2)).
- (ii) Solve the characteristic equation: t² − c₁ · t − c₂ = 0. Let r₁ and r₂ denote the roots.
 (a) If r₁ ≠ r₂, solve

$$p+q = S(1)$$

$$p \cdot r_1 + q \cdot r_2 = S(2)$$

Formula

- (i) Form: $S(n) = c_1 \cdot S(n-1) + c_2 \cdot S(n-2)$, subject to some initial conditions (usually S(1) and S(2)).
- (ii) Solve the characteristic equation: t² − c₁ · t − c₂ = 0. Let r₁ and r₂ denote the roots.
 (a) If r₁ ≠ r₂, solve

$$p+q = S(1)$$

$$p \cdot r_1 + q \cdot r_2 = S(2)$$

Then, $S(n) = p \cdot r_1^{n-1} + q \cdot r_2^{n-1}$.

Formula

(i) Form: $S(n) = c_1 \cdot S(n-1) + c_2 \cdot S(n-2)$, subject to some initial conditions (usually S(1) and S(2)).

0(4)

(ii) Solve the characteristic equation: t² − c₁ · t − c₂ = 0. Let r₁ and r₂ denote the roots.
(a) If r₁ ≠ t₂, solve

$$p + q = S(1)$$

$$p \cdot r_1 + q \cdot r_2 = S(2)$$
Then, $S(n) = p \cdot r_1^{n-1} + q \cdot r_2^{n-1}$.
b) If $r_1 = r_2 = r$, solve
$$p = S(1)$$

$$(p+q) \cdot r = S(2)$$

Formula

(i) Form: $S(n) = c_1 \cdot S(n-1) + c_2 \cdot S(n-2)$, subject to some initial conditions (usually S(1) and S(2)).

 $n \perp a$

S(1)

 (ii) Solve the characteristic equation: t² − c₁ · t − c₂ = 0. Let r₁ and r₂ denote the roots.
 (a) If r₁ ≠ r₂, solve

$$p + q = S(1)$$

$$p \cdot r_1 + q \cdot r_2 = S(2)$$
Then, $S(n) = p \cdot r_1^{n-1} + q \cdot r_2^{n-1}$.
b) If $r_1 = r_2 = r$, solve
$$p = S(1)$$

$$(p+q) \cdot r = S(2)$$
Then, $S(n) = p \cdot r^{n-1} + q \cdot (n-1) \cdot r^{n-1}$.

Recursive Definitions

Examples of second order recurrences

Recursive Definitions

Examples of second order recurrences

Example

Examples of second order recurrences

Example

Solve the recurrence relation

Examples of second order recurrences

Example

Solve the recurrence relation

T(1) = 5

Examples of second order recurrences

Example

Solve the recurrence relation

$$T(1) = 5$$

 $T(2) = 13$

Examples of second order recurrences

Example

Solve the recurrence relation

$$T(1) = 5$$

$$T(2) = 13$$

$$T(n) = 6 \cdot T(n-1) - 5 \cdot T(n-2), n \ge 3.$$

Examples of second order recurrences

Example

Solve the recurrence relation

$$T(1) = 5$$

$$T(2) = 13$$

$$T(n) = 6 \cdot T(n-1) - 5 \cdot T(n-2), n \ge 3.$$

Solution:

Examples of second order recurrences

Example

Solve the recurrence relation

$$T(1) = 5$$

$$T(2) = 13$$

$$T(n) = 6 \cdot T(n-1) - 5 \cdot T(n-2), n \ge 3.$$

Solution:

Example

Solve the recurrence relation

$$T(1) = 5$$

$$T(2) = 13$$

$$T(n) = 6 \cdot T(n-1) - 5 \cdot T(n-2), n \ge 3.$$

Solution:

(i) $c_1 = 6$, $c_2 = -5$.

Example

Solve the recurrence relation

$$T(1) = 5$$

$$T(2) = 13$$

$$T(n) = 6 \cdot T(n-1) - 5 \cdot T(n-2), n \ge 3.$$

Solution:

(i) $c_1 = 6$, $c_2 = -5$. Characteristic equation:

Example

Solve the recurrence relation

$$T(1) = 5$$

$$T(2) = 13$$

$$T(n) = 6 \cdot T(n-1) - 5 \cdot T(n-2), n \ge 3.$$

Solution:

(i)
$$c_1 = 6$$
, $c_2 = -5$. Characteristic equation: $t^2 - 6 \cdot t + 5 = 0$.

Example

Solve the recurrence relation

$$T(1) = 5$$

$$T(2) = 13$$

$$T(n) = 6 \cdot T(n-1) - 5 \cdot T(n-2), n \ge 3.$$

Solution:

(i) $c_1 = 6$, $c_2 = -5$. Characteristic equation: $t^2 - 6 \cdot t + 5 = 0$. Solution is:
Example

Solve the recurrence relation

$$T(1) = 5$$

$$T(2) = 13$$

$$T(n) = 6 \cdot T(n-1) - 5 \cdot T(n-2), n \ge 3.$$

Solution:

(i) $c_1 = 6$, $c_2 = -5$. Characteristic equation: $t^2 - 6 \cdot t + 5 = 0$. Solution is: $r_1 = 1$, $r_2 = 5$.

Example

Solve the recurrence relation

$$T(1) = 5$$

$$T(2) = 13$$

$$T(n) = 6 \cdot T(n-1) - 5 \cdot T(n-2), n \ge 3.$$

- (i) $c_1 = 6$, $c_2 = -5$. Characteristic equation: $t^2 6 \cdot t + 5 = 0$. Solution is: $r_1 = 1$, $r_2 = 5$.
- (ii) Solve the equations:

Example

Solve the recurrence relation

$$T(1) = 5$$

$$T(2) = 13$$

$$T(n) = 6 \cdot T(n-1) - 5 \cdot T(n-2), n \ge 3.$$

- (i) $c_1 = 6$, $c_2 = -5$. Characteristic equation: $t^2 6 \cdot t + 5 = 0$. Solution is: $r_1 = 1$, $r_2 = 5$.
- (ii) Solve the equations:

$$p+q = T(1) = 5$$

Example

Solve the recurrence relation

$$T(1) = 5$$

$$T(2) = 13$$

$$T(n) = 6 \cdot T(n-1) - 5 \cdot T(n-2), n \ge 3.$$

- (i) $c_1 = 6$, $c_2 = -5$. Characteristic equation: $t^2 6 \cdot t + 5 = 0$. Solution is: $r_1 = 1$, $r_2 = 5$.
- (ii) Solve the equations:

$$p+q = T(1) = 5$$

 $p \cdot 1 + q \cdot 5 = T(2) = 13$

Example

Solve the recurrence relation

$$T(1) = 5$$

$$T(2) = 13$$

$$T(n) = 6 \cdot T(n-1) - 5 \cdot T(n-2), n \ge 3.$$

Solution:

- (i) $c_1 = 6$, $c_2 = -5$. Characteristic equation: $t^2 6 \cdot t + 5 = 0$. Solution is: $r_1 = 1$, $r_2 = 5$.
- (ii) Solve the equations:

$$p+q = T(1) = 5$$

 $p \cdot 1 + q \cdot 5 = T(2) = 13$

We get p = 3 and q = 2.

Example

Solve the recurrence relation

$$T(1) = 5$$

$$T(2) = 13$$

$$T(n) = 6 \cdot T(n-1) - 5 \cdot T(n-2), n \ge 3.$$

Solution:

- (i) $c_1 = 6$, $c_2 = -5$. Characteristic equation: $t^2 6 \cdot t + 5 = 0$. Solution is: $r_1 = 1$, $r_2 = 5$.
- (ii) Solve the equations:

$$p+q = T(1) = 5$$

 $p \cdot 1 + q \cdot 5 = T(2) = 13$

We get p = 3 and q = 2.

(iii) Accordingly, the solution is T(n) =

Example

Solve the recurrence relation

$$T(1) = 5$$

$$T(2) = 13$$

$$T(n) = 6 \cdot T(n-1) - 5 \cdot T(n-2), n \ge 3.$$

Solution:

- (i) $c_1 = 6$, $c_2 = -5$. Characteristic equation: $t^2 6 \cdot t + 5 = 0$. Solution is: $r_1 = 1$, $r_2 = 5$.
- (ii) Solve the equations:

$$p+q = T(1) = 5$$

 $p \cdot 1 + q \cdot 5 = T(2) = 13$

We get p = 3 and q = 2.

(iii) Accordingly, the solution is $T(n) = 3 \cdot 1^{n-1} + 1$

Example

Solve the recurrence relation

$$T(1) = 5$$

$$T(2) = 13$$

$$T(n) = 6 \cdot T(n-1) - 5 \cdot T(n-2), n \ge 3.$$

Solution:

(i) $c_1 = 6$, $c_2 = -5$. Characteristic equation: $t^2 - 6 \cdot t + 5 = 0$. Solution is: $r_1 = 1$, $r_2 = 5$.

(ii) Solve the equations:

$$p+q = T(1) = 5$$

 $p \cdot 1 + q \cdot 5 = T(2) = 13$

We get p = 3 and q = 2.

(iii) Accordingly, the solution is $T(n) = 3 \cdot 1^{n-1} + 2 \cdot 5^{n-1} =$

Example

Solve the recurrence relation

$$T(1) = 5$$

$$T(2) = 13$$

$$T(n) = 6 \cdot T(n-1) - 5 \cdot T(n-2), n \ge 3.$$

Solution:

- (i) $c_1 = 6$, $c_2 = -5$. Characteristic equation: $t^2 6 \cdot t + 5 = 0$. Solution is: $r_1 = 1$, $r_2 = 5$.
- (ii) Solve the equations:

$$p+q = T(1) = 5$$

 $p \cdot 1 + q \cdot 5 = T(2) = 13$

We get p = 3 and q = 2.

(iii) Accordingly, the solution is $T(n) = 3 \cdot 1^{n-1} + 2 \cdot 5^{n-1} = 3 + 2 \cdot 5^{n-1}$.

One More Example

One More Example

Example

Discrete Mathematics Recursion

Example

Solve the recurrence relation:

Example

Solve the recurrence relation:

S(1) = 1

Example

Solve the recurrence relation:

$$S(1) = 1$$

 $S(2) = 12$

Example

Solve the recurrence relation:

$$S(1) = 1$$

$$S(2) = 12$$

$$S(n) = 8 \cdot S(n-1) - 16 \cdot S(n-2), n \ge 3$$

Example

Solve the recurrence relation:

$$S(1) = 1$$

$$S(2) = 12$$

$$S(n) = 8 \cdot S(n-1) - 16 \cdot S(n-2), n > 3$$

Example

Solve the recurrence relation:

$$S(1) = 1$$

$$S(2) = 12$$

$$S(n) = 8 \cdot S(n-1) - 16 \cdot S(n-2), n > 3$$

Example

Solve the recurrence relation:

$$S(1) = 1$$

$$S(2) = 12$$

$$S(n) = 8 \cdot S(n-1) - 16 \cdot S(n-2), n > 3$$

Solution:

(i) $c_1 = 8, c_2 = -16.$

Example

Solve the recurrence relation:

$$S(1) = 1$$

$$S(2) = 12$$

$$S(n) = 8 \cdot S(n-1) - 16 \cdot S(n-2), n > 3$$

(i)
$$c_1 = 8$$
, $c_2 = -16$. Characteristic equation: $t^2 - 8t + 16 = 0$.

Example

Solve the recurrence relation:

$$S(1) = 1$$

$$S(2) = 12$$

$$S(n) = 8 \cdot S(n-1) - 16 \cdot S(n-2), n > 3$$

(i)
$$c_1 = 8$$
, $c_2 = -16$. Characteristic equation: $t^2 - 8t + 16 = 0$. Solution is $r_1 = r_2 = 4$.

Example

Solve the recurrence relation:

$$S(1) = 1$$

$$S(2) = 12$$

$$S(n) = 8 \cdot S(n-1) - 16 \cdot S(n-2), n > 3$$

- (i) $c_1 = 8$, $c_2 = -16$. Characteristic equation: $t^2 8t + 16 = 0$. Solution is $r_1 = r_2 = 4$.
- (ii) Solve the equations:

Example

Solve the recurrence relation:

$$S(1) = 1$$

$$S(2) = 12$$

$$S(n) = 8 \cdot S(n-1) - 16 \cdot S(n-2), n > 3$$

Solution:

- (i) $c_1 = 8$, $c_2 = -16$. Characteristic equation: $t^2 8t + 16 = 0$. Solution is $r_1 = r_2 = 4$.
- (ii) Solve the equations:

p = 1

Example

Solve the recurrence relation:

$$S(1) = 1$$

$$S(2) = 12$$

$$S(n) = 8 \cdot S(n-1) - 16 \cdot S(n-2), n > 3$$

- (i) $c_1 = 8$, $c_2 = -16$. Characteristic equation: $t^2 8t + 16 = 0$. Solution is $r_1 = r_2 = 4$.
- (ii) Solve the equations:

$$p = 1$$
$$p \cdot 4 + q \cdot 4 = 12$$

Example

Solve the recurrence relation:

$$S(1) = 1$$

$$S(2) = 12$$

$$S(n) = 8 \cdot S(n-1) - 16 \cdot S(n-2), n > 3$$

Solution:

- (i) $c_1 = 8$, $c_2 = -16$. Characteristic equation: $t^2 8t + 16 = 0$. Solution is $r_1 = r_2 = 4$.
- (ii) Solve the equations:

$$p = 1$$
$$p \cdot 4 + q \cdot 4 = 12$$

We get p = 1 and q = 2.

Example

Solve the recurrence relation:

$$S(1) = 1$$

$$S(2) = 12$$

$$S(n) = 8 \cdot S(n-1) - 16 \cdot S(n-2), n > 3$$

Solution:

- (i) $c_1 = 8$, $c_2 = -16$. Characteristic equation: $t^2 8t + 16 = 0$. Solution is $r_1 = r_2 = 4$.
- (ii) Solve the equations:

 $\begin{array}{rrrr} \rho & = & 1 \\ \rho \cdot 4 + q \cdot 4 & = & 12 \end{array}$

We get p = 1 and q = 2.

(iii) Accordingly, the solution is S(n) =

Example

Solve the recurrence relation:

$$S(1) = 1$$

$$S(2) = 12$$

$$S(n) = 8 \cdot S(n-1) - 16 \cdot S(n-2), n > 3$$

Solution:

- (i) $c_1 = 8$, $c_2 = -16$. Characteristic equation: $t^2 8t + 16 = 0$. Solution is $r_1 = r_2 = 4$.
- (ii) Solve the equations:

 $\begin{array}{rrrr} \rho & = & 1 \\ \rho \cdot 4 + q \cdot 4 & = & 12 \end{array}$

We get p = 1 and q = 2.

(iii) Accordingly, the solution is $S(n) = 4^{n-1} +$

Example

Solve the recurrence relation:

$$S(1) = 1$$

$$S(2) = 12$$

$$S(n) = 8 \cdot S(n-1) - 16 \cdot S(n-2), n > 3$$

Solution:

- (i) $c_1 = 8$, $c_2 = -16$. Characteristic equation: $t^2 8t + 16 = 0$. Solution is $r_1 = r_2 = 4$.
- (ii) Solve the equations:

$$p = 1$$
$$p \cdot 4 + q \cdot 4 = 12$$

We get p = 1 and q = 2.

(iii) Accordingly, the solution is $S(n) = 4^{n-1} + 2 \cdot (n-1) \cdot 4^{n-1} =$

Example

Solve the recurrence relation:

$$\begin{array}{rcl} S(1) & = & 1 \\ S(2) & = & 12 \\ S(n) & = & 8 \cdot S(n-1) - 16 \cdot S(n-2), \ n \geq 3 \end{array}$$

Solution:

- (i) $c_1 = 8$, $c_2 = -16$. Characteristic equation: $t^2 8t + 16 = 0$. Solution is $r_1 = r_2 = 4$.
- (ii) Solve the equations:

$$p = 1$$
$$p \cdot 4 + q \cdot 4 = 12$$

We get p = 1 and q = 2.

(iii) Accordingly, the solution is $S(n) = 4^{n-1} + 2 \cdot (n-1) \cdot 4^{n-1} = (2 \cdot n - 1) \cdot 4^{n-1}$.

Recursive Definitions

Divide and Conquer Recurrences

Divide and Conquer Recurrences

Divide and Conquer Recurrences

$$S(1) = k_0$$

Divide and Conquer Recurrences

$$\begin{array}{rcl} S(1) & = & k_0 \\ S(n) & = & c \cdot S(\frac{n}{2}) + g(n), \ n \geq 2, \ n = 2^m. \end{array}$$

Divide and Conquer Recurrences

Formula for Divide and Conquer Recurrence

$$\begin{array}{rcl} S(1) & = & k_0 \\ S(n) & = & c \cdot S(\frac{n}{2}) + g(n), \ n \geq 2, \ n = 2^m. \end{array}$$

 $\Rightarrow S(n) =$

Divide and Conquer Recurrences

$$\begin{array}{rcl} S(1) & = & k_0 \\ S(n) & = & c \cdot S(\frac{n}{2}) + g(n), \ n \geq 2, \ n = 2^m. \end{array}$$

$$\Rightarrow S(n) = c^{\log n} \cdot k_0 +$$

Divide and Conquer Recurrences

 \Rightarrow

$$S(1) = k_0$$

$$S(n) = c \cdot S(\frac{n}{2}) + g(n), \ n \ge 2, \ n = 2^m.$$

$$S(n) = c^{\log n} \cdot k_0 + \sum_{i=1}^{\log n} c^{\log n-i} \cdot g(2^i).$$

Divide and Conquer Recurrences

Formula for Divide and Conquer Recurrence

$$\begin{array}{rcl} S(1) & = & k_0 \\ S(n) & = & c \cdot S(\frac{n}{2}) + g(n), \ n \geq 2, \ n = 2^m. \end{array}$$

 $\Rightarrow S(n) = c^{\log n} \cdot k_0 + \sum_{i=1}^{\log n} c^{\log n-i} \cdot g(2^i). \text{ (All logarithms are to base 2).}$
Divide and Conquer Recurrences

Formula for Divide and Conquer Recurrence

$$\begin{array}{rcl} S(1) & = & k_0 \\ S(n) & = & c \cdot S(\frac{n}{2}) + g(n), \ n \geq 2, \ n = 2^m. \end{array}$$

 $\Rightarrow S(n) = c^{\log n} \cdot k_0 + \sum_{i=1}^{\log n} c^{\log n-i} \cdot g(2^i). \text{ (All logarithms are to base 2).}$

Note that $c^{\log n-i}$ in the expression above stands for $\frac{c^{\log n}}{c^{i}}$.

Example

Example

Example

$$C(1) = 1$$

Example

$$\begin{array}{rcl} C(1) & = & 1 \\ C(n) & = & 1 + C(\frac{n}{2}), \ n \geq 2, \ n = 2^{m}. \end{array}$$

Example

Solve the recurrence:

$$C(1) = 1$$

$$C(n) = 1 + C(\frac{n}{2}), \ n \ge 2, \ n = 2^{m}.$$

Note that

Example

Solve the recurrence:

$$C(1) = 1$$

$$C(n) = 1 + C(\frac{n}{2}), \ n \ge 2, \ n = 2^{m}.$$

Note that $k_0 =$

Example

Solve the recurrence:

$$C(1) = 1$$

$$C(n) = 1 + C(\frac{n}{2}), \ n \ge 2, \ n = 2^{m}.$$

Note that $k_0 = 1$,

Example

Solve the recurrence:

$$C(1) = 1$$

$$C(n) = 1 + C(\frac{n}{2}), \ n \ge 2, \ n = 2^{m}.$$

Note that $k_0 = 1$, c =

Example

Solve the recurrence:

$$C(1) = 1$$

$$C(n) = 1 + C(\frac{n}{2}), \ n \ge 2, \ n = 2^{m}.$$

Note that $k_0 = 1$, c = 1 and

Example

Solve the recurrence:

$$C(1) = 1$$

$$C(n) = 1 + C(\frac{n}{2}), \ n \ge 2, \ n = 2^{m}.$$

Note that $k_0 = 1$, c = 1 and g(i) =

Example

Solve the recurrence:

$$C(1) = 1$$

$$C(n) = 1 + C(\frac{n}{2}), \ n \ge 2, \ n = 2^{m}.$$

Note that $k_0 = 1$, c = 1 and g(i) = 1, $\forall i$.

Example

Solve the recurrence:

$$C(1) = 1$$

$$C(n) = 1 + C(\frac{n}{2}), \ n \ge 2, \ n = 2^{m}.$$

Note that $k_0 = 1$, c = 1 and g(i) = 1, $\forall i$. Hence, $g(2^i) = 1$, $\forall i$.

Example

Solve the recurrence:

$$C(1) = 1$$

$$C(n) = 1 + C(\frac{n}{2}), \ n \ge 2, \ n = 2^{m}.$$

Example

Solve the recurrence:

$$C(1) = 1$$

$$C(n) = 1 + C(\frac{n}{2}), \ n \ge 2, \ n = 2^{m}.$$

$$C(n) =$$

Example

Solve the recurrence:

$$\begin{array}{rcl} C(1) & = & 1 \\ C(n) & = & 1 + C(\frac{n}{2}), \ n \geq 2, \ n = 2^m. \end{array}$$

$$C(n) = 1^{\log n} \cdot 1 + 1$$

Example

Solve the recurrence:

$$C(1) = 1$$

$$C(n) = 1 + C(\frac{n}{2}), \ n \ge 2, \ n = 2^{m}.$$

$$C(n) = 1^{\log n} \cdot 1 + \sum_{i=1}^{\log n} 1^{\log n-i} \cdot (1)$$

Example

Solve the recurrence:

$$C(1) = 1$$

$$C(n) = 1 + C(\frac{n}{2}), \ n \ge 2, \ n = 2^{m}.$$

$$C(n) = 1^{\log n} \cdot 1 + \sum_{i=1}^{\log n} 1^{\log n - i} \cdot (1)$$

= 1 + (log n) \cdot 1

Example

Solve the recurrence:

$$C(1) = 1$$

$$C(n) = 1 + C(\frac{n}{2}), \ n \ge 2, \ n = 2^{m}.$$

$$C(n) = 1^{\log n} \cdot 1 + \sum_{i=1}^{\log n} 1^{\log n - i} \cdot (1)$$

= 1 + (\log n) \cdot 1
= 1 + \log n.

Example

Discrete Mathematics Recursion

$$T(1) = 3$$

$$T(n) = 2 \cdot T(\frac{n}{2}) + 2 \cdot n, \ n \ge 2, \ n = 2^{m}.$$

Solve the recurrence:

$$T(1) = 3$$

$$T(n) = 2 \cdot T(\frac{n}{2}) + 2 \cdot n, \ n \ge 2, \ n = 2^{m}.$$

Note that

Solve the recurrence:

$$T(1) = 3$$

$$T(n) = 2 \cdot T(\frac{n}{2}) + 2 \cdot n, \ n \ge 2, \ n = 2^{m}.$$

Note that $k_0 =$

Solve the recurrence:

$$T(1) = 3$$

$$T(n) = 2 \cdot T(\frac{n}{2}) + 2 \cdot n, \ n \ge 2, \ n = 2^{m}.$$

Note that $k_0 = 3$,

Solve the recurrence:

$$T(1) = 3$$

$$T(n) = 2 \cdot T(\frac{n}{2}) + 2 \cdot n, \ n \ge 2, \ n = 2^{m}.$$

Note that $k_0 = 3, c =$

Solve the recurrence:

$$T(1) = 3$$

$$T(n) = 2 \cdot T(\frac{n}{2}) + 2 \cdot n, \ n \ge 2, \ n = 2^{m}.$$

Note that $k_0 = 3$, c = 2 and

Solve the recurrence:

$$T(1) = 3$$

$$T(n) = 2 \cdot T(\frac{n}{2}) + 2 \cdot n, \ n \ge 2, \ n = 2^{m}.$$

Note that $k_0 = 3$, c = 2 and g(i) =

Solve the recurrence:

$$T(1) = 3$$

$$T(n) = 2 \cdot T(\frac{n}{2}) + 2 \cdot n, \ n \ge 2, \ n = 2^{m}.$$

Note that $k_0 = 3$, c = 2 and $g(i) = 2 \cdot i$, $\forall i$.

Solve the recurrence:

$$T(1) = 3$$

$$T(n) = 2 \cdot T(\frac{n}{2}) + 2 \cdot n, \ n \ge 2, \ n = 2^{m}.$$

Note that $k_0 = 3$, c = 2 and $g(i) = 2 \cdot i$, $\forall i$. It follows that $g(2^i) =$

Solve the recurrence:

$$T(1) = 3$$

$$T(n) = 2 \cdot T(\frac{n}{2}) + 2 \cdot n, \ n \ge 2, \ n = 2^{m}.$$

Solve the recurrence:

$$T(1) = 3$$

$$T(n) = 2 \cdot T(\frac{n}{2}) + 2 \cdot n, \ n \ge 2, \ n = 2^{m}.$$

Solve the recurrence:

$$T(1) = 3$$

$$T(n) = 2 \cdot T(\frac{n}{2}) + 2 \cdot n, \ n \ge 2, \ n = 2^{m}.$$

Note that $k_0 = 3$, c = 2 and $g(i) = 2 \cdot i$, $\forall i$. It follows that $g(2^i) = 2 \cdot 2^i$, $\forall i$. As per the formula,

T(n) =

Solve the recurrence:

$$T(1) = 3$$

$$T(n) = 2 \cdot T(\frac{n}{2}) + 2 \cdot n, \ n \ge 2, \ n = 2^{m}.$$

$$T(n) = 2^{\log n} \cdot 3 +$$

Solve the recurrence:

$$T(1) = 3$$

$$T(n) = 2 \cdot T(\frac{n}{2}) + 2 \cdot n, \ n \ge 2, \ n = 2^{m}.$$

$$T(n) = 2^{\log n} \cdot 3 + \sum_{i=1}^{\log n} 2^{\log n-i}$$

Solve the recurrence:

$$T(1) = 3$$

$$T(n) = 2 \cdot T(\frac{n}{2}) + 2 \cdot n, \ n \ge 2, \ n = 2^{m}.$$

$$T(n) = 2^{\log n} \cdot 3 + \sum_{i=1}^{\log n} 2^{\log n - i} \cdot 2 \cdot (2^{i})$$
Solve the recurrence:

$$T(1) = 3$$

$$T(n) = 2 \cdot T(\frac{n}{2}) + 2 \cdot n, \ n \ge 2, \ n = 2^{m}.$$

Note that $k_0 = 3$, c = 2 and $g(i) = 2 \cdot i$, $\forall i$. It follows that $g(2^i) = 2 \cdot 2^i$, $\forall i$. As per the formula,

$$T(n) = 2^{\log n} \cdot 3 + \sum_{i=1}^{\log n} 2^{\log n-i} \cdot 2 \cdot (2^i)$$

= $3 \cdot 2^{\log n} + \sum_{i=1}^{\log n} 2^{\log n+1}$

Solve the recurrence:

$$T(1) = 3$$

$$T(n) = 2 \cdot T(\frac{n}{2}) + 2 \cdot n, \ n \ge 2, \ n = 2^{m}.$$

Note that $k_0 = 3$, c = 2 and $g(i) = 2 \cdot i$, $\forall i$. It follows that $g(2^i) = 2 \cdot 2^i$, $\forall i$. As per the formula,

$$T(n) = 2^{\log n} \cdot 3 + \sum_{i=1}^{\log n} 2^{\log n-i} \cdot 2 \cdot (2^{i})$$

= $3 \cdot 2^{\log n} + \sum_{i=1}^{\log n} 2^{\log n+1}$
= $3 \cdot n + 2^{\log n+1} \cdot (\log n),$

Solve the recurrence:

$$T(1) = 3$$

$$T(n) = 2 \cdot T(\frac{n}{2}) + 2 \cdot n, \ n \ge 2, \ n = 2^{m}.$$

Note that $k_0 = 3$, c = 2 and $g(i) = 2 \cdot i$, $\forall i$. It follows that $g(2^i) = 2 \cdot 2^i$, $\forall i$. As per the formula,

$$T(n) = 2^{\log n} \cdot 3 + \sum_{i=1}^{\log n} 2^{\log n - i} \cdot 2 \cdot (2^{i})$$

= $3 \cdot 2^{\log n} + \sum_{i=1}^{\log n} 2^{\log n + 1}$
= $3 \cdot n + 2^{\log n + 1} \cdot (\log n), \text{ since } (a^{\log n} = n, a \neq 0)$

Solve the recurrence:

$$T(1) = 3$$

$$T(n) = 2 \cdot T(\frac{n}{2}) + 2 \cdot n, \ n \ge 2, \ n = 2^{m}.$$

Note that $k_0 = 3$, c = 2 and $g(i) = 2 \cdot i$, $\forall i$. It follows that $g(2^i) = 2 \cdot 2^i$, $\forall i$. As per the formula,

$$(n) = 2^{\log n} \cdot 3 + \sum_{i=1}^{\log n} 2^{\log n - i} \cdot 2 \cdot (2^{i})$$
$$= 3 \cdot 2^{\log n} + \sum_{i=1}^{\log n} 2^{\log n + 1}$$
$$= 3 \cdot n + 2^{\log n + 1} \cdot (\log n), \text{ since } (a^{\log a} = n, a \neq 0)$$
$$= 3 \cdot n + 2^{\log n} \cdot 2 \cdot \log n$$

Solve the recurrence:

$$T(1) = 3$$

$$T(n) = 2 \cdot T(\frac{n}{2}) + 2 \cdot n, \ n \ge 2, \ n = 2^{m}.$$

Note that $k_0 = 3$, c = 2 and $g(i) = 2 \cdot i$, $\forall i$. It follows that $g(2^i) = 2 \cdot 2^i$, $\forall i$. As per the formula,

ΤI

$$\begin{array}{ll} n) & = & 2^{\log n} \cdot 3 + \sum_{i=1}^{\log n} 2^{\log n - i} \cdot 2 \cdot (2^i) \\ \\ & = & 3 \cdot 2^{\log n} + \sum_{i=1}^{\log n} 2^{\log n + 1} \\ \\ & = & 3 \cdot n + 2^{\log n + 1} \cdot (\log n), & \text{since } (a^{\log a} n = n, \ a \neq 0 \\ \\ & = & 3 \cdot n + 2^{\log n} \cdot 2 \cdot \log n \\ \\ & = & 3 \cdot n + n \cdot 2 \cdot \log n, \end{array}$$

Solve the recurrence:

$$T(1) = 3$$

$$T(n) = 2 \cdot T(\frac{n}{2}) + 2 \cdot n, \ n \ge 2, \ n = 2^{m}.$$

Note that $k_0 = 3$, c = 2 and $g(i) = 2 \cdot i$, $\forall i$. It follows that $g(2^i) = 2 \cdot 2^i$, $\forall i$. As per the formula,

T(

$$n) = 2^{\log n} \cdot 3 + \sum_{i=1}^{\log n} 2^{\log n - i} \cdot 2 \cdot (2^{i})$$

$$= 3 \cdot 2^{\log n} + \sum_{i=1}^{\log n} 2^{\log n + 1}$$

$$= 3 \cdot n + 2^{\log n + 1} \cdot (\log n), \text{ since } (a^{\log n} = n, a \neq 0)$$

$$= 3 \cdot n + 2^{\log n} \cdot 2 \cdot \log n$$

$$= 3 \cdot n + n \cdot 2 \cdot \log n, \text{ since } (a^{\log n} = n, a \neq 0)$$

Solve the recurrence:

$$T(1) = 3$$

$$T(n) = 2 \cdot T(\frac{n}{2}) + 2 \cdot n, \ n \ge 2, \ n = 2^{m}.$$

Note that $k_0 = 3$, c = 2 and $g(i) = 2 \cdot i$, $\forall i$. It follows that $g(2^i) = 2 \cdot 2^i$, $\forall i$. As per the formula,

T(

$$n) = 2^{\log n} \cdot 3 + \sum_{i=1}^{\log n} 2^{\log n - i} \cdot 2 \cdot (2^{i})$$

$$= 3 \cdot 2^{\log n} + \sum_{i=1}^{\log n} 2^{\log n + 1}$$

$$= 3 \cdot n + 2^{\log n + 1} \cdot (\log n), \text{ since } (a^{\log a} n = n, a \neq 0)$$

$$= 3 \cdot n + n \cdot 2 \cdot \log n, \text{ since } (a^{\log a} n = n, a \neq 0)$$

$$= 3 \cdot n + 2 \cdot n \cdot \log n.$$

Recursive Definitions

Analysis of Algorithms

Recursive Definitions

Analysis of Algorithms

Recursive Definitions

Solving Recurrences

Analysis of Algorithms

Function MAX(a, b)1: if $(a \ge b)$ then 2: return(a). 3: else 4: return(b).

5: end if

Analysis of Algorithms

```
Function MAX(a, b)

1: if (a \ge b) then

2: return(a).

3: else

4: return(b).

5: end if
```

```
Function FIND-MAX(\mathbf{A}, n)

1: if (n = 1) then

2: return(A[1]).

3: else

4: return(MAX(A[n], FIND-MAX(\mathbf{A}, n - 1))).

5: end if
```

Analysis of Algorithms

```
Function MAX(a, b)

1: if (a \ge b) then

2: return(a).

3: else

4: return(b).

5: end if
```

```
Function FIND-MAX(\mathbf{A}, n)

1: if (n = 1) then

2: return(A[1]).

3: else

4: return(MAX(A[n], FIND-MAX(\mathbf{A}, n - 1))).

5: end if
```

Note

Analysis of Algorithms

```
Function MAX(a, b)

1: if (a \ge b) then

2: return(a).

3: else

4: return(b).

5: end if
```

```
Function FIND-MAX(\mathbf{A}, n)

1: if (n = 1) then

2: return(A[1]).

3: else

4: return(MAX(A[n], FIND-MAX(\mathbf{A}, n - 1))).

5: end if
```

Note

How many element-to-element comparisons are performed by the FIND-MAX() algorithm on an array of size n?