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Fundamental Notions

Definition

Given a set S, a binary relation on a set S is any subset of S × S, , i.e., any set of
ordered pairs of elements of S.

Let ρ be some relation defined on S × S. We typically use x ρ y to mean (x , y) ∈ ρ.

Example

Let S = {1, 2}. S × S = {(1, 1), (1, 2), (2, 1), (2, 2)}.
Let ρ be a relation on S × S, defined as follows: x ρ y ↔ x + y is odd.

Then, ρ = {(1, 2), (2, 1)}.

Definition

Given any two sets S and T , a binary relation on S × T , (or a binary relation from S to
T ) is any subset of S × T .

Given n sets S1,S2, . . . ,Sn, an n-ary relation on S1 × S2 . . .Sn is any subset of
S1 × S2 . . .Sn.
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Examples

Membership

Let ρ be a relation on N ×N defined as:

x ρ y ↔ x = y + 1.

Enumerate the elements of ρ.

Solution: {(1, 0), (2, 1), (3, 2), . . .}. �

Note

A binary relation on A× B is a pairing of elements in A, with the elements in B.
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One classification

Definition

Let ρ be a binary relation defined on S × T .

Observe that each element of ρ has the form (s1, s2), where s1 ∈ S and s2 ∈ T .

ρ is said to be:

(i) one-one, if each first component and each second component appear exactly
once, e.g., ρ = {(1, 2), (2, 1)}.

(ii) one-many, if some first component appears more than once, e.g.,
ρ = {(1, 1), (1, 2)}.

(iii) many-one, if some second component, appears more than once, e.g.,
ρ = {(1, 1), (2, 1)}.

(iv) many-many, if some first component appears more than once and some second
component appears more than once, e.g., ρ = {(1, 1), (2, 1), (1, 3)}.
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(i) one-one, if each first component and each second component appear exactly
once, e.g., ρ = {(1, 2), (2, 1)}.

(ii) one-many, if some first component appears more than once, e.g.,
ρ = {(1, 1), (1, 2)}.

(iii) many-one, if some second component, appears more than once, e.g.,
ρ = {(1, 1), (2, 1)}.

(iv) many-many, if some first component appears more than once and some second
component appears more than once, e.g., ρ = {(1, 1), (2, 1), (1, 3)}.
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Binary and n-ary relations
Classification of binary relations
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Set Properties

Set properties

Relations are sets; therefore, all set identities concerning union and intersection
(commutativity, associativity, distributivity, etc.) also apply to relations.

In particular, ρ ∪ ρ′ = S2 and ρ ∩ ρ′ = ∅.

Additional Properties

A relation ρ on S × S is said to be:

(i) Reflexive, if (∀x)(x ∈ S → (x , x) ∈ ρ).
(ii) Symmetric, if (∀x)(∀y)(x ∈ S ∧ y ∈ S ∧ (x , y) ∈ ρ→ (y , x) ∈ ρ).
(iii) Transitive, if

(∀x)(∀y)(∀z)(x ∈ S ∧ y ∈ S ∧ z ∈ S ∧ (x , y) ∈ ρ ∧ (y , z) ∈ ρ→ (x , z) ∈ ρ).
(iv) Antisymmetric, if (∀x)(∀y)(x ∈ S ∧ y ∈ S ∧ (x , y) ∈ ρ ∧ (y , x) ∈ ρ→ x = y).
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Additional Properties

A relation ρ on S × S is said to be:

(i) Reflexive, if (∀x)(x ∈ S → (x , x) ∈ ρ).
(ii) Symmetric, if (∀x)(∀y)(x ∈ S ∧ y ∈ S ∧ (x , y) ∈ ρ→ (y , x) ∈ ρ).
(iii) Transitive, if

(∀x)(∀y)(∀z)(x ∈ S ∧ y ∈ S ∧ z ∈ S ∧ (x , y) ∈ ρ ∧ (y , z) ∈ ρ→ (x , z) ∈ ρ).
(iv) Antisymmetric, if

(∀x)(∀y)(x ∈ S ∧ y ∈ S ∧ (x , y) ∈ ρ ∧ (y , x) ∈ ρ→ x = y).
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Relations on N ×N

(i) = is reflexive, symmetric, antisymmetric, and transitive.

(ii) < is transitive but not reflexive or symmetric. Is it antisymmetric?

(iii) ≤ is reflexive, transitive and antisymmetric. Is it symmetric?

Relations on the power set P(S) of a set S

(i) The relation ⊆ is reflexive, transitive and antisymmetric. Is it symmetric?
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Closure of a relation

Definition

A binary relation ρ∗ on a set S, is the closure of a relation ρ on S with respect to a
property P, if

(i) ρ∗ has property P,

(ii) ρ ⊆ ρ∗,
(iii) ρ∗ is the subset of any other relation on S that includes ρ and has property P.

Example

Let S = {1, 2, 3} and ρ = {(1, 1), (1, 2), (1, 3), (3, 1), (2, 3)}.
(i) Is ρ reflexive? The reflexive closure is: ρ ∪ {(2, 2), (3, 3)}.
(ii) Is ρ symmetric? The symmetric closure is: ρ ∪ {(2, 1), (3, 2)}.
(iii) Is ρ transitive? The transitive closure is: ρ ∪ {(3, 2), (3, 3), (2, 1), (2, 2)}.
(iv) Compute the reflexive and transitive closure of ρ.

ρ∗ = ρ ∪ {(3, 2), (3, 3), (2, 1), (2, 2)}.
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Partial Orderings

Definition

A binary relation on a set S that is reflexive, antisymmetric and transitive is called a
partial ordering on S.

Example

(i) On N , x ρ y ↔ x ≤ y .

(ii) On P(N ), A ρB ↔ A ⊆ B.

(iii) On {0, 1}, x ρ y ↔ x = y2.

Note

If ρ is a partial ordering on S, (S, ρ) is called a partially ordered set (or poset).

(S,≤) will be used to denote an arbitrary partially ordered set.

Relations Relations and Functions



Relations

Binary and n-ary relations
Classification of binary relations
Properties of relations
Closures of relations
Partial Orderings
Equivalence Relations

Partial Orderings

Definition

A binary relation on a set S that is reflexive, antisymmetric and transitive is called a
partial ordering on S.

Example

(i) On N , x ρ y ↔ x ≤ y .

(ii) On P(N ), A ρB ↔ A ⊆ B.

(iii) On {0, 1}, x ρ y ↔ x = y2.

Note

If ρ is a partial ordering on S, (S, ρ) is called a partially ordered set (or poset).

(S,≤) will be used to denote an arbitrary partially ordered set.

Relations Relations and Functions



Relations

Binary and n-ary relations
Classification of binary relations
Properties of relations
Closures of relations
Partial Orderings
Equivalence Relations

Partial Orderings

Definition

A binary relation on a set S that is reflexive, antisymmetric and transitive is called a
partial ordering on S.

Example

(i) On N , x ρ y ↔ x ≤ y .

(ii) On P(N ), A ρB ↔ A ⊆ B.

(iii) On {0, 1}, x ρ y ↔ x = y2.

Note

If ρ is a partial ordering on S, (S, ρ) is called a partially ordered set (or poset).

(S,≤) will be used to denote an arbitrary partially ordered set.

Relations Relations and Functions



Relations

Binary and n-ary relations
Classification of binary relations
Properties of relations
Closures of relations
Partial Orderings
Equivalence Relations

Partial Orderings

Definition

A binary relation on a set S that is reflexive, antisymmetric and transitive is called a
partial ordering on S.

Example

(i) On N , x ρ y ↔ x ≤ y .

(ii) On P(N ), A ρB ↔ A ⊆ B.

(iii) On {0, 1}, x ρ y ↔ x = y2.

Note

If ρ is a partial ordering on S, (S, ρ) is called a partially ordered set (or poset).

(S,≤) will be used to denote an arbitrary partially ordered set.

Relations Relations and Functions



Relations

Binary and n-ary relations
Classification of binary relations
Properties of relations
Closures of relations
Partial Orderings
Equivalence Relations

Partial Orderings

Definition

A binary relation on a set S that is reflexive, antisymmetric and transitive is called a
partial ordering on S.

Example

(i) On N , x ρ y ↔ x ≤ y .

(ii) On P(N ), A ρB ↔ A ⊆ B.

(iii) On {0, 1}, x ρ y ↔ x = y2.

Note

If ρ is a partial ordering on S, (S, ρ) is called a partially ordered set (or poset).

(S,≤) will be used to denote an arbitrary partially ordered set.

Relations Relations and Functions



Relations

Binary and n-ary relations
Classification of binary relations
Properties of relations
Closures of relations
Partial Orderings
Equivalence Relations

Partial Orderings

Definition

A binary relation on a set S that is reflexive, antisymmetric and transitive is called a
partial ordering on S.

Example

(i) On N , x ρ y ↔ x ≤ y .

(ii) On P(N ), A ρB ↔ A ⊆ B.

(iii) On {0, 1}, x ρ y ↔ x = y2.

Note

If ρ is a partial ordering on S, (S, ρ) is called a partially ordered set (or poset).

(S,≤) will be used to denote an arbitrary partially ordered set.

Relations Relations and Functions



Relations

Binary and n-ary relations
Classification of binary relations
Properties of relations
Closures of relations
Partial Orderings
Equivalence Relations

Partial Orderings

Definition

A binary relation on a set S that is reflexive, antisymmetric and transitive is called a
partial ordering on S.

Example

(i) On N , x ρ y ↔ x ≤ y .

(ii) On P(N ), A ρB ↔ A ⊆ B.

(iii) On {0, 1}, x ρ y ↔ x = y2.

Note

If ρ is a partial ordering on S, (S, ρ) is called a partially ordered set (or poset).

(S,≤) will be used to denote an arbitrary partially ordered set.

Relations Relations and Functions



Relations

Binary and n-ary relations
Classification of binary relations
Properties of relations
Closures of relations
Partial Orderings
Equivalence Relations

Partial Orderings

Definition

A binary relation on a set S that is reflexive, antisymmetric and transitive is called a
partial ordering on S.

Example

(i) On N , x ρ y ↔ x ≤ y .

(ii) On P(N ), A ρB ↔ A ⊆ B.

(iii) On {0, 1}, x ρ y ↔ x = y2.

Note

If ρ is a partial ordering on S, (S, ρ) is called a partially ordered set (or poset).

(S,≤) will be used to denote an arbitrary partially ordered set.

Relations Relations and Functions



Relations

Binary and n-ary relations
Classification of binary relations
Properties of relations
Closures of relations
Partial Orderings
Equivalence Relations

Partial Orderings

Definition

A binary relation on a set S that is reflexive, antisymmetric and transitive is called a
partial ordering on S.

Example

(i) On N , x ρ y ↔ x ≤ y .

(ii) On P(N ), A ρB ↔ A ⊆ B.

(iii) On {0, 1}, x ρ y ↔ x = y2.

Note

If ρ is a partial ordering on S, (S, ρ) is called a partially ordered set (or poset).

(S,≤) will be used to denote an arbitrary partially ordered set.

Relations Relations and Functions



Relations

Binary and n-ary relations
Classification of binary relations
Properties of relations
Closures of relations
Partial Orderings
Equivalence Relations

Partial Orderings

Definition

A binary relation on a set S that is reflexive, antisymmetric and transitive is called a
partial ordering on S.

Example

(i) On N , x ρ y ↔ x ≤ y .

(ii) On P(N ), A ρB ↔ A ⊆ B.

(iii) On {0, 1}, x ρ y ↔ x = y2.

Note

If ρ is a partial ordering on S, (S, ρ) is called a partially ordered set (or poset).

(S,≤) will be used to denote an arbitrary partially ordered set.

Relations Relations and Functions



Relations

Binary and n-ary relations
Classification of binary relations
Properties of relations
Closures of relations
Partial Orderings
Equivalence Relations

Partial Orderings

Definition

A binary relation on a set S that is reflexive, antisymmetric and transitive is called a
partial ordering on S.

Example

(i) On N , x ρ y ↔ x ≤ y .

(ii) On P(N ), A ρB ↔ A ⊆ B.

(iii) On {0, 1}, x ρ y ↔ x = y2.

Note

If ρ is a partial ordering on S, (S, ρ) is called a partially ordered set (or poset).

(S,≤) will be used to denote an arbitrary partially ordered set.

Relations Relations and Functions



Relations

Binary and n-ary relations
Classification of binary relations
Properties of relations
Closures of relations
Partial Orderings
Equivalence Relations

Partial Orderings (contd.)

Definition

Let (S,≤) denote some poset.

Let x and y be two elements in S, such that x ≤ y , but x 6= y (written as x < y ).

x is said to be a predecessor of y and y is said to be a successor of x .

If there is no z ∈ S, such that x < z < y , then x is said to be an immediate
predecessor of y .

Note

If S is finite, the poset (S,≤) can be represented by a Hasse diagram, in which
elements are represented by vertices and the property “is-related-to” by a straight line.
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Example

Example

Consider the relation x | y (x divides y ) on the set S = {1, 2, 3, 6, 12, 18}.
(i) Enumerate the ordered pairs of the relation.

Solution: {(1, 2), (1, 3), (1, 6), (1, 12), (1, 18), (2, 6), (2, 12), (2, 18), (3, 6),
(3, 12), (3, 18), (6, 12), (6, 18), (1, 1), (2, 2), (3, 3), (6, 6), (12, 12), (18, 18)}.

(ii) Write all the predecessors of 18.

Solution: {1, 2, 3, 6}.
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Additional Issues

Definition

If every two elements of the ground set are related to each other, the partial ordering is
called a total ordering or chain. e.g., ≤ on N .

Definition

An element x ∈ S is said to be minimal in the poset (S,≤), if there is no element y
such that y < x .

Definition

An element x ∈ S is said to be the least element in the poset (S,≤), if for every
element y ∈ S, x ≤ y .
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Uniqueness of the least element of a poset

Theorem

If a poset (S,≤) has a least element, then this element is unique and minimal.

Every minimal element is not necessarily a least element.

Proof

1 Assume the contrary and let there exist two distinct least elements x and y in the
poset (S,≤).

2 Since x is a least element, we must have x ≤ y .
3 Likewise, since y is a least element, we must have y ≤ x .
4 However, ≤ is anti-symmetric. Thus x ≤ y and y ≤ x implies x = y .
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Equivalence Relations

Definition

A binary relation on a set S that is reflexive, symmetric and transitive is said to be an
equivalence relation.

Example

(i) On any set S, x ρ y ↔ x = y .

(ii) On N , x ρ y ↔ x + y is even.

Definition

A partition of a set S is a collection of nonempty disjoint sets whose union is S.

Note

We use [x ] to denote the set {y | y ∈ S ∧ x ρ y}.
[x ] is said to be the equivalence class of x.
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Partition theorem

Theorem

An equivalence relation ρ on a set S determines a partition of S and every partition of a
set S determines an equivalence relation on S.

Note

The proof is somewhat tedious but the main idea is that if there is an element common
to two distinct equivalence classes, then these classes coincide.
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Partitions as equivalences

Lemma

Every partition determines an equivalence relation.

Proof.

Define ρ as follows: x ρ y , if x and y are in the same partition.

Clearly, ρ is reflexive, symmetric and transitive, i.e., an equivalence relation.
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Equivalences as partitions

Lemma

Every equivalence relation is a partition.

Proof.

Let S denote a set and let ρ be an equivalence relation on S.

We need to show that the equivalence classes created by ρ are disjoint and
furthermore, their union is S.

Let U be the union of all the equivalence classes created by ρ.

Is U ⊆ S?

Let x ∈ U. x must be in some equivalence class R. (Why?)

However, R is a subset of S!

Therefore, x ∈ S. In other words, U ⊆ S.

Is S ⊆ U? Any element x ∈ S belongs to the equivalence class [x ] and hence is in U.

It follows that S ⊆ U.

We have thus shown the union of the equivalence classes is S.
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Proof (contd.)

Proof.

We now show that distinct equivalent classes must be disjoint.

Let [x ] and [z] denote two distinct equivalence classes.

We shall show that [x ] ∩ [z] 6= ∅ → ([x ] = [z]).

Let y ∈ [x ] ∩ [z].

Since, y ∈ [x ], we must have x ρ y ; likewise, since y ∈ [z], we must have z ρ y .

Since ρ is symmetric, we must have y ρ z. Since ρ is transitive, it follows that x ρ z.

We can now establish that [z] ⊆ [x ] and vice versa.

Let q ∈ [z] (q is not necessarily in [x ] ∩ [z].)

It follows that z ρ q. From the previous discussion, we have, x ρ z.

Since ρ is transitive, we must have, x ρ q, i.e., q ∈ [x ].

Since q was chosen arbitrarily, it follows that [z] ⊆ [x ].

In similar fashion, we can show that [x ] ⊆ [z].

We have thus shown that every equivalence relation on S, induces a collection of
disjoint sets, whose union is S, i.e., a partition on S.
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Partition Examples

Example

How does the equivalence relation x ρ y ↔ x + y is even partition N?

Solution: All odd numbers are in one partition and all even numbers are in the other
partition!
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One more example

Definition

For integers x and y and any positive integer n,

x ≡ y mod n, if x − y is an integral multiple of n

Exercise

Enumerate the equivalence classes of congruence modulo 4 on Z.

Solution

[0] = {. . . ,−8,−4, 0, 4, 8, . . .}
[1] = {. . . ,−7,−3, 1, 5, . . .}
[2] = {. . . ,−6,−2, 2, 6, . . .}
[3] = {. . . ,−5,−1, 3, 7, . . .}
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