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Recursive Definitions
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Recursive Definitions

Definition

A recursive definition (or inductive definition) is one, in which the object being defined is
part of the definition.

Parts of a recursive definition

(i) A basis, where some simple cases of the object being defined are explicitly
provided,

(ii) An inductive or recursive step, where new cases of the item being defined are
given in terms of previous cases.

Note

Strong connection between induction and recursion.
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Types of objects defined recursively

Recursive Objects

(i) Sequences.

(ii) Sets.

(iii) Operations.

(iv) Algorithms.
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Sequences

Definition

A sequence is a list of objects that is enumerated in some order.

Example

Write down the first 5 elements of the following recursively defined sequence:

S(1) = 2

S(n) = 2 · S(n − 1), n ≥ 2.

The second part of the definition is called a recurrence relation.

Example

Write down the first 5 elements of the following recursively defined sequence:

T (1) = 1

T (n) = T (n − 1) + 3, n ≥ 2.
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Sequences (contd.)

Fibonacci Sequence

F (1) = 1

F (2) = 1

F (n) = F (n − 1) + F (n − 2), n ≥ 3

Example

Enumerate the first 5 elements of the Fibonacci sequence.
Show that

F (n + 4) = 3 · F (n + 2)− F (n), for all n ≥ 1
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Fibonacci Sequence

Proof.
We provide an inductive proof. For the basis, show that the conjecture is true at n = 1 and n = 2.

Assume that the conjecture is true for all r , 2 ≤ r ≤ k , i.e.,

F (r + 4) = 3 · F (r + 2) − F (r)

We now need to show that
F (k + 1 + 4) = 3 · F (k + 1 + 2) − F (k + 1)

Observe that,

F (k + 1 + 4) = F (k + 5)

= F (k + 4) + F (k + 3), by definition

= F (k + 4) + F ((k − 1) + 4))

= 3 · F (k + 2) − F (k) + 3 · F ((k − 1) + 2) − F (k − 1), using the i.h.

= 3 · F (k + 2) − F (k) + 3 · F (k + 1) − F (k − 1)

= 3 · (F (k + 2) + F (k + 1)) − (F (k) + F (k − 1))

= 3 · F (k + 3) − F (k + 1)

= 3 · F (k + 1 + 2) − F (k + 1)

Applying the second principle of mathematical induction, we conclude that the conjecture is true for all n ≥ 1.
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Direct proof

Proof.

F (n + 4) = F (n + 3) + F (n + 2)

= F (n + 2) + F (n + 1) + F (n + 2)

= 2 · F (n + 2) + F (n + 1)

= 2 · F (n + 2) + (F (n + 2)− F (n))

= 3 · F (n + 2)− F (n)
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Recursive Definitions
Solving Recurrences

Recursively Defined Sets

Example

Define the set of ancestors of John.

(i) John’s parents are his ancestors.

(ii) If x is an ancestor of John and y is the parent of x , then y is an ancestor of John.

Example

Define the set of all possible word combinations using small-case letters from the
English alphabet.

(i) The empty string λ is a word.

(ii) {a, b, c, . . . , z} are words.

(iii) If x and y are words, then so is x · y .
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Recursively Defined Sets (contd.)

Example

Define the set of binary palindromes.

(i) The empty string λ is a palindrome.

(ii) 0 and 1 are palindromes.

(iii) If x is a palindrome, then so are 0 · x · 0 and 1 · x · 1.
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Recursively Defined Operations

Note

Certain binary operations can be defined recursively in terms of “less powerful”
operations.

Example

Define exponentiation in terms of multiplication.

a0 = 1

am = a · (am−1), m ≥ 1.

Example

Define multiplication in terms of addition.

x · 0 = 0

x · y = x + x · (y − 1), y ≥ 1.
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Recursively Defined Algorithms

Function MAX(a, b)
1: if (a ≥ b) then
2: return(a).
3: else
4: return(b).
5: end if

The Find-Max Algorithm

Function FIND-MAX(A, n)
1: if (n = 1) then
2: return(A[1]).
3: else
4: return(MAX(A[n], FIND-MAX(A, n − 1))).
5: end if

Note

Can you prove the correctness of the above algorithm?
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Solving recurrences

Problem definition

Given a recurrence relation describing a function, say T (n),

we want to find a closed form expression which exactly describes T (n),

i.e., an expression not involving calls to the function T ().

Two methods

(i) Expand-Guess-Verify (EGV).

(ii) Formula.
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Expand-Guess-Verify

Example
Consider the recurrence:

S(1) = 1

S(n) = S(n − 1) + 1, n ≥ 2.

(i) Expand: S(1) = 1, S(2) = S(1) + 1 = 2, S(3) = S(2) + 1 = 3, . . . .

(ii) Guess: S(n) = n.

(iii) Verify: Using Induction!
BASIS: n = 1

LHS = 1

RHS = 1

Since LHS=RHS, the basis is proven.
INDUCTIVE STEP: Assume that S(k) = k . We need to show that S(k + 1) = (k + 1). Observe that,

S(k + 1) = S(k) + 1, by definition

= k + 1, by inductive hypothesis

Applying the first principle of mathematical induction, we conclude that S(n) = n.

Discrete Mathematics Recursion



Recursive Definitions
Solving Recurrences

Expand-Guess-Verify

Example

Consider the recurrence:

S(1) = 1

S(n) = S(n − 1) + 1, n ≥ 2.

(i) Expand: S(1) = 1, S(2) = S(1) + 1 = 2, S(3) = S(2) + 1 = 3, . . . .

(ii) Guess: S(n) = n.

(iii) Verify: Using Induction!
BASIS: n = 1

LHS = 1

RHS = 1

Since LHS=RHS, the basis is proven.
INDUCTIVE STEP: Assume that S(k) = k . We need to show that S(k + 1) = (k + 1). Observe that,

S(k + 1) = S(k) + 1, by definition

= k + 1, by inductive hypothesis

Applying the first principle of mathematical induction, we conclude that S(n) = n.

Discrete Mathematics Recursion



Recursive Definitions
Solving Recurrences

Expand-Guess-Verify

Example
Consider the recurrence:

S(1) = 1

S(n) = S(n − 1) + 1, n ≥ 2.

(i) Expand: S(1) = 1, S(2) = S(1) + 1 = 2, S(3) = S(2) + 1 = 3, . . . .

(ii) Guess: S(n) = n.

(iii) Verify: Using Induction!
BASIS: n = 1

LHS = 1

RHS = 1

Since LHS=RHS, the basis is proven.
INDUCTIVE STEP: Assume that S(k) = k . We need to show that S(k + 1) = (k + 1). Observe that,

S(k + 1) = S(k) + 1, by definition

= k + 1, by inductive hypothesis

Applying the first principle of mathematical induction, we conclude that S(n) = n.

Discrete Mathematics Recursion



Recursive Definitions
Solving Recurrences

Expand-Guess-Verify

Example
Consider the recurrence:

S(1) = 1

S(n) = S(n − 1) + 1, n ≥ 2.

(i) Expand: S(1) = 1, S(2) = S(1) + 1 = 2, S(3) = S(2) + 1 = 3, . . . .

(ii) Guess: S(n) = n.

(iii) Verify: Using Induction!
BASIS: n = 1

LHS = 1

RHS = 1

Since LHS=RHS, the basis is proven.
INDUCTIVE STEP: Assume that S(k) = k . We need to show that S(k + 1) = (k + 1). Observe that,

S(k + 1) = S(k) + 1, by definition

= k + 1, by inductive hypothesis

Applying the first principle of mathematical induction, we conclude that S(n) = n.

Discrete Mathematics Recursion



Recursive Definitions
Solving Recurrences

Expand-Guess-Verify

Example
Consider the recurrence:

S(1) = 1

S(n) = S(n − 1) + 1, n ≥ 2.

(i) Expand: S(1) = 1, S(2) = S(1) + 1 = 2, S(3) = S(2) + 1 = 3, . . . .

(ii) Guess: S(n) = n.

(iii) Verify: Using Induction!
BASIS: n = 1

LHS = 1

RHS = 1

Since LHS=RHS, the basis is proven.
INDUCTIVE STEP: Assume that S(k) = k . We need to show that S(k + 1) = (k + 1). Observe that,

S(k + 1) = S(k) + 1, by definition

= k + 1, by inductive hypothesis

Applying the first principle of mathematical induction, we conclude that S(n) = n.

Discrete Mathematics Recursion



Recursive Definitions
Solving Recurrences

Expand-Guess-Verify

Example
Consider the recurrence:

S(1) = 1

S(n) = S(n − 1) + 1, n ≥ 2.

(i) Expand: S(1) = 1,

S(2) = S(1) + 1 = 2, S(3) = S(2) + 1 = 3, . . . .

(ii) Guess: S(n) = n.

(iii) Verify: Using Induction!
BASIS: n = 1

LHS = 1

RHS = 1

Since LHS=RHS, the basis is proven.
INDUCTIVE STEP: Assume that S(k) = k . We need to show that S(k + 1) = (k + 1). Observe that,

S(k + 1) = S(k) + 1, by definition

= k + 1, by inductive hypothesis

Applying the first principle of mathematical induction, we conclude that S(n) = n.

Discrete Mathematics Recursion



Recursive Definitions
Solving Recurrences

Expand-Guess-Verify

Example
Consider the recurrence:

S(1) = 1

S(n) = S(n − 1) + 1, n ≥ 2.

(i) Expand: S(1) = 1, S(2) =

S(1) + 1 = 2, S(3) = S(2) + 1 = 3, . . . .

(ii) Guess: S(n) = n.

(iii) Verify: Using Induction!
BASIS: n = 1

LHS = 1

RHS = 1

Since LHS=RHS, the basis is proven.
INDUCTIVE STEP: Assume that S(k) = k . We need to show that S(k + 1) = (k + 1). Observe that,

S(k + 1) = S(k) + 1, by definition

= k + 1, by inductive hypothesis

Applying the first principle of mathematical induction, we conclude that S(n) = n.

Discrete Mathematics Recursion



Recursive Definitions
Solving Recurrences

Expand-Guess-Verify

Example
Consider the recurrence:

S(1) = 1

S(n) = S(n − 1) + 1, n ≥ 2.

(i) Expand: S(1) = 1, S(2) = S(1) + 1 = 2,

S(3) = S(2) + 1 = 3, . . . .

(ii) Guess: S(n) = n.

(iii) Verify: Using Induction!
BASIS: n = 1

LHS = 1

RHS = 1

Since LHS=RHS, the basis is proven.
INDUCTIVE STEP: Assume that S(k) = k . We need to show that S(k + 1) = (k + 1). Observe that,

S(k + 1) = S(k) + 1, by definition

= k + 1, by inductive hypothesis

Applying the first principle of mathematical induction, we conclude that S(n) = n.

Discrete Mathematics Recursion



Recursive Definitions
Solving Recurrences

Expand-Guess-Verify

Example
Consider the recurrence:

S(1) = 1

S(n) = S(n − 1) + 1, n ≥ 2.

(i) Expand: S(1) = 1, S(2) = S(1) + 1 = 2, S(3) =

S(2) + 1 = 3, . . . .

(ii) Guess: S(n) = n.

(iii) Verify: Using Induction!
BASIS: n = 1

LHS = 1

RHS = 1

Since LHS=RHS, the basis is proven.
INDUCTIVE STEP: Assume that S(k) = k . We need to show that S(k + 1) = (k + 1). Observe that,

S(k + 1) = S(k) + 1, by definition

= k + 1, by inductive hypothesis

Applying the first principle of mathematical induction, we conclude that S(n) = n.

Discrete Mathematics Recursion



Recursive Definitions
Solving Recurrences

Expand-Guess-Verify

Example
Consider the recurrence:

S(1) = 1

S(n) = S(n − 1) + 1, n ≥ 2.

(i) Expand: S(1) = 1, S(2) = S(1) + 1 = 2, S(3) = S(2) + 1 = 3,

. . . .

(ii) Guess: S(n) = n.

(iii) Verify: Using Induction!
BASIS: n = 1

LHS = 1

RHS = 1

Since LHS=RHS, the basis is proven.
INDUCTIVE STEP: Assume that S(k) = k . We need to show that S(k + 1) = (k + 1). Observe that,

S(k + 1) = S(k) + 1, by definition

= k + 1, by inductive hypothesis

Applying the first principle of mathematical induction, we conclude that S(n) = n.

Discrete Mathematics Recursion



Recursive Definitions
Solving Recurrences

Expand-Guess-Verify

Example
Consider the recurrence:

S(1) = 1

S(n) = S(n − 1) + 1, n ≥ 2.

(i) Expand: S(1) = 1, S(2) = S(1) + 1 = 2, S(3) = S(2) + 1 = 3, . . . .

(ii) Guess: S(n) = n.

(iii) Verify: Using Induction!
BASIS: n = 1

LHS = 1

RHS = 1

Since LHS=RHS, the basis is proven.
INDUCTIVE STEP: Assume that S(k) = k . We need to show that S(k + 1) = (k + 1). Observe that,

S(k + 1) = S(k) + 1, by definition

= k + 1, by inductive hypothesis

Applying the first principle of mathematical induction, we conclude that S(n) = n.

Discrete Mathematics Recursion



Recursive Definitions
Solving Recurrences

Expand-Guess-Verify

Example
Consider the recurrence:

S(1) = 1

S(n) = S(n − 1) + 1, n ≥ 2.

(i) Expand: S(1) = 1, S(2) = S(1) + 1 = 2, S(3) = S(2) + 1 = 3, . . . .

(ii) Guess: S(n) =

n.

(iii) Verify: Using Induction!
BASIS: n = 1

LHS = 1

RHS = 1

Since LHS=RHS, the basis is proven.
INDUCTIVE STEP: Assume that S(k) = k . We need to show that S(k + 1) = (k + 1). Observe that,

S(k + 1) = S(k) + 1, by definition

= k + 1, by inductive hypothesis

Applying the first principle of mathematical induction, we conclude that S(n) = n.

Discrete Mathematics Recursion



Recursive Definitions
Solving Recurrences

Expand-Guess-Verify

Example
Consider the recurrence:

S(1) = 1

S(n) = S(n − 1) + 1, n ≥ 2.

(i) Expand: S(1) = 1, S(2) = S(1) + 1 = 2, S(3) = S(2) + 1 = 3, . . . .

(ii) Guess: S(n) = n.

(iii) Verify: Using Induction!
BASIS: n = 1

LHS = 1

RHS = 1

Since LHS=RHS, the basis is proven.
INDUCTIVE STEP: Assume that S(k) = k . We need to show that S(k + 1) = (k + 1). Observe that,

S(k + 1) = S(k) + 1, by definition

= k + 1, by inductive hypothesis

Applying the first principle of mathematical induction, we conclude that S(n) = n.

Discrete Mathematics Recursion



Recursive Definitions
Solving Recurrences

Expand-Guess-Verify

Example
Consider the recurrence:

S(1) = 1

S(n) = S(n − 1) + 1, n ≥ 2.

(i) Expand: S(1) = 1, S(2) = S(1) + 1 = 2, S(3) = S(2) + 1 = 3, . . . .

(ii) Guess: S(n) = n.

(iii) Verify:

Using Induction!
BASIS: n = 1

LHS = 1

RHS = 1

Since LHS=RHS, the basis is proven.
INDUCTIVE STEP: Assume that S(k) = k . We need to show that S(k + 1) = (k + 1). Observe that,

S(k + 1) = S(k) + 1, by definition

= k + 1, by inductive hypothesis

Applying the first principle of mathematical induction, we conclude that S(n) = n.

Discrete Mathematics Recursion



Recursive Definitions
Solving Recurrences

Expand-Guess-Verify

Example
Consider the recurrence:

S(1) = 1

S(n) = S(n − 1) + 1, n ≥ 2.

(i) Expand: S(1) = 1, S(2) = S(1) + 1 = 2, S(3) = S(2) + 1 = 3, . . . .

(ii) Guess: S(n) = n.

(iii) Verify: Using Induction!

BASIS: n = 1

LHS = 1

RHS = 1

Since LHS=RHS, the basis is proven.
INDUCTIVE STEP: Assume that S(k) = k . We need to show that S(k + 1) = (k + 1). Observe that,

S(k + 1) = S(k) + 1, by definition

= k + 1, by inductive hypothesis

Applying the first principle of mathematical induction, we conclude that S(n) = n.

Discrete Mathematics Recursion



Recursive Definitions
Solving Recurrences

Expand-Guess-Verify

Example
Consider the recurrence:

S(1) = 1

S(n) = S(n − 1) + 1, n ≥ 2.

(i) Expand: S(1) = 1, S(2) = S(1) + 1 = 2, S(3) = S(2) + 1 = 3, . . . .

(ii) Guess: S(n) = n.

(iii) Verify: Using Induction!
BASIS: n = 1

LHS = 1

RHS = 1

Since LHS=RHS, the basis is proven.
INDUCTIVE STEP: Assume that S(k) = k . We need to show that S(k + 1) = (k + 1). Observe that,

S(k + 1) = S(k) + 1, by definition

= k + 1, by inductive hypothesis

Applying the first principle of mathematical induction, we conclude that S(n) = n.

Discrete Mathematics Recursion



Recursive Definitions
Solving Recurrences

Expand-Guess-Verify

Example
Consider the recurrence:

S(1) = 1

S(n) = S(n − 1) + 1, n ≥ 2.

(i) Expand: S(1) = 1, S(2) = S(1) + 1 = 2, S(3) = S(2) + 1 = 3, . . . .

(ii) Guess: S(n) = n.

(iii) Verify: Using Induction!
BASIS: n = 1

LHS =

1

RHS = 1

Since LHS=RHS, the basis is proven.
INDUCTIVE STEP: Assume that S(k) = k . We need to show that S(k + 1) = (k + 1). Observe that,

S(k + 1) = S(k) + 1, by definition

= k + 1, by inductive hypothesis

Applying the first principle of mathematical induction, we conclude that S(n) = n.

Discrete Mathematics Recursion



Recursive Definitions
Solving Recurrences

Expand-Guess-Verify

Example
Consider the recurrence:

S(1) = 1

S(n) = S(n − 1) + 1, n ≥ 2.

(i) Expand: S(1) = 1, S(2) = S(1) + 1 = 2, S(3) = S(2) + 1 = 3, . . . .

(ii) Guess: S(n) = n.

(iii) Verify: Using Induction!
BASIS: n = 1

LHS = 1

RHS = 1

Since LHS=RHS, the basis is proven.
INDUCTIVE STEP: Assume that S(k) = k . We need to show that S(k + 1) = (k + 1). Observe that,

S(k + 1) = S(k) + 1, by definition

= k + 1, by inductive hypothesis

Applying the first principle of mathematical induction, we conclude that S(n) = n.

Discrete Mathematics Recursion



Recursive Definitions
Solving Recurrences

Expand-Guess-Verify

Example
Consider the recurrence:

S(1) = 1

S(n) = S(n − 1) + 1, n ≥ 2.

(i) Expand: S(1) = 1, S(2) = S(1) + 1 = 2, S(3) = S(2) + 1 = 3, . . . .

(ii) Guess: S(n) = n.

(iii) Verify: Using Induction!
BASIS: n = 1

LHS = 1

RHS =

1

Since LHS=RHS, the basis is proven.
INDUCTIVE STEP: Assume that S(k) = k . We need to show that S(k + 1) = (k + 1). Observe that,

S(k + 1) = S(k) + 1, by definition

= k + 1, by inductive hypothesis

Applying the first principle of mathematical induction, we conclude that S(n) = n.

Discrete Mathematics Recursion



Recursive Definitions
Solving Recurrences

Expand-Guess-Verify

Example
Consider the recurrence:

S(1) = 1

S(n) = S(n − 1) + 1, n ≥ 2.

(i) Expand: S(1) = 1, S(2) = S(1) + 1 = 2, S(3) = S(2) + 1 = 3, . . . .

(ii) Guess: S(n) = n.

(iii) Verify: Using Induction!
BASIS: n = 1

LHS = 1

RHS = 1

Since LHS=RHS, the basis is proven.
INDUCTIVE STEP: Assume that S(k) = k . We need to show that S(k + 1) = (k + 1). Observe that,

S(k + 1) = S(k) + 1, by definition

= k + 1, by inductive hypothesis

Applying the first principle of mathematical induction, we conclude that S(n) = n.

Discrete Mathematics Recursion



Recursive Definitions
Solving Recurrences

Expand-Guess-Verify

Example
Consider the recurrence:

S(1) = 1

S(n) = S(n − 1) + 1, n ≥ 2.

(i) Expand: S(1) = 1, S(2) = S(1) + 1 = 2, S(3) = S(2) + 1 = 3, . . . .

(ii) Guess: S(n) = n.

(iii) Verify: Using Induction!
BASIS: n = 1

LHS = 1

RHS = 1

Since LHS=RHS, the basis is proven.

INDUCTIVE STEP: Assume that S(k) = k . We need to show that S(k + 1) = (k + 1). Observe that,

S(k + 1) = S(k) + 1, by definition

= k + 1, by inductive hypothesis

Applying the first principle of mathematical induction, we conclude that S(n) = n.

Discrete Mathematics Recursion



Recursive Definitions
Solving Recurrences

Expand-Guess-Verify

Example
Consider the recurrence:

S(1) = 1

S(n) = S(n − 1) + 1, n ≥ 2.

(i) Expand: S(1) = 1, S(2) = S(1) + 1 = 2, S(3) = S(2) + 1 = 3, . . . .

(ii) Guess: S(n) = n.

(iii) Verify: Using Induction!
BASIS: n = 1

LHS = 1

RHS = 1

Since LHS=RHS, the basis is proven.
INDUCTIVE STEP: Assume that S(k) = k .

We need to show that S(k + 1) = (k + 1). Observe that,

S(k + 1) = S(k) + 1, by definition

= k + 1, by inductive hypothesis

Applying the first principle of mathematical induction, we conclude that S(n) = n.

Discrete Mathematics Recursion



Recursive Definitions
Solving Recurrences

Expand-Guess-Verify

Example
Consider the recurrence:

S(1) = 1

S(n) = S(n − 1) + 1, n ≥ 2.

(i) Expand: S(1) = 1, S(2) = S(1) + 1 = 2, S(3) = S(2) + 1 = 3, . . . .
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S(k + 1) = 2 · S(k), by definition

= 2 · 2k
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= 2k+1
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(iii) Verify: Using Induction!
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EGV (contd.)

Example

Solve the recurrence:

T (1) = 1

T (n) = T (n − 1) + 3, n ≥ 2.

(i) Expand: T (1) = 1, T (2) = T (1) + 3 = 4, T (3) = T (2) + 3 = 7, . . .

(ii) Guess: T (n) = 3 · n − 2.

(iii) Verify: Somebody from class!
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Recursive Definitions
Solving Recurrences

Formula approach

Definition

A general linear recurrence has the form:

S(n) = f1(n) · S(n − 1) + f2(n) · S(n − 2) + . . . fk (n) · S(n − k) + g(n).

Note

The above formula is called linear, because the S() terms occur only in the first power.

It is called first-order, if S(n) depends only on S(n − 1).
For example, S(n) = c · S(n − 1) + g(n).

The recurrence is called homogeneous, if g(n) = 0, for all n.
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Recursive Definitions
Solving Recurrences

Linear first-order recurrence with constant coefficients

Formula for Linear first-order recurrence

S(1) = k0

S(n) = c · S(n − 1) + g(n)

⇒ S(n) = cn−1 · k0 +
∑n

i=2 cn−i · g(i).
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Recursive Definitions
Solving Recurrences

Example

Example

S(1) = 2

S(n) = 2 · S(n − 1), n ≥ 2.

As per the formula, k0 = 2, g(n) = 0 and c = 2. Thus,

S(n) = 2n−1 · 2 +
n∑

i=2

2n−i · 0

= 2n.
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Example

Solve the recurrence:

S(1) = 4

S(n) = 2 · S(n − 1) + 3, n ≥ 2.

As per the formula, k0 = 4, g(n) = 3 and c = 2. Thus,

S(n) = 2n−1 · 4 +
n∑

i=2

2n−i · 3

= 2n+1 + 3 ·
n∑

i=2

2n−i

= 2n+1 + 3 · [2n−2 + 2n−3 + . . .+ 20]

= 2n+1 + 3 · [2n−1 − 1] (Recall Scrimmage II.)
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Solving Recurrences

Second Order homogeneous Linear Recurrence with constant
coefficients

Formula

(i) Form: S(n) = c1 · S(n − 1) + c2 · S(n − 2), subject to some initial conditions
(usually S(1) and S(2)).

(ii) Solve the characteristic equation: t2 − c1 · t − c2 = 0.
Let r1 and r2 denote the roots.
(a) If r1 6= r2, solve

p + q = S(1)

p · r1 + q · r2 = S(2)

Then, S(n) = p · rn−1
1 + q · rn−1

2 .
(b) If r1 = r2 = r , solve

p = S(1)

(p + q) · r = S(2)

Then, S(n) = p · rn−1 + q · (n − 1) · rn−1.
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Recursive Definitions
Solving Recurrences

Examples of second order recurrences

Example

Solve the recurrence relation

T (1) = 5

T (2) = 13

T (n) = 6 · T (n − 1)− 5 · T (n − 2), n ≥ 3.

Solution:
(i) c1 = 6, c2 = −5. Characteristic equation: t2 − 6 · t + 5 = 0.

Solution is: r1 = 1, r2 = 5.

(ii) Solve the equations:

p + q = T (1) = 5

p · 1 + q · 5 = T (2) = 13

We get p = 3 and q = 2.

(iii) Accordingly, the solution is T (n) = 3 · 1n−1 + 2 · 5n−1 = 3 + 2 · 5n−1.
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Recursive Definitions
Solving Recurrences

Divide and Conquer Recurrences

Formula for Divide and Conquer Recurrence

S(1) = k0

S(n) = c · S(
n
2
) + g(n), n ≥ 2, n = 2m.

⇒ S(n) = c log n · k0 +
∑log n

i=1 c log n−i · g(2i ). (All logarithms are to base 2).

Note that c log n−i in the expression above stands for clog n

ci .
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C(1) = 1

C(n) = 1 + C(
n
2
), n ≥ 2, n = 2m.

Note that k0 = 1, c = 1 and g(i) = 1, ∀i . Hence, g(2i ) = 1, ∀i .
As per the formula,

C(n) = 1log n · 1 +

log n∑
i=1

1log n−i · (1)

= 1 + (log n) · 1
= 1 + log n.
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Solve the recurrence:

T (1) = 3

T (n) = 2 · T (
n

2
) + 2 · n, n ≥ 2, n = 2m

.

Note that k0 = 3, c = 2 and g(i) = 2 · i, ∀i . It follows that g(2i ) = 2 · 2i , ∀i .

As per the formula,

T (n) = 2log n · 3 +

log n∑
i=1

2log n−i · 2 · (2i )

= 3 · 2log n +

log n∑
i=1

2log n+1

= 3 · n + 2log n+1 · (log n), since (aloga n = n, a 6= 0)

= 3 · n + 2log n · 2 · log n

= 3 · n + n · 2 · log n, since (aloga n = n, a 6= 0)

= 3 · n + 2 · n · log n.
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Recursive Definitions
Solving Recurrences

Analysis of Algorithms

Function MAX(a, b)
1: if (a ≥ b) then
2: return(a).
3: else
4: return(b).
5: end if

Function FIND-MAX(A, n)
1: if (n = 1) then
2: return(A[1]).
3: else
4: return(MAX(A[n], FIND-MAX(A, n − 1))).
5: end if

Note

How many element-to-element comparisons are performed by the FIND-MAX()
algorithm on an array of size n?
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