

Set Theory and Countability

K. Subramani¹

¹Lane Department of Computer Science and Electrical Engineering West Virginia University

March 10,15 2016



Sets of Sets

Operations on elements of a Set

- 2 Relationships between sets
- Sets of Sets
- Operations on elements of a Set
- Operations on Sets

- 2 Relationships between sets
- Sets of Sets
- Operations on elements of a Set
- Operations on Sets

Set Identities

- 2 Relationships between sets
- Sets of Sets
- Operations on elements of a Set
- Operations on Sets
- Set Identities

Countability

Definition and Notation Relationships between sets Sets of Sets Operations on elements of a Set **Operations on Sets** Set Identities

Set Fundamentals

Relationships between sets Sets of Sets Operations on elements of a Set Operations on Sets Set Identities Countability

Set Fundamentals

Definition

Relationships between sets Sets of Sets Operations on elements of a Set Operations on Sets Set Identities Countability

Set Fundamentals

Definition

A set is an unordered collection of objects.

Relationships between sets Sets of Sets Operations on elements of a Set Operations on Sets Set Identities Countability

Set Fundamentals

Definition

A set is an unordered collection of objects.

Note

Fundamentals Sets and Combinatorics

Relationships between sets Sets of Sets Operations on elements of a Set Operations on Sets Set Identities Countability

Set Fundamentals

Definition

A set is an unordered collection of objects.

Note

Not an adequate definition.

Relationships between sets Sets of Sets Operations on elements of a Set Operations on Sets Set Identities Countability

Set Fundamentals

Definition

A set is an unordered collection of objects.

Note

Not an adequate definition. Barber's paradox.

Relationships between sets Sets of Sets Operations on elements of a Set Operations on Sets Set Identities Countability

Set Fundamentals

Definition

A set is an unordered collection of objects.

Note

Not an adequate definition. Barber's paradox.

Fundamental Question in Set theory

Relationships between sets Sets of Sets Operations on elements of a Set Operations on Sets Set Identities Countability

Set Fundamentals

Definition

A set is an unordered collection of objects.

Note

Not an adequate definition. Barber's paradox.

Fundamental Question in Set theory

The fundamental question in set theory is membership,

Relationships between sets Sets of Sets Operations on elements of a Set Operations on Sets Set Identities Countability

Set Fundamentals

Definition

A set is an unordered collection of objects.

Note

Not an adequate definition. Barber's paradox.

Fundamental Question in Set theory

The fundamental question in set theory is membership,

i.e., does object x belong to set A.

Relationships between sets Sets of Sets Operations on elements of a Set Operations on Sets Set Identities Countability

Set Fundamentals

Definition

A set is an unordered collection of objects.

Note

Not an adequate definition. Barber's paradox.

Fundamental Question in Set theory

The fundamental question in set theory is membership,

i.e., does object x belong to set A.

This is denoted as: does $x \in A$?

Relationships between sets Sets of Sets Operations on elements of a Set Operations on Sets Set Identities Countability

Set Fundamentals

Definition

A set is an unordered collection of objects.

Note

Not an adequate definition. Barber's paradox.

Fundamental Question in Set theory

The fundamental question in set theory is membership,

i.e., does object x belong to set A.

This is denoted as: does $x \in A$?

Definition

Relationships between sets Sets of Sets Operations on elements of a Set Operations on Sets Set Identities Countability

Set Fundamentals

Definition

A set is an unordered collection of objects.

Note

Not an adequate definition. Barber's paradox.

Fundamental Question in Set theory

The fundamental question in set theory is membership,

i.e., does object x belong to set A.

This is denoted as: does $x \in A$?

Definition

Two sets are equal, if they contain the same elements.

Relationships between sets Sets of Sets Operations on elements of a Set Operations on Sets Set Identifies Countability

Set Fundamentals

Definition

A set is an unordered collection of objects.

Note

Not an adequate definition. Barber's paradox.

Fundamental Question in Set theory

The fundamental question in set theory is membership,

i.e., does object x belong to set A.

This is denoted as: does $x \in A$?

Definition

Two sets are equal, if they contain the same elements. Logically,

Relationships between sets Sets of Sets Operations on elements of a Set Operations on Sets Set Identifies Countability

Set Fundamentals

Definition

A set is an unordered collection of objects.

Note

Not an adequate definition. Barber's paradox.

Fundamental Question in Set theory

The fundamental question in set theory is membership,

i.e., does object x belong to set A.

This is denoted as: does $x \in A$?

Definition

Two sets are equal, if they contain the same elements. Logically,

A = B

Relationships between sets Sets of Sets Operations on elements of a Set Operations on Sets Set Identifies Countability

Set Fundamentals

Definition

A set is an unordered collection of objects.

Note

Not an adequate definition. Barber's paradox.

Fundamental Question in Set theory

The fundamental question in set theory is membership,

i.e., does object x belong to set A.

This is denoted as: does $x \in A$?

Definition

Two sets are equal, if they contain the same elements. Logically,

$$A = B \Leftrightarrow (\forall x)[x \in A \leftrightarrow x \in B].$$

Relationships between sets Sets of Sets Operations on elements of a Set Operations on Sets Set Identities Countability

Fundamentals (contd.)

Representing Sets

Fundamentals Sets and Combinatorics

Relationships between sets Sets of Sets Operations on elements of a Set Operations on Sets Set Identities Countability

Fundamentals (contd.)

Representing Sets

Relationships between sets Sets of Sets Operations on elements of a Set Operations on Sets Set Identities Countability

Fundamentals (contd.)

Representing Sets

Three techniques:

(i) The extensional method -

Relationships between sets Sets of Sets Operations on elements of a Set Operations on Sets Set Identities Countability

Fundamentals (contd.)

Representing Sets

Three techniques:

(i) The extensional method - Explicitly enumerate all the elements of the set.

Relationships between sets Sets of Sets Operations on elements of a Set Operations on Sets Set Identities Countability

Fundamentals (contd.)

Representing Sets

Three techniques:

(i) The extensional method - Explicitly enumerate all the elements of the set. For example, $A = \{1, 5, 7\}$,

Fundamentals Sets and Combinatoric

Relationships between sets Sets of Sets Operations on elements of a Set Operations on Sets Set Identifies Countability

Fundamentals (contd.)

Representing Sets

Three techniques:

(i) The extensional method - Explicitly enumerate all the elements of the set. For example, $A = \{1, 5, 7\}, B = \{1, 2, 3, ..., 100\},$

Relationships between sets Sets of Sets Operations on elements of a Set Operations on Sets Set Identifies Countability

Fundamentals (contd.)

Representing Sets

Three techniques:

(i) The extensional method - Explicitly enumerate all the elements of the set.

For example, $A = \{1, 5, 7\}$, $B = \{1, 2, 3, ..., 100\}$, $C = \{red, white, blue\}$.

Relationships between sets Sets of Sets Operations on elements of a Set Operations on Sets Set Identifies Countability

Fundamentals (contd.)

Representing Sets

- (i) The extensional method Explicitly enumerate all the elements of the set. For example, $A = \{1, 5, 7\}, B = \{1, 2, 3, ..., 100\}, C = \{red, white, blue\}.$
- (ii) The intensional method -

Relationships between sets Sets of Sets Operations on elements of a Set Operations on Sets Set Identifies Countability

Fundamentals (contd.)

Representing Sets

- (i) The extensional method Explicitly enumerate all the elements of the set. For example, $A = \{1, 5, 7\}, B = \{1, 2, 3, ..., 100\}, C = \{red, white, blue\}.$
- (ii) The intensional method Specify a property P that characterizes the set elements.

Relationships between sets Sets of Sets Operations on elements of a Set Operations on Sets Set Identifies Countability

Fundamentals (contd.)

Representing Sets

- (i) The extensional method Explicitly enumerate all the elements of the set. For example, $A = \{1, 5, 7\}, B = \{1, 2, 3, ..., 100\}, C = \{red, white, blue\}.$
- (ii) The intensional method Specify a property *P* that characterizes the set elements. For example, $A = \{x \mid x \text{ is an integer less than 7, but at least 3}\}$.

Relationships between sets Sets of Sets Operations on elements of a Set Operations on Sets Set Identifies Countability

Fundamentals (contd.)

Representing Sets

- (i) The extensional method Explicitly enumerate all the elements of the set. For example, $A = \{1, 5, 7\}, B = \{1, 2, 3, ..., 100\}, C = \{red, white, blue\}.$
- (ii) The intensional method Specify a property *P* that characterizes the set elements. For example, $A = \{x \mid x \text{ is an integer less than 7, but at least 3}\}$.
- (iii) Recursion -

Relationships between sets Sets of Sets Operations on elements of a Set Operations on Sets Set Identifies Countability

Fundamentals (contd.)

Representing Sets

- (i) The extensional method Explicitly enumerate all the elements of the set. For example, $A = \{1, 5, 7\}, B = \{1, 2, 3, ..., 100\}, C = \{red, white, blue\}.$
- (ii) The intensional method Specify a property *P* that characterizes the set elements.For example, *A* = {*x* | *x* is an integer less than 7, but at least 3}.
- (iii) Recursion We can describe the set of all even positive integers as follows:

Relationships between sets Sets of Sets Operations on elements of a Set Operations on Sets Set Identities Countability

Fundamentals (contd.)

Representing Sets

- (i) The extensional method Explicitly enumerate all the elements of the set. For example, $A = \{1, 5, 7\}, B = \{1, 2, 3, ..., 100\}, C = \{red, white, blue\}.$
- (ii) The intensional method Specify a property *P* that characterizes the set elements.For example, *A* = {*x* | *x* is an integer less than 7, but at least 3}.
- (iii) Recursion We can describe the set of all even positive integers as follows: (a) $2 \in S$.

Relationships between sets Sets of Sets Operations on elements of a Set Operations on Sets Set Identifies Countability

Fundamentals (contd.)

Representing Sets

Three techniques:

- (i) The extensional method Explicitly enumerate all the elements of the set. For example, $A = \{1, 5, 7\}, B = \{1, 2, 3, ..., 100\}, C = \{red, white, blue\}.$
- (ii) The intensional method Specify a property *P* that characterizes the set elements. For example, $A = \{x \mid x \text{ is an integer less than 7, but at least 3}\}.$
- (iii) Recursion We can describe the set of all even positive integers as follows: (a) $2 \in S$. (b) if $x \in S$, then so is (does) (x + 2).

Relationships between sets Sets of Sets Operations on elements of a Set Operations on Sets Set Identifies Countability

Fundamentals (contd.)

Representing Sets

Three techniques:

- (i) The extensional method Explicitly enumerate all the elements of the set. For example, $A = \{1, 5, 7\}, B = \{1, 2, 3, ..., 100\}, C = \{red, white, blue\}.$
- (ii) The intensional method Specify a property *P* that characterizes the set elements. For example, $A = \{x \mid x \text{ is an integer less than 7, but at least 3}\}.$
- (iii) Recursion We can describe the set of all even positive integers as follows: (a) $2 \in S$. (b) if $x \in S$, then so is (does) (x + 2).

Relationships between sets Sets of Sets Operations on elements of a Set Operations on Sets Set Identities Countability

Important Sets

Some important sets

Fundamentals Sets and Combinatorics

Relationships between sets Sets of Sets Operations on elements of a Set Operations on Sets Set Identities Countability

Important Sets

Some important sets

(i) *N* -

Fundamentals Sets and Combinatorics

Relationships between sets Sets of Sets Operations on elements of a Set Operations on Sets Set Identifies Countability

Important Sets

Some important sets

(i) ${\mathcal N}$ - The set of non-negative integers $\{0,\ 1,\ \ldots,\ \}.$

Relationships between sets Sets of Sets Operations on elements of a Set Operations on Sets Set Identifies Countability

Important Sets

Some important sets

(i) \mathcal{N} - The set of non-negative integers {0, 1, ..., }.

(ii) \mathcal{Z} -

Relationships between sets Sets of Sets Operations on elements of a Set Operations on Sets Set Identifies Countability

Important Sets

- (i) ${\mathcal N}$ The set of non-negative integers $\{0,\ 1,\ \ldots,\ \}.$
- (ii) ${\mathcal Z}$ The set of all integers $\{\ldots,-1,\ 0,\ 1,\ldots\}.$

Relationships between sets Sets of Sets Operations on elements of a Set Operations on Sets Set Identifies Countability

Important Sets

- (i) ${\mathcal N}$ The set of non-negative integers $\{0,\ 1,\ \ldots,\ \}.$
- (ii) \mathcal{Z} The set of all integers {..., -1, 0, 1,...}.
- (iii) Q -

Relationships between sets Sets of Sets Operations on elements of a Set Operations on Sets Set Identifies Countability

Important Sets

- (i) \mathcal{N} The set of non-negative integers $\{0, 1, \ldots, \}$.
- (ii) ${\mathcal Z}$ The set of all integers $\{\ldots,-1,\ 0,\ 1,\ldots\}.$
- (iii) Q The set of all rational numbers.

Relationships between sets Sets of Sets Operations on elements of a Set Operations on Sets Set Identifies Countability

Important Sets

Some important sets

- (i) \mathcal{N} The set of non-negative integers $\{0, 1, \ldots, \}$.
- (ii) ${\mathcal Z}$ The set of all integers $\{\ldots,-1,\ 0,\ 1,\ldots\}.$
- (iii) Q The set of all rational numbers.

(iv) ℜ -

Relationships between sets Sets of Sets Operations on elements of a Set Operations on Sets Set Identifies Countability

Important Sets

- (i) \mathcal{N} The set of non-negative integers $\{0, 1, \ldots, \}$.
- (ii) $\mathcal Z$ The set of all integers $\{\ldots, -1, 0, 1, \ldots\}$.
- (iii) Q The set of all rational numbers.
- (iv) \Re The set of all real numbers.

Relationships between sets Sets of Sets Operations on elements of a Set Operations on Sets Set Identifies Countability

Important Sets

- (i) \mathcal{N} The set of non-negative integers $\{0, 1, \ldots, \}$.
- (ii) $\mathcal Z$ The set of all integers $\{\ldots, -1, 0, 1, \ldots\}$.
- (iii) Q The set of all rational numbers.
- (iv) \Re The set of all real numbers.
- (v) C -

Relationships between sets Sets of Sets Operations on elements of a Set Operations on Sets Set Identifies Countability

Important Sets

- (i) \mathcal{N} The set of non-negative integers $\{0, 1, \ldots, \}$.
- (ii) $\mathcal Z$ The set of all integers $\{\ldots,-1,\ 0,\ 1,\ldots\}.$
- (iii) Q The set of all rational numbers.
- (iv) \Re The set of all real numbers.
- (v) C The set of all complex numbers.

Relationships between sets Sets of Sets Operations on elements of a Set Operations on Sets Set Identifies Countability

Important Sets

- (i) \mathcal{N} The set of non-negative integers $\{0, 1, \ldots, \}$.
- (ii) $\mathcal Z$ The set of all integers $\{\ldots, -1, 0, 1, \ldots\}$.
- (iii) Q The set of all rational numbers.
- (iv) \Re The set of all real numbers.
- (v) C The set of all complex numbers.
- (vi) Ø -

Relationships between sets Sets of Sets Operations on elements of a Set Operations on Sets Set Identifies Countability

Important Sets

- (i) \mathcal{N} The set of non-negative integers {0, 1, ..., }.
- (ii) $\mathcal Z$ The set of all integers $\{\ldots, -1, 0, 1, \ldots\}$.
- (iii) Q The set of all rational numbers.
- (iv) \Re The set of all real numbers.
- (v) C The set of all complex numbers.
- (vi) \emptyset The set with no elements or null set.

Relationships between sets Sets of Sets Operations on elements of a Set Operations on Sets Set Identifies Countability

Important Sets

- (i) \mathcal{N} The set of non-negative integers {0, 1, ..., }.
- (ii) $\mathcal Z$ The set of all integers $\{\ldots, -1, 0, 1, \ldots\}$.
- (iii) Q The set of all rational numbers.
- (iv) \Re The set of all real numbers.
- (v) C The set of all complex numbers.
- (vi) \emptyset The set with no elements or null set. Note that $\{\emptyset\} \neq \emptyset$!

Relationships

Relationships

Definition

Fundamentals Sets and Combinatorics

Relationships

Definition

Subset -

Relationships

Definition

Subset - A is said to be a subset of B, denoted by $A \subseteq B$, if

Relationships

Definition

Subset - *A* is said to be a subset of *B*, denoted by $A \subseteq B$, if $(\forall x)[x \in A \rightarrow x \in B]$.

Relationships

Definition

Subset - *A* is said to be a subset of *B*, denoted by $A \subseteq B$, if $(\forall x)[x \in A \rightarrow x \in B]$.

Definition

Relationships

Definition

Subset - *A* is said to be a subset of *B*, denoted by $A \subseteq B$, if $(\forall x)[x \in A \rightarrow x \in B]$.

Definition

Proper subset -

Relationships

Definition

Subset - *A* is said to be a subset of *B*, denoted by $A \subseteq B$, if $(\forall x)[x \in A \rightarrow x \in B]$.

Definition

Proper subset - A is said to be a proper subset of B, denoted by $A \subset B$, if

Relationships

Definition

Subset - *A* is said to be a subset of *B*, denoted by $A \subseteq B$, if $(\forall x)[x \in A \rightarrow x \in B]$.

Definition

Proper subset - *A* is said to be a proper subset of *B*, denoted by $A \subset B$, if $A \subseteq B$, but $A \neq B$.

Relationships

Definition

Subset - *A* is said to be a subset of *B*, denoted by $A \subseteq B$, if $(\forall x)[x \in A \rightarrow x \in B]$.

Definition

Proper subset - *A* is said to be a proper subset of *B*, denoted by $A \subset B$, if $A \subseteq B$, but $A \neq B$.

Example

Relationships

Definition

Subset - *A* is said to be a subset of *B*, denoted by $A \subseteq B$, if $(\forall x)[x \in A \rightarrow x \in B]$.

Definition

Proper subset - *A* is said to be a proper subset of *B*, denoted by $A \subset B$, if $A \subseteq B$, but $A \neq B$.

Example

The statement $\emptyset \subseteq C$ is always **true**,

Relationships

Definition

Subset - *A* is said to be a subset of *B*, denoted by $A \subseteq B$, if $(\forall x)[x \in A \rightarrow x \in B]$.

Definition

Proper subset - *A* is said to be a proper subset of *B*, denoted by $A \subset B$, if $A \subseteq B$, but $A \neq B$.

Example

The statement $\emptyset \subseteq C$ is always **true**, since the statement $(\forall x)(x \in \emptyset \rightarrow x \in C)$ is vacuously **true**.

Relationships

Definition

Subset - *A* is said to be a subset of *B*, denoted by $A \subseteq B$, if $(\forall x)[x \in A \rightarrow x \in B]$.

Definition

Proper subset - *A* is said to be a proper subset of *B*, denoted by $A \subset B$, if $A \subseteq B$, but $A \neq B$.

Example

The statement $\emptyset \subseteq C$ is always **true**, since the statement $(\forall x)(x \in \emptyset \rightarrow x \in C)$ is vacuously **true**.

Definition

Relationships

Definition

Subset - *A* is said to be a subset of *B*, denoted by $A \subseteq B$, if $(\forall x)[x \in A \rightarrow x \in B]$.

Definition

Proper subset - *A* is said to be a proper subset of *B*, denoted by $A \subset B$, if $A \subseteq B$, but $A \neq B$.

Example

The statement $\emptyset \subseteq C$ is always **true**, since the statement $(\forall x)(x \in \emptyset \rightarrow x \in C)$ is vacuously **true**.

Definition A = B

Relationships

Definition

Subset - *A* is said to be a subset of *B*, denoted by $A \subseteq B$, if $(\forall x)[x \in A \rightarrow x \in B]$.

Definition

Proper subset - *A* is said to be a proper subset of *B*, denoted by $A \subset B$, if $A \subseteq B$, but $A \neq B$.

Example

The statement $\emptyset \subseteq C$ is always **true**, since the statement $(\forall x)(x \in \emptyset \rightarrow x \in C)$ is vacuously **true**.

Definition

 $A = B \Leftrightarrow (A \subseteq B)$ and $(B \subseteq A)$.

Another Example

Another Example

Example

Fundamentals Sets and Combinatorics

Another Example

Example

Let $A = \{x \mid x \text{ is a multiple of 8}\}$ and $B = \{x \mid x \text{ is a multiple of 4}\}$. Show that $A \subseteq B$.

Another Example

Example

Let $A = \{x \mid x \text{ is a multiple of 8}\}$ and $B = \{x \mid x \text{ is a multiple of 4}\}$. Show that $A \subseteq B$.

Proof.

Fundamentals Sets and Combinatorics

Another Example

Example

Let $A = \{x \mid x \text{ is a multiple of 8}\}$ and $B = \{x \mid x \text{ is a multiple of 4}\}$. Show that $A \subseteq B$.

Proof. Let $x \in A$.

Another Example

Example

Let $A = \{x \mid x \text{ is a multiple of 8}\}$ and $B = \{x \mid x \text{ is a multiple of 4}\}$. Show that $A \subseteq B$.

Proof.

Let $x \in A$.

Hence, $x = 8 \cdot k$, for some integer k.

Another Example

Example

Let $A = \{x \mid x \text{ is a multiple of 8}\}$ and $B = \{x \mid x \text{ is a multiple of 4}\}$. Show that $A \subseteq B$.

Proof.

Let $x \in A$.

Hence, $x = 8 \cdot k$, for some integer k.

It follows that $x = 4 \cdot 2 \cdot k = 4 \cdot m$, for some integer *m*.

Another Example

Example

Let $A = \{x \mid x \text{ is a multiple of 8}\}$ and $B = \{x \mid x \text{ is a multiple of 4}\}$. Show that $A \subseteq B$.

Proof. Let $x \in A$. Hence, $x = 8 \cdot k$, for some integer k. It follows that $x = 4 \cdot 2 \cdot k = 4 \cdot m$, for some integer m. Hence, $x \in B$.

Power Set

Power Set

Definition

Fundamentals Sets and Combinatorics

Power Set

Definition

The set of all possible subsets of a set S is called its power set and denoted by $\mathcal{P}(S)$.

Power Set

Definition

The set of all possible subsets of a set S is called its power set and denoted by $\mathcal{P}(S)$.

Example

Fundamentals Sets and Combinatorics

Power Set

Definition

The set of all possible subsets of a set S is called its power set and denoted by $\mathcal{P}(S)$.

Example

Let $S = \{0, 1\}.$

Power Set

Definition

The set of all possible subsets of a set S is called its power set and denoted by $\mathcal{P}(S)$.

Example

Let $S = \{0, 1\}$. $\mathcal{P}(S) =$

Power Set

Definition

The set of all possible subsets of a set S is called its power set and denoted by $\mathcal{P}(S)$.

Example

Let $S = \{0, 1\}$. $\mathcal{P}(S) = \{\phi, \{0\}, \{1\}, \{0, 1\}\}$.

Power Set

Definition

The set of all possible subsets of a set S is called its power set and denoted by $\mathcal{P}(S)$.

Example

Let
$$S = \{0, 1\}$$
. $\mathcal{P}(S) = \{\phi, \{0\}, \{1\}, \{0, 1\}\}.$

Exercise

Power Set

Definition

The set of all possible subsets of a set S is called its power set and denoted by $\mathcal{P}(S)$.

Example

Let
$$S = \{0, 1\}$$
. $\mathcal{P}(S) = \{\phi, \{0\}, \{1\}, \{0, 1\}\}.$

Exercise

Show that if a set has n elements, then its power set will have 2ⁿ elements.

Binary operations

Binary operations

Definition

Binary operations

Definition

 \circ is a *binary* operation on a set *S*, if for every ordered pair (*x*, *y*) of *S*,

Binary operations

Definition

 \circ is a *binary* operation on a set *S*, if for every ordered pair (*x*, *y*) of *S*,

(a) $x \circ y$ exists,

Binary operations

Definition

 \circ is a *binary* operation on a set *S*, if for every ordered pair (*x*, *y*) of *S*,

- (a) $x \circ y$ exists,
- (b) $x \circ y$ is unique, and

Binary operations

Definition

 \circ is a *binary* operation on a set *S*, if for every ordered pair (*x*, *y*) of *S*,

- (a) $x \circ y$ exists,
- (b) $x \circ y$ is unique, and
- (c) $x \circ y$ is a member of S.

Binary operations

Definition

 \circ is a *binary* operation on a set *S*, if for every ordered pair (*x*, *y*) of *S*,

- (a) $x \circ y$ exists,
- (b) $x \circ y$ is unique, and
- (c) $x \circ y$ is a member of S.

The properties "exists" and "is unique" are collectively referred to as the property of being "well-defined".

Binary operations

Definition

 \circ is a *binary* operation on a set *S*, if for every ordered pair (*x*, *y*) of *S*,

- (a) $x \circ y$ exists,
- (b) $x \circ y$ is unique, and
- (c) $x \circ y$ is a member of S.

The properties "exists" and "is unique" are collectively referred to as the property of being "well-defined".

The property that $x \circ y \in S$ is called the closure property, i.e., *S* is closed under operation \circ .

Example

Example

Fundamentals Sets and Combinatorics

Example

Example

(i) Is + an operation on \mathcal{N} ?

Fundamentals Sets and Combinatorics

Example

- (i) Is + an operation on \mathcal{N} ?
- (ii) Is an operation on \mathcal{N} ?

Example

- (i) Is + an operation on \mathcal{N} ?
- (ii) Is an operation on \mathcal{N} ? \mathcal{Z} ?

Example

- (i) Is + an operation on \mathcal{N} ?
- (ii) Is an operation on \mathcal{N} ? \mathcal{Z} ?
- (iii) Is \div an operation on \Re ?

Example

- (i) Is + an operation on \mathcal{N} ?
- (ii) Is an operation on \mathcal{N} ? \mathcal{Z} ?
- (iii) Is \div an operation on \Re ?
- (iv) Is \circ an operation on \mathcal{N} , where

$$x \circ y = \begin{cases} 1 & \text{if } x \ge 5\\ 0 & \text{if } x \le 5 \end{cases}$$

Unary operations

Unary operations

Definition

is said to be a unary operation on S,

Unary operations

Definition

is said to be a unary operation on S, if for all $x \in S$, $x^{\#}$ is well-defined and S is closed under #.

Unary operations

Definition

is said to be a unary operation on S, if for all $x \in S$, $x^{\#}$ is well-defined and S is closed under #.

Example

The operation $x^{\#} = -x$ is a unary operation on \mathcal{Z} ,

Unary operations

Definition

is said to be a unary operation on S, if for all $x \in S$, $x^{\#}$ is well-defined and S is closed under #.

Example

The operation $x^{\#} = -x$ is a unary operation on \mathcal{Z} , but not on \mathcal{N} .

Unary operations

Definition

is said to be a unary operation on S, if for all $x \in S$, $x^{\#}$ is well-defined and S is closed under #.

Example

The operation $x^{\#} = -x$ is a unary operation on \mathcal{Z} , but not on \mathcal{N} .

Example

The operation $x^{\#} = \sqrt{x}$ is not a unary operation on \mathcal{N} , \mathcal{Z} or \mathcal{Q} .

Unary operations

Definition

is said to be a unary operation on S, if for all $x \in S$, $x^{\#}$ is well-defined and S is closed under #.

Example

The operation $x^{\#} = -x$ is a unary operation on \mathcal{Z} , but not on \mathcal{N} .

Example

The operation $x^{\#} = \sqrt{x}$ is not a unary operation on \mathcal{N}, \mathcal{Z} or \mathcal{Q} .

But it is a unary operation on \Re_+ (the set of non-negative reals).

Example

Example

Fundamentals Sets and Combinatorics

Example

Example

Is the operation o well-defined?

Fundamentals Sets and Combinatorics

Example

Example

Is the operation o well-defined?

0	1	2	3
1	2	3	3
2	1	2	1
3	2	3	1

Fundamentals Sets and Combinatorics

Countability

Operations on Sets

Countability

Operations on Sets

Fundamentals

Fundamentals Sets and Combinatorics

Operations on Sets

Fundamentals

For discussing operations on sets, we assume the existence of a ground set S and its power set $\mathcal{P}(S)$.

Operations on Sets

Fundamentals

For discussing operations on sets, we assume the existence of a ground set S and its power set $\mathcal{P}(S)$.

All operations are defined on the elements of $\mathcal{P}(S)$.

Operations on Sets

Fundamentals

For discussing operations on sets, we assume the existence of a ground set S and its power set $\mathcal{P}(S)$.

All operations are defined on the elements of $\mathcal{P}(S)$.

 $\mathcal{P}(S)$ is called the universal set or the universe of discourse.

Operations on Sets

Fundamentals

For discussing operations on sets, we assume the existence of a ground set S and its power set $\mathcal{P}(S)$.

All operations are defined on the elements of $\mathcal{P}(S)$.

 $\mathcal{P}(S)$ is called the universal set or the universe of discourse.

Principal Operations

Operations on Sets

Fundamentals

For discussing operations on sets, we assume the existence of a ground set S and its power set $\mathcal{P}(S)$.

All operations are defined on the elements of $\mathcal{P}(S)$.

 $\mathcal{P}(S)$ is called the universal set or the universe of discourse.

Principal Operations

Operations on Sets

Fundamentals

For discussing operations on sets, we assume the existence of a ground set S and its power set $\mathcal{P}(S)$.

All operations are defined on the elements of $\mathcal{P}(S)$.

 $\mathcal{P}(S)$ is called the universal set or the universe of discourse.

Principal Operations

Let $A, B \in \mathcal{P}(S)$, i.e., A and B are subsets of S.

(i) $A \cup B$ (union) is defined as: $\{x \mid x \in A \text{ or } x \in B\}$.

Operations on Sets

Fundamentals

For discussing operations on sets, we assume the existence of a ground set S and its power set $\mathcal{P}(S)$.

All operations are defined on the elements of $\mathcal{P}(S)$.

 $\mathcal{P}(S)$ is called the universal set or the universe of discourse.

Principal Operations

- (i) $A \cup B$ (union) is defined as: $\{x \mid x \in A \text{ or } x \in B\}$.
- (ii) $A \cap B$ (intersection) is defined as: $\{x \mid x \in A \text{ and } x \in B\}$.

Operations on Sets

Fundamentals

For discussing operations on sets, we assume the existence of a ground set S and its power set $\mathcal{P}(S)$.

All operations are defined on the elements of $\mathcal{P}(S)$.

 $\mathcal{P}(S)$ is called the universal set or the universe of discourse.

Principal Operations

Let $A, B \in \mathcal{P}(S)$, i.e., A and B are subsets of S.

- (i) $A \cup B$ (union) is defined as: $\{x \mid x \in A \text{ or } x \in B\}$.
- (ii) $A \cap B$ (intersection) is defined as: $\{x \mid x \in A \text{ and } x \in B\}$.

Two sets are said to be **disjoint** if $A \cap B = \emptyset$.

Operations on Sets

Fundamentals

For discussing operations on sets, we assume the existence of a ground set S and its power set $\mathcal{P}(S)$.

All operations are defined on the elements of $\mathcal{P}(S)$.

 $\mathcal{P}(S)$ is called the universal set or the universe of discourse.

Principal Operations

- (i) $A \cup B$ (union) is defined as: $\{x \mid x \in A \text{ or } x \in B\}$.
- (ii) A ∩ B (intersection) is defined as: {x | x ∈ A and x ∈ B}.
 Two sets are said to be disjoint if A ∩ B = Ø.
- (iii) A' (complement) is defined as : $\{x \mid x \in S \text{ and } x \notin A\}$.

Operations on Sets

Fundamentals

For discussing operations on sets, we assume the existence of a ground set S and its power set $\mathcal{P}(S)$.

All operations are defined on the elements of $\mathcal{P}(S)$.

 $\mathcal{P}(S)$ is called the universal set or the universe of discourse.

Principal Operations

- (i) $A \cup B$ (union) is defined as: $\{x \mid x \in A \text{ or } x \in B\}$.
- (ii) A ∩ B (intersection) is defined as: {x | x ∈ A and x ∈ B}. Two sets are said to be disjoint if A ∩ B = Ø.
- (iii) A' (complement) is defined as : { $x | x \in S$ and $x \notin A$ }.
- (iv) A B (difference) is defined as: $\{x \mid x \in A \text{ and } x \notin B\}$.

Operations on Sets

Fundamentals

For discussing operations on sets, we assume the existence of a ground set S and its power set $\mathcal{P}(S)$.

All operations are defined on the elements of $\mathcal{P}(S)$.

 $\mathcal{P}(S)$ is called the universal set or the universe of discourse.

Principal Operations

- (i) $A \cup B$ (union) is defined as: $\{x \mid x \in A \text{ or } x \in B\}$.
- (ii) A ∩ B (intersection) is defined as: {x | x ∈ A and x ∈ B}. Two sets are said to be disjoint if A ∩ B = Ø.
- (iii) A' (complement) is defined as : { $x | x \in S$ and $x \notin A$ }.
- (iv) A B (difference) is defined as: $\{x \mid x \in A \text{ and } x \notin B\}$.
- (v) $A \times B$ (Cartesian Product) is defined as: $\{(x, y) \mid x \in A \text{ and } y \in B\}$.

Example

Example

Let $A = \{1, 2, 3\}$ and $B = \{a, b, 1\}$.

Example

Let $A = \{1, 2, 3\}$ and $B = \{a, b, 1\}$. Compute $A \cup B$, $A \cap B$, A - B, $A \times B$ and $B \times A$.

Example

Let $A = \{1, 2, 3\}$ and $B = \{a, b, 1\}$. Compute $A \cup B$, $A \cap B$, A - B, $A \times B$ and $B \times A$.

Example

Let $A = \{1, 2, 3\}$ and $B = \{a, b, 1\}$. Compute $A \cup B$, $A \cap B$, A - B, $A \times B$ and $B \times A$.

Example

Let $A = \{1, 2, 3\}$ and $B = \{a, b, 1\}$. Compute $A \cup B$, $A \cap B$, A - B, $A \times B$ and $B \times A$.

Solution

0 $A \cup B =$

Example

Let $A = \{1, 2, 3\}$ and $B = \{a, b, 1\}$. Compute $A \cup B$, $A \cap B$, A - B, $A \times B$ and $B \times A$.

1
$$A \cup B = \{1, 2, 3, a, b\}.$$

Example

Let $A = \{1, 2, 3\}$ and $B = \{a, b, 1\}$. Compute $A \cup B$, $A \cap B$, A - B, $A \times B$ and $B \times A$.

•
$$A \cup B = \{1, 2, 3, a, b\}.$$

• $A \cap B =$

Example

Let $A = \{1, 2, 3\}$ and $B = \{a, b, 1\}$. Compute $A \cup B$, $A \cap B$, A - B, $A \times B$ and $B \times A$.

•
$$A \cup B = \{1, 2, 3, a, b\}.$$

• $A \cap B = \{1\}.$

Example

Let $A = \{1, 2, 3\}$ and $B = \{a, b, 1\}$. Compute $A \cup B$, $A \cap B$, A - B, $A \times B$ and $B \times A$.

•
$$A \cup B = \{1, 2, 3, a, b\}.$$

• $A \cap B = \{1\}.$
• $A \cap B = \{1\}.$

Example

Let $A = \{1, 2, 3\}$ and $B = \{a, b, 1\}$. Compute $A \cup B$, $A \cap B$, A - B, $A \times B$ and $B \times A$.

•
$$A \cup B = \{1, 2, 3, a, b\}.$$

• $A \cap B = \{1\}.$
• $A - B = \{2, 3\}.$

Example

Let $A = \{1, 2, 3\}$ and $B = \{a, b, 1\}$. Compute $A \cup B$, $A \cap B$, A - B, $A \times B$ and $B \times A$.

•
$$A \cup B = \{1, 2, 3, a, b\}$$

• $A \cap B = \{1\}.$
• $A - B = \{2, 3\}.$
• $A \times B =$

Example

Let $A = \{1, 2, 3\}$ and $B = \{a, b, 1\}$. Compute $A \cup B$, $A \cap B$, A - B, $A \times B$ and $B \times A$.

•
$$A \cup B = \{1, 2, 3, a, b\}.$$

• $A \cap B = \{1\}.$
• $A - B = \{2, 3\}.$
• $A \times B = \{(1, a), (1, b), (1, 1), (2, a), (2, b), (2, 1), (3, a), (3, b), (3, 1)\}.$

Example

Let $A = \{1, 2, 3\}$ and $B = \{a, b, 1\}$. Compute $A \cup B$, $A \cap B$, A - B, $A \times B$ and $B \times A$.

•
$$A \cup B = \{1, 2, 3, a, b\}.$$

• $A \cap B = \{1\}.$
• $A - B = \{2, 3\}.$
• $A \times B = \{(1, a), (1, b), (1, 1), (2, a), (2, b), (2, 1), (3, a), (3, b), (3, 1)\}.$
• $B \times A =$

Example

Let $A = \{1, 2, 3\}$ and $B = \{a, b, 1\}$. Compute $A \cup B$, $A \cap B$, A - B, $A \times B$ and $B \times A$.

•
$$A \cup B = \{1, 2, 3, a, b\}.$$

• $A \cap B = \{1\}.$
• $A - B = \{2, 3\}.$
• $A \times B = \{(1, a), (1, b), (1, 1), (2, a), (2, b), (2, 1), (3, a), (3, b), (3, 1)\}.$
• $B \times A = \{(a, 1), (a, 2), (a, 3), (b, 1), (b, 2), (b, 3), (1, 1), (1, 2), (1, 3)\}.$

Example

Let $A = \{1, 2, 3\}$ and $B = \{a, b, 1\}$. Compute $A \cup B$, $A \cap B$, A - B, $A \times B$ and $B \times A$.

Solution

•
$$A \cup B = \{1, 2, 3, a, b\}.$$

• $A \cap B = \{1\}.$
• $A - B = \{2, 3\}.$
• $A \times B = \{(1, a), (1, b), (1, 1), (2, a), (2, b), (2, 1), (3, a), (3, b), (3, 1)\}.$
• $B \times A = \{(a, 1), (a, 2), (a, 3), (b, 1), (b, 2), (b, 3), (1, 1), (1, 2), (1, 3)\}.$

Note

Example

Let $A = \{1, 2, 3\}$ and $B = \{a, b, 1\}$. Compute $A \cup B$, $A \cap B$, A - B, $A \times B$ and $B \times A$.

Solution

•
$$A \cup B = \{1, 2, 3, a, b\}.$$

• $A \cap B = \{1\}.$
• $A \cap B = \{2, 3\}.$
• $A \times B = \{(1, a), (1, b), (1, 1), (2, a), (2, b), (2, 1), (3, a), (3, b), (3, 1)\}.$
• $B \times A = \{(a, 1), (a, 2), (a, 3), (b, 1), (b, 2), (b, 3), (1, 1), (1, 2), (1, 3)\}.$

Note

 $A \times A$ is referred to as A^2 , $A \times A \times A$ as A^3 and so on.

Set Identities

Set Identities

Basic Identities

Set Identities

Basic Identities

Recall that all sets under discussion are subsets of the ground set S.

Set Identities

Basic Identities

Recall that all sets under discussion are subsets of the ground set S.

$$Commutative : \begin{cases} A \cup B = B \cup A. \\ A \cap B = B \cap A. \end{cases}$$

Set Identities

Basic Identities

Recall that all sets under discussion are subsets of the ground set S.

Commutative :
$$\begin{cases} A \cup B = B \cup A. \\ A \cap B = B \cap A. \end{cases}$$

Associative :
$$\begin{cases} (A \cup B) \cup C &= A \cup (B \cup C) \\ (A \cap B) \cap C &= A \cap (B \cap C) \end{cases}$$

Set Identities

Basic Identities

Recall that all sets under discussion are subsets of the ground set S.

Commutative :
$$\begin{cases} A \cup B = B \cup A. \\ A \cap B = B \cap A. \end{cases}$$

Associative :
$$\begin{cases} (A \cup B) \cup C &= A \cup (B \cup C), \\ (A \cap B) \cap C &= A \cap (B \cap C), \end{cases}$$

$$Distributive: \left\{ \begin{array}{rcl} A \cup (B \cap C) &=& (A \cup B) \cap (A \cup C). \\ A \cap (B \cup C) &=& (A \cap B) \cup (A \cap C). \end{array} \right.$$

Set Identities (contd.)

Set Identities (contd.)

Set Identities (contd.)

Identity :
$$\begin{cases} A \cup \emptyset = A. \\ A \cap S = A. \end{cases}$$

Set Identities (contd.)

Identity :
$$\begin{cases} A \cup \emptyset = A. \\ A \cap S = A. \end{cases}$$

Complement :
$$\begin{cases} A \cup A' = S. \\ A \cap A' = \emptyset. \end{cases}$$

Set Identities (contd.)

Identity :
$$\begin{cases} A \cup \emptyset = A. \\ A \cap S = A. \end{cases}$$

Complement :
$$\begin{cases} A \cup A' = S. \\ A \cap A' = \emptyset. \end{cases}$$

$$DeMorgan: \left\{ \begin{array}{rcl} (A \cup B)' &=& A' \cap B'. \\ (A \cap B)' &=& A' \cup B'. \end{array} \right.$$

Proving set identities

Proving set identities

Tips and Techniques

(i) You will be asked to prove that some set expression (which is a set, say *A*) is equal to some other set expression (which is also a set, say *B*).

Proving set identities

- (i) You will be asked to prove that some set expression (which is a set, say *A*) is equal to some other set expression (which is also a set, say *B*).
- (ii) Establish set inclusion in each direction, i.e., show that $A \subseteq B$ and $B \subseteq A$.

Proving set identities

- (i) You will be asked to prove that some set expression (which is a set, say *A*) is equal to some other set expression (which is also a set, say *B*).
- (ii) Establish set inclusion in each direction, i.e., show that $A \subseteq B$ and $B \subseteq A$.
- (iii) Convert statements into propositional or predicate logic.

Proving set identities

- (i) You will be asked to prove that some set expression (which is a set, say *A*) is equal to some other set expression (which is also a set, say *B*).
- (ii) Establish set inclusion in each direction, i.e., show that $A \subseteq B$ and $B \subseteq A$.
- (iii) Convert statements into propositional or predicate logic.
- (iv) Use already proved identities from propositional and predicate logic.

Proving set identities

- (i) You will be asked to prove that some set expression (which is a set, say *A*) is equal to some other set expression (which is also a set, say *B*).
- (ii) Establish set inclusion in each direction, i.e., show that $A \subseteq B$ and $B \subseteq A$.
- (iii) Convert statements into propositional or predicate logic.
- (iv) Use already proved identities from propositional and predicate logic.
- (v) Convert the deduction into a statement in set theory.

Examples

Examples

Example

Fundamentals Sets and Combinatorics

Examples

Example

Show that $A \cup B = B \cup A$.

Examples

Example

Show that $A \cup B = B \cup A$.

Proof.

Fundamentals Sets and Combinatorics

Examples

Example

Show that $A \cup B = B \cup A$.

Proof.

Examples

Example

Show that $A \cup B = B \cup A$.

Proof.

Examples

Example

Show that $A \cup B = B \cup A$.

Proof.

Let *P* denote the proposition $x \in A$ and let *Q* denote the proposition $x \in B$. Observe that

 $x \in (A \cup B)$

Examples

Example

Show that $A \cup B = B \cup A$.

Proof.

Let *P* denote the proposition $x \in A$ and let *Q* denote the proposition $x \in B$. Observe that

 $x \in (A \cup B) \rightarrow (x \in A)$ or $(x \in B)$, definition of union

Examples

Example

Show that $A \cup B = B \cup A$.

Proof.

$$x \in (A \cup B) \rightarrow (x \in A)$$
 or $(x \in B)$, definition of union
 $\rightarrow P \lor Q$

Examples

Example

Show that $A \cup B = B \cup A$.

Proof.

$$x \in (A \cup B) \rightarrow (x \in A)$$
 or $(x \in B)$, definition of union
 $\rightarrow P \lor Q$
 $\rightarrow Q \lor P$, commutativity of disjunction

Examples

Example

Show that $A \cup B = B \cup A$.

Proof.

$$\begin{array}{rcl} x \in (A \cup B) & \to & (x \in A) \text{ or } (x \in B), \text{ definition of union} \\ & \to & P \lor Q \\ & \to & Q \lor P, \text{ commutativity of disjunction} \\ & \to & (x \in B) \lor (x \in A) \end{array}$$

Examples

Example

Show that $A \cup B = B \cup A$.

Proof.

Let *P* denote the proposition $x \in A$ and let *Q* denote the proposition $x \in B$. Observe that

$$x \in (A \cup B) \rightarrow (x \in A)$$
 or $(x \in B)$, definition of union
 $\rightarrow P \lor Q$
 $\rightarrow Q \lor P$ commutativity of disjunction

 $\rightarrow Q \lor P$, commutativity of disjunction

$$\rightarrow (x \in B) \lor (x \in A)$$

 $\rightarrow x \in (B \cup A)$, definition of union

Examples

Example

Show that $A \cup B = B \cup A$.

Proof.

Let *P* denote the proposition $x \in A$ and let *Q* denote the proposition $x \in B$. Observe that

$$\begin{array}{rcl} x \in (A \cup B) & \to & (x \in A) \text{ or } (x \in B), \text{ definition of union} \\ & \to & P \lor Q \\ & \to & Q \lor P, \text{ commutativity of disjunction} \\ & \to & (x \in B) \lor (x \in A) \\ & \to & x \in (B \cup A), \text{ definition of union} \end{array}$$

We have thus shown that $(A \cup B) \subseteq (B \cup A)$.

Examples

Example

Show that $A \cup B = B \cup A$.

Proof.

Let *P* denote the proposition $x \in A$ and let *Q* denote the proposition $x \in B$. Observe that

$$\begin{array}{rcl} x \in (A \cup B) & \to & (x \in A) \text{ or } (x \in B), \text{ definition of union} \\ & \to & P \lor Q \\ & \to & Q \lor P, \text{ commutativity of disjunction} \\ & \to & (x \in B) \lor (x \in A) \\ & \to & x \in (B \cup A), \text{ definition of union} \end{array}$$

We have thus shown that $(A \cup B) \subseteq (B \cup A)$.

In order to establish equality, you also need to show that $(B \cup A) \subseteq (A \cup B)$.

Examples

Example

Show that $A \cup B = B \cup A$.

Proof.

Let *P* denote the proposition $x \in A$ and let *Q* denote the proposition $x \in B$. Observe that

$$\begin{array}{rcl} x \in (A \cup B) & \to & (x \in A) \text{ or } (x \in B), \text{ definition of union} \\ & \to & P \lor Q \\ & \to & Q \lor P, \text{ commutativity of disjunction} \\ & \to & (x \in B) \lor (x \in A) \\ & \to & x \in (B \cup A), \text{ definition of union} \end{array}$$

We have thus shown that $(A \cup B) \subseteq (B \cup A)$.

In order to establish equality, you also need to show that $(B \cup A) \subseteq (A \cup B)$.

Simply reverse the above argument!

Another example

Another example

Example

Another example

Example

Show that $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$.

Another example

Example

Show that $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$.

Proof.

Let P denote $x \in A$, Q denote $x \in B$ and R denote $x \in C$.

Another example

Example

Show that $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$.

Proof.

Let P denote $x \in A$, Q denote $x \in B$ and R denote $x \in C$.

Observe that,

Another example

Example

Show that $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$.

Proof.

Let P denote $x \in A$, Q denote $x \in B$ and R denote $x \in C$.

Observe that,

 $x \in A \cup (B \cap C)$

Another example

Example

Show that $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$.

Proof.

Let P denote $x \in A$, Q denote $x \in B$ and R denote $x \in C$.

Observe that,

 $x \in A \cup (B \cap C) \rightarrow x \in A \text{ or } x \in (B \cap C),$

Another example

Example

Show that $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$.

Proof.

Let P denote $x \in A$, Q denote $x \in B$ and R denote $x \in C$.

Observe that,

 $x \in A \cup (B \cap C) \rightarrow x \in A \text{ or } x \in (B \cap C)$, definition of union

Another example

Example

Show that $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$.

Proof.

Let P denote $x \in A$, Q denote $x \in B$ and R denote $x \in C$.

Observe that,

 $\begin{array}{rcl} x \in A \cup (B \cap C) & \to & x \in A \text{ or } x \in (B \cap C), \text{ definition of union} \\ & \to & (x \in A) \text{ or } (x \in B \text{ and } x \in C), \end{array}$

Another example

Example

Show that $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$.

Proof.

Let P denote $x \in A$, Q denote $x \in B$ and R denote $x \in C$.

Observe that,

 $x \in A \cup (B \cap C) \rightarrow x \in A \text{ or } x \in (B \cap C), \text{ definition of union}$ $\rightarrow (x \in A) \text{ or } (x \in B \text{ and } x \in C), \text{ definition of intersection}$

Another example

Example

Show that
$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$
.

Proof.

Let P denote $x \in A$, Q denote $x \in B$ and R denote $x \in C$.

Observe that,

 $x \in A \cup (B \cap C) \rightarrow x \in A \text{ or } x \in (B \cap C)$, definition of union $\rightarrow (x \in A) \text{ or } (x \in B \text{ and } x \in C)$, definition of intersection $\rightarrow P \lor (Q \land R)$

Another example

Example

Show that
$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$
.

Proof.

Let P denote $x \in A$, Q denote $x \in B$ and R denote $x \in C$.

$$\begin{array}{lll} x \in A \cup (B \cap C) & \to & x \in A \text{ or } x \in (B \cap C), \text{ definition of union} \\ & \to & (x \in A) \text{ or } (x \in B \text{ and } x \in C), \text{ definition of intersection} \\ & \to & P \lor (Q \land R) \\ & \to & (P \lor Q) \land (P \lor R), \end{array}$$

Another example

Example

Show that
$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$
.

Proof.

Let P denote $x \in A$, Q denote $x \in B$ and R denote $x \in C$.

$$\begin{array}{rcl} x \in A \cup (B \cap C) & \to & x \in A \text{ or } x \in (B \cap C), \text{ definition of union} \\ & \to & (x \in A) \text{ or } (x \in B \text{ and } x \in C), \text{ definition of intersection} \\ & \to & P \lor (Q \land R) \\ & \to & (P \lor Q) \land (P \lor R), \text{ since } [P \lor (Q \land R)] \Leftrightarrow [(P \lor Q) \land (P \lor R)] \end{array}$$

Another example

Example

Show that
$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$
.

Proof.

Let P denote $x \in A$, Q denote $x \in B$ and R denote $x \in C$.

$$\begin{array}{rcl} x \in A \cup (B \cap C) & \rightarrow & x \in A \text{ or } x \in (B \cap C), \text{ definition of union} \\ & \rightarrow & (x \in A) \text{ or } (x \in B \text{ and } x \in C), \text{ definition of intersection} \\ & \rightarrow & P \lor (Q \land R) \\ & \rightarrow & (P \lor Q) \land (P \lor R), \text{ since } [P \lor (Q \land R)] \Leftrightarrow [(P \lor Q) \land (P \lor R)] \\ & \rightarrow & (x \in A \text{ or } x \in B) \text{ and } (x \in A \text{ or } x \in C) \end{array}$$

Another example

Example

Show that
$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$
.

Proof.

Let P denote $x \in A$, Q denote $x \in B$ and R denote $x \in C$.

$$\begin{array}{rcl} x \in A \cup (B \cap C) & \to & x \in A \text{ or } x \in (B \cap C), \text{ definition of union} \\ & \to & (x \in A) \text{ or } (x \in B \text{ and } x \in C), \text{ definition of intersection} \\ & \to & P \lor (Q \land R) \\ & \to & (P \lor Q) \land (P \lor R), \text{ since } [P \lor (Q \land R)] \Leftrightarrow [(P \lor Q) \land (P \lor R)] \\ & \to & (x \in A \text{ or } x \in B) \text{ and } (x \in A \text{ or } x \in C) \\ & \to & (x \in A \cup B) \text{ and } (x \in A \cup C), \end{array}$$

Another example

Example

Show that
$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$
.

Proof.

Let P denote $x \in A$, Q denote $x \in B$ and R denote $x \in C$.

$$\begin{array}{rcl} x \in A \cup (B \cap C) & \rightarrow & x \in A \text{ or } x \in (B \cap C), \text{ definition of union} \\ & \rightarrow & (x \in A) \text{ or } (x \in B \text{ and } x \in C), \text{ definition of intersection} \\ & \rightarrow & P \lor (Q \land R) \\ & \rightarrow & (P \lor Q) \land (P \lor R), \text{ since } [P \lor (Q \land R)] \Leftrightarrow [(P \lor Q) \land (P \lor R) \\ & \rightarrow & (x \in A \text{ or } x \in B) \text{ and } (x \in A \text{ or } x \in C) \\ & \rightarrow & (x \in A \cup B) \text{ and } (x \in A \cup C), \text{ definition of union} \end{array}$$

Another example

Example

Show that
$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$
.

Proof.

Let P denote $x \in A$, Q denote $x \in B$ and R denote $x \in C$.

$$\begin{array}{rcl} x \in A \cup (B \cap C) & \rightarrow & x \in A \text{ or } x \in (B \cap C), \text{ definition of union} \\ & \rightarrow & (x \in A) \text{ or } (x \in B \text{ and } x \in C), \text{ definition of intersection} \\ & \rightarrow & P \lor (Q \land R) \\ & \rightarrow & (P \lor Q) \land (P \lor R), \text{ since } [P \lor (Q \land R)] \Leftrightarrow [(P \lor Q) \land (P \lor R)] \\ & \rightarrow & (x \in A \text{ or } x \in B) \text{ and } (x \in A \text{ or } x \in C) \\ & \rightarrow & (x \in A \cup B) \text{ and } (x \in A \cup C), \text{ definition of union} \\ & \rightarrow & x \in (A \cup B) \cap (A \cup C), \end{array}$$

Another example

Example

Show that
$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$
.

Proof.

Let P denote $x \in A$, Q denote $x \in B$ and R denote $x \in C$.

Observe that,

 $\begin{array}{rcl} x \in A \cup (B \cap C) & \rightarrow & x \in A \text{ or } x \in (B \cap C), \text{ definition of union} \\ & \rightarrow & (x \in A) \text{ or } (x \in B \text{ and } x \in C), \text{ definition of intersection} \\ & \rightarrow & P \lor (Q \land R) \\ & \rightarrow & (P \lor Q) \land (P \lor R), \text{ since } [P \lor (Q \land R)] \Leftrightarrow [(P \lor Q) \land (P \lor R)] \\ & \rightarrow & (x \in A \text{ or } x \in B) \text{ and } (x \in A \text{ or } x \in C) \\ & \rightarrow & (x \in A \cup B) \text{ and } (x \in A \cup C), \text{ definition of union} \\ & \rightarrow & x \in (A \cup B) \cap (A \cup C), \text{ definition of intersection} \end{array}$

Another example

Example

Show that
$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$
.

Proof.

Let P denote $x \in A$, Q denote $x \in B$ and R denote $x \in C$.

Observe that,

$$\begin{array}{rcl} x \in A \cup (B \cap C) & \rightarrow & x \in A \text{ or } x \in (B \cap C), \text{ definition of union} \\ & \rightarrow & (x \in A) \text{ or } (x \in B \text{ and } x \in C), \text{ definition of intersection} \\ & \rightarrow & P \lor (Q \land R) \\ & \rightarrow & (P \lor Q) \land (P \lor R), \text{ since } [P \lor (Q \land R)] \Leftrightarrow [(P \lor Q) \land (P \lor R)] \\ & \rightarrow & (x \in A \text{ or } x \in B) \text{ and } (x \in A \text{ or } x \in C) \\ & \rightarrow & (x \in A \cup B) \text{ and } (x \in A \cup C), \text{ definition of union} \\ & \rightarrow & x \in (A \cup B) \cap (A \cup C), \text{ definition of intersection} \end{array}$$

Simply reverse the argument to show that every element in the set represented by the RHS is also an element of the set represented by the LHS.

Two more examples

Two more examples

Examples

Fundamentals Sets and Combinatorics

Two more examples

Examples

Prove De Morgan's Laws

Two more examples

Examples

Prove De Morgan's Laws

(i)
$$(A \cup B)' = A' \cap B'$$

Two more examples

Examples

Prove De Morgan's Laws

(i)
$$(A \cup B)' = A' \cap B'$$

(ii)
$$(A \cap B)' = A' \cup B'$$
.

Proof of the Union Law

Proof of the Union Law

Proof

Proof of the Union Law

Proof

Let $P \equiv x \in A$ and $Q \equiv x \in B$.

Proof of the Union Law

Proof

Proof of the Union Law

Proof

Proof of the Union Law

Proof

Let $P \equiv x \in A$ and $Q \equiv x \in B$. It follows that $P' \equiv x \notin A$ and $Q' \equiv x \notin B$. Observe that,

 $x \in (A \cup B)' \quad \rightarrow$

Proof of the Union Law

Proof

Let $P \equiv x \in A$ and $Q \equiv x \in B$. It follows that $P' \equiv x \notin A$ and $Q' \equiv x \notin B$. Observe that,

 $x \in (A \cup B)' \quad \rightarrow \quad x \not\in (A \cup B)$

Proof of the Union Law

Proof

$$\begin{array}{rcl} x\in (A\cup B)' & \to & x\not\in (A\cup B) \\ & \to & \end{array}$$

Proof of the Union Law

Proof

$$\begin{array}{rcl} x \in (A \cup B)' & \to & x \not\in (A \cup B) \\ & \to & (x \in (A \cup B))' \end{array}$$

Proof of the Union Law

Proof

$$\begin{array}{rcl} x \in (A \cup B)' & \to & x \notin (A \cup B) \\ & \to & (x \in (A \cup B))' \\ & \to & \end{array}$$

Proof of the Union Law

Proof

$$\begin{array}{rcl} x \in (A \cup B)' & \to & x \notin (A \cup B) \\ & \to & (x \in (A \cup B))' \\ & \to & [(x \in A) \text{ or } (x \in B)]' \end{array}$$

Proof of the Union Law

Proof

$$\begin{array}{rcl} x \in (A \cup B)' & \to & x \not\in (A \cup B) \\ & \to & (x \in (A \cup B))' \\ & \to & [(x \in A) \text{ or } (x \in B)]', \text{ definition of union} \end{array}$$

Proof of the Union Law

Proof

$$\begin{array}{rcl} x \in (A \cup B)' & \to & x \notin (A \cup B) \\ & \to & (x \in (A \cup B))' \\ & \to & [(x \in A) \text{ or } (x \in B)]', \text{ definition of union} \\ & \to \end{array}$$

Proof of the Union Law

Proof

$$\begin{array}{rcl} x \in (A \cup B)' & \to & x \not\in (A \cup B) \\ & \to & (x \in (A \cup B))' \\ & \to & [(x \in A) \text{ or } (x \in B)]', \text{ definition of union} \\ & \to & (P \lor Q)' \end{array}$$

Proof of the Union Law

Proof

$$\begin{array}{rcl} x \in (A \cup B)' & \to & x \not\in (A \cup B) \\ & \to & (x \in (A \cup B))' \\ & \to & [(x \in A) \text{ or } (x \in B)]', \text{ definition of union} \\ & \to & (P \lor Q)' \\ & \to & \end{array}$$

Proof of the Union Law

Proof

$$\begin{array}{rcl} x \in (A \cup B)' & \to & x \not\in (A \cup B) \\ & \to & (x \in (A \cup B))' \\ & \to & [(x \in A) \text{ or } (x \in B)]', \text{ definition of union} \\ & \to & (P \lor Q)' \\ & \to & P' \land Q', \end{array}$$

Proof of the Union Law

Proof

$$\begin{array}{rcl} x \in (A \cup B)' & \to & x \notin (A \cup B) \\ & \to & (x \in (A \cup B))' \\ & \to & [(x \in A) \text{ or } (x \in B)]', \text{ definition of union} \\ & \to & (P \lor Q)' \\ & \to & P' \land Q', \text{ De Morgan's law for propositional logic} \end{array}$$

Proof of the Union Law

Proof

$$\begin{array}{rcl} x \in (A \cup B)' & \to & x \notin (A \cup B) \\ & \to & (x \in (A \cup B))' \\ & \to & [(x \in A) \text{ or } (x \in B)]', \text{ definition of union} \\ & \to & (P \lor Q)' \\ & \to & P' \land Q', \text{ De Morgan's law for propositional logic} \\ & \to & \end{array}$$

Proof of the Union Law

Proof

$$\begin{array}{rcl} x \in (A \cup B)' & \to & x \notin (A \cup B) \\ & \to & (x \in (A \cup B))' \\ & \to & [(x \in A) \text{ or } (x \in B)]', \text{ definition of union} \\ & \to & (P \lor Q)' \\ & \to & P' \land Q', \text{ De Morgan's law for propositional logic} \\ & \to & (x \notin A) \text{ and } (x \notin B) \end{array}$$

Proof of the Union Law

Proof

$$\begin{array}{rcl} x \in (A \cup B)' & \to & x \not\in (A \cup B) \\ & \to & (x \in (A \cup B))' \\ & \to & [(x \in A) \text{ or } (x \in B)]', \text{ definition of union} \\ & \to & (P \lor Q)' \\ & \to & P' \land Q', \text{ De Morgan's law for propositional logic} \\ & \to & (x \notin A) \text{ and } (x \notin B) \\ & \to & \end{array}$$

Proof of the Union Law

Proof

$$\begin{array}{rcl} x \in (A \cup B)' & \to & x \not\in (A \cup B) \\ & \to & (x \in (A \cup B))' \\ & \to & [(x \in A) \text{ or } (x \in B)]', \text{ definition of union} \\ & \to & (P \lor Q)' \\ & \to & P' \land Q', \text{ De Morgan's law for propositional logic} \\ & \to & (x \notin A) \text{ and } (x \notin B) \\ & \to & (x \in A') \text{ and } (x \in B') \end{array}$$

Proof of the Union Law

Proof

$$\begin{array}{rcl} x \in (A \cup B)' & \rightarrow & x \notin (A \cup B) \\ & \rightarrow & (x \in (A \cup B))' \\ & \rightarrow & [(x \in A) \text{ or } (x \in B)]', \text{ definition of union} \\ & \rightarrow & (P \lor Q)' \\ & \rightarrow & P' \land Q', \text{ De Morgan's law for propositional logic} \\ & \rightarrow & (x \notin A) \text{ and } (x \notin B) \\ & \rightarrow & (x \in A') \text{ and } (x \in B') \\ & \rightarrow & \end{array}$$

Proof of the Union Law

Proof

$$\begin{array}{rcl} x \in (A \cup B)' & \rightarrow & x \not\in (A \cup B) \\ & \rightarrow & (x \in (A \cup B))' \\ & \rightarrow & [(x \in A) \text{ or } (x \in B)]', \text{ definition of union} \\ & \rightarrow & (P \lor Q)' \\ & \rightarrow & P' \land Q', \text{ De Morgan's law for propositional logic} \\ & \rightarrow & (x \notin A) \text{ and } (x \notin B) \\ & \rightarrow & (x \in A') \text{ and } (x \in B') \\ & \rightarrow & x \in (A' \cap B'), \end{array}$$

Proof of the Union Law

Proof

$$\begin{array}{rcl} x \in (A \cup B)' & \to & x \not\in (A \cup B) \\ & \to & (x \in (A \cup B))' \\ & \to & [(x \in A) \text{ or } (x \in B)]', \text{ definition of union} \\ & \to & (P \lor Q)' \\ & \to & P' \land Q', \text{ De Morgan's law for propositional logic} \\ & \to & (x \notin A) \text{ and } (x \notin B) \\ & \to & (x \in A') \text{ and } (x \in B') \\ & \to & x \in (A' \cap B'), \text{ definition of intersection} \end{array}$$

Proof of the Union Law

Proof

$$\begin{aligned} x \in (A \cup B)' &\to x \notin (A \cup B) \\ &\to (x \in (A \cup B))' \\ &\to [(x \in A) \text{ or } (x \in B)]', \text{ definition of union} \\ &\to (P \lor Q)' \\ &\to P' \land Q', \text{ De Morgan's law for propositional logic} \\ &\to (x \notin A) \text{ and } (x \notin B) \\ &\to (x \in A') \text{ and } (x \in B') \\ &\to x \in (A' \cap B'), \text{ definition of intersection} \\ &\Rightarrow (A \cup B)' \end{aligned}$$

Proof of the Union Law

Proof

$$\begin{array}{rcl} x \in (A \cup B)' & \to & x \not\in (A \cup B) \\ & \to & (x \in (A \cup B))' \\ & \to & [(x \in A) \text{ or } (x \in B)]', \text{ definition of union} \\ & \to & (P \lor Q)' \\ & \to & P' \land Q', \text{ De Morgan's law for propositional logic} \\ & \to & (x \notin A) \text{ and } (x \notin B) \\ & \to & (x \in A') \text{ and } (x \in B') \\ & \to & x \in (A' \cap B'), \text{ definition of intersection} \\ & \Rightarrow (A \cup B)' & \subseteq & (A' \cap B'). \end{array}$$

Proof of the Union Law

Proof

Let $P \equiv x \in A$ and $Q \equiv x \in B$. It follows that $P' \equiv x \notin A$ and $Q' \equiv x \notin B$. Observe that,

$$\begin{aligned} x \in (A \cup B)' &\to x \notin (A \cup B) \\ &\to (x \in (A \cup B))' \\ &\to [(x \in A) \text{ or } (x \in B)]', \text{ definition of union} \\ &\to (P \lor Q)' \\ &\to P' \land Q', \text{ De Morgan's law for propositional logic} \\ &\to (x \notin A) \text{ and } (x \notin B) \\ &\to (x \in A') \text{ and } (x \in B') \\ &\to x \in (A' \cap B'), \text{ definition of intersection} \\ &\Rightarrow (A \cup B)' \subseteq (A' \cap B'). \end{aligned}$$

You can reverse the argument to show that $(A' \cap B') \subseteq (A \cup B)'$.

Proof of the Intersection Law

Countability

Proof of the Intersection Law

Proof

Fundamentals Sets and Combinatorics

Definition and Notation Relationships between sets Sets of Sets Operations on elements of a Set Operations on Sets

Countability

Proof of the Intersection Law

Proof

Let $P \equiv x \in A$ and $Q \equiv x \in B$.

Proof of the Intersection Law

Proof

Proof of the Intersection Law

Proof

Proof of the Intersection Law

Proof

Let $P \equiv x \in A$ and $Q \equiv x \in B$. It follows that $P' \equiv x \notin A$ and $Q' \equiv x \notin B$. Observe that,

 $x \in (A \cap B)' \quad \rightarrow$

Proof of the Intersection Law

Proof

Let $P \equiv x \in A$ and $Q \equiv x \in B$. It follows that $P' \equiv x \notin A$ and $Q' \equiv x \notin B$. Observe that,

 $x \in (A \cap B)' \quad \rightarrow \quad x \not\in (A \cap B)$

Proof of the Intersection Law

Proof

$$x \in (A \cap B)' \rightarrow x \notin (A \cap B)$$

Proof of the Intersection Law

Proof

$$\begin{array}{rcl} x \in (A \cap B)' & \rightarrow & x \not\in (A \cap B) \\ & \rightarrow & (x \in (A \cap B))' \end{array}$$

Proof of the Intersection Law

Proof

$$\begin{array}{rcl} x \in (A \cap B)' & \to & x \notin (A \cap B) \\ & \to & (x \in (A \cap B))' \\ & \to & \end{array}$$

Proof of the Intersection Law

Proof

$$\begin{aligned} x \in (A \cap B)' &\to x \notin (A \cap B) \\ &\to (x \in (A \cap B))' \\ &\to [(x \in A) \text{ and } (x \in B)]' \end{aligned}$$

Proof of the Intersection Law

Proof

$$\begin{array}{rcl} x \in (A \cap B)' & \to & x \notin (A \cap B) \\ & \to & (x \in (A \cap B))' \\ & \to & [(x \in A) \text{ and } (x \in B)]', \text{ definition of intersection} \end{array}$$

Proof of the Intersection Law

Proof

$$\begin{array}{rcl} x \in (A \cap B)' & \to & x \notin (A \cap B) \\ & \to & (x \in (A \cap B))' \\ & \to & [(x \in A) \text{ and } (x \in B)]', \text{ definition of intersection} \\ & \to \end{array}$$

Proof of the Intersection Law

Proof

$$\begin{array}{rcl} x \in (A \cap B)' & \to & x \not\in (A \cap B) \\ & \to & (x \in (A \cap B))' \\ & \to & [(x \in A) \text{ and } (x \in B)]', \text{ definition of intersection} \\ & \to & [(x \in A) \land (x \in B)]' \end{array}$$

Proof of the Intersection Law

Proof

$$\begin{array}{rcl} x \in (A \cap B)' & \to & x \notin (A \cap B) \\ & \to & (x \in (A \cap B))' \\ & \to & [(x \in A) \text{ and } (x \in B)]', \text{ definition of intersection} \\ & \to & [(x \in A) \land (x \in B)]' \\ & \to & \end{array}$$

Proof of the Intersection Law

Proof

$$\begin{array}{rcl} x \in (A \cap B)' & \to & x \not\in (A \cap B) \\ & \to & (x \in (A \cap B))' \\ & \to & [(x \in A) \text{ and } (x \in B)]', \text{ definition of intersection} \\ & \to & [(x \in A) \land (x \in B)]' \\ & \to & (P \land Q)' \end{array}$$

Proof of the Intersection Law

Proof

$$\begin{array}{rccc} x \in (A \cap B)' & \to & x \not\in (A \cap B) \\ & \to & (x \in (A \cap B))' \\ & \to & [(x \in A) \text{ and } (x \in B)]', \text{ definition of intersection} \\ & \to & [(x \in A) \land (x \in B)]' \\ & \to & (P \land Q)' \\ & \to & \end{array}$$

Proof of the Intersection Law

Proof

$$\begin{array}{rccc} x \in (A \cap B)' & \to & x \notin (A \cap B) \\ & \to & (x \in (A \cap B))' \\ & \to & [(x \in A) \text{ and } (x \in B)]', \text{ definition of intersection} \\ & \to & [(x \in A) \land (x \in B)]' \\ & \to & (P \land Q)' \\ & \to & P' \lor Q', \text{ De Morgan's law for propositional logic} \end{array}$$

Proof of the Intersection Law

Proof

$$\begin{array}{rcl} x \in (A \cap B)' & \to & x \notin (A \cap B) \\ & \to & (x \in (A \cap B))' \\ & \to & [(x \in A) \text{ and } (x \in B)]', \text{ definition of intersection} \\ & \to & [(x \in A) \land (x \in B)]' \\ & \to & (P \land Q)' \\ & \to & P' \lor Q', \text{ De Morgan's law for propositional logic} \\ & \to & \end{array}$$

Proof of the Intersection Law

Proof

$$\begin{array}{rcl} x \in (A \cap B)' & \to & x \notin (A \cap B) \\ & \to & (x \in (A \cap B))' \\ & \to & [(x \in A) \text{ and } (x \in B)]', \text{ definition of intersection} \\ & \to & [(x \in A) \wedge (x \in B)]' \\ & \to & (P \wedge Q)' \\ & \to & P' \lor Q', \text{ De Morgan's law for propositional logic} \\ & \to & (x \notin A) \text{ or } (x \notin B) \end{array}$$

Proof of the Intersection Law

Proof

$$\begin{array}{rcl} x \in (A \cap B)' & \to & x \notin (A \cap B) \\ & \to & (x \in (A \cap B))' \\ & \to & [(x \in A) \text{ and } (x \in B)]', \text{ definition of intersection} \\ & \to & [(x \in A) \land (x \in B)]' \\ & \to & (P \land Q)' \\ & \to & P' \lor Q', \text{ De Morgan's law for propositional logic} \\ & \to & (x \notin A) \text{ or } (x \notin B) \\ & \to \end{array}$$

Proof of the Intersection Law

Proof

$$\begin{array}{rcl} x \in (A \cap B)' & \to & x \notin (A \cap B) \\ & \to & (x \in (A \cap B))' \\ & \to & [(x \in A) \text{ and } (x \in B)]', \text{ definition of intersection} \\ & \to & [(x \in A) \wedge (x \in B)]' \\ & \to & (P \wedge Q)' \\ & \to & P' \lor Q', \text{ De Morgan's law for propositional logic} \\ & \to & (x \notin A) \text{ or } (x \notin B) \\ & \to & (x \in A') \text{ or } (x \in B') \end{array}$$

Proof of the Intersection Law

Proof

$$\begin{array}{rcl} x \in (A \cap B)' & \rightarrow & x \notin (A \cap B) \\ & \rightarrow & (x \in (A \cap B))' \\ & \rightarrow & [(x \in A) \text{ and } (x \in B)]', \text{ definition of intersection} \\ & \rightarrow & [(x \in A) \wedge (x \in B)]' \\ & \rightarrow & (P \wedge Q)' \\ & \rightarrow & P' \lor Q', \text{ De Morgan's law for propositional logic} \\ & \rightarrow & (x \notin A) \text{ or } (x \notin B) \\ & \rightarrow & (x \in A') \text{ or } (x \in B') \\ & \rightarrow & \end{array}$$

Proof of the Intersection Law

Proof

$$\begin{array}{rcl} x \in (A \cap B)' & \rightarrow & x \notin (A \cap B) \\ & \rightarrow & (x \in (A \cap B))' \\ & \rightarrow & [(x \in A) \text{ and } (x \in B)]', \text{ definition of intersection} \\ & \rightarrow & [(x \in A) \wedge (x \in B)]' \\ & \rightarrow & (P \wedge Q)' \\ & \rightarrow & P' \lor Q', \text{ De Morgan's law for propositional logic} \\ & \rightarrow & (x \notin A) \text{ or } (x \notin B) \\ & \rightarrow & (x \in A') \text{ or } (x \in B') \\ & \rightarrow & x \in (A' \cup B'), \end{array}$$

Proof of the Intersection Law

Proof

$$\begin{array}{rcl} x \in (A \cap B)' & \to & x \notin (A \cap B) \\ & \to & (x \in (A \cap B))' \\ & \to & [(x \in A) \text{ and } (x \in B)]', \text{ definition of intersection} \\ & \to & [(x \in A) \wedge (x \in B)]' \\ & \to & (P \wedge Q)' \\ & \to & P' \lor Q', \text{ De Morgan's law for propositional logic} \\ & \to & (x \notin A) \text{ or } (x \notin B) \\ & \to & (x \in A') \text{ or } (x \in B') \\ & \to & x \in (A' \cup B'), \text{ definition of union} \end{array}$$

Proof of the Intersection Law

Proof

$$\begin{array}{rcl} x \in (A \cap B)' & \to & x \not\in (A \cap B) \\ & \to & (x \in (A \cap B))' \\ & \to & [(x \in A) \text{ and } (x \in B)]', \text{ definition of intersection} \\ & \to & [(x \in A) \wedge (x \in B)]' \\ & \to & (P \wedge Q)' \\ & \to & P' \lor Q', \text{ De Morgan's law for propositional logic} \\ & \to & (x \notin A) \text{ or } (x \notin B) \\ & \to & (x \in A') \text{ or } (x \in B') \\ & \to & x \in (A' \cup B'), \text{ definition of union} \\ \end{array}$$

Proof of the Intersection Law

Proof

$$\begin{array}{rcl} x \in (A \cap B)' & \to & x \notin (A \cap B) \\ & \to & (x \in (A \cap B))' \\ & \to & [(x \in A) \text{ and } (x \in B)]', \text{ definition of intersection} \\ & \to & [(x \in A) \wedge (x \in B)]' \\ & \to & (P \wedge Q)' \\ & \to & P' \lor Q', \text{ De Morgan's law for propositional logic} \\ & \to & (x \notin A) \text{ or } (x \notin B) \\ & \to & (x \in A') \text{ or } (x \in B') \\ & \to & x \in (A' \cup B'), \text{ definition of union} \\ & \Rightarrow (A \cap B)' & \subseteq & (A' \cup B'). \end{array}$$

Proof of the Intersection Law

Proof

$$\begin{array}{rcl} x \in (A \cap B)' & \to & x \not\in (A \cap B) \\ & \to & (x \in (A \cap B))' \\ & \to & [(x \in A) \text{ and } (x \in B)]', \text{ definition of intersection} \\ & \to & [(x \in A) \land (x \in B)]' \\ & \to & (P \land Q)' \\ & \to & P' \lor Q', \text{ De Morgan's law for propositional logic} \\ & \to & (x \notin A) \text{ or } (x \notin B) \\ & \to & (x \in A') \text{ or } (x \in B') \\ & \to & x \in (A' \cup B'), \text{ definition of union} \\ & \Rightarrow & (A \cap B)' & \subseteq & (A' \cup B'). \text{ Reverse for } (A' \cup B') \subseteq (A \cap B)'. \end{array}$$

A more difficult example

A more difficult example

Exercise Show that

A more difficult example

Exercise

Show that

$[A \cup (B \cap C)] \cap ([A' \cup (B \cap C)] \cap (B \cap C)') = \emptyset$

A more difficult example

Exercise

Show that

 $[A \cup (B \cap C)] \cap ([A' \cup (B \cap C)] \cap (B \cap C)') = \emptyset$

Solution

Fundamentals Sets and Combinatorics

A more difficult example

Exercise Show that $[A \cup (B \cap C)] \cap ([A' \cup (B \cap C)] \cap (B \cap C)') = \emptyset$

Solution

Let $L = [A \cup (B \cap C)] \cap ([A' \cup (B \cap C)] \cap (B \cap C)').$

A more difficult example

Exercise

Show that

 $[A \cup (B \cap C)] \cap ([A' \cup (B \cap C)] \cap (B \cap C)') = \emptyset$

Solution

Let $L = [A \cup (B \cap C)] \cap ([A' \cup (B \cap C)] \cap (B \cap C)').$

Since intersection is associative, we can rewrite *L* as:

A more difficult example

Exercise

Show that

 $[A \cup (B \cap C)] \cap ([A' \cup (B \cap C)] \cap (B \cap C)') = \emptyset$

Solution

Let $L = [A \cup (B \cap C)] \cap ([A' \cup (B \cap C)] \cap (B \cap C)').$

Since intersection is associative, we can rewrite *L* as:

$$L_1 = ([A \cup (B \cap C)] \cap [A' \cup (B \cap C)]) \cap (B \cap C)'.$$

A more difficult example

Exercise

Show that

 $[A \cup (B \cap C)] \cap ([A' \cup (B \cap C)] \cap (B \cap C)') = \emptyset$

Solution

Let $L = [A \cup (B \cap C)] \cap ([A' \cup (B \cap C)] \cap (B \cap C)').$

Since intersection is associative, we can rewrite *L* as:

$$L_1 = ([A \cup (B \cap C)] \cap [A' \cup (B \cap C)]) \cap (B \cap C)'.$$

Since union is commutative, we can rewrite L_1 as:

A more difficult example

Exercise

Show that

 $[A \cup (B \cap C)] \cap ([A' \cup (B \cap C)] \cap (B \cap C)') = \emptyset$

Solution

Let $L = [A \cup (B \cap C)] \cap ([A' \cup (B \cap C)] \cap (B \cap C)').$

Since intersection is associative, we can rewrite L as:

 $L_1 = ([A \cup (B \cap C)] \cap [A' \cup (B \cap C)]) \cap (B \cap C)'.$

Since union is commutative, we can rewrite L_1 as:

 $L_2 = ([(B \cap C) \cup A] \cap [(B \cap C) \cup A']) \cap (B \cap C)'.$

A more difficult example

Exercise

Show that

 $[A \cup (B \cap C)] \cap ([A' \cup (B \cap C)] \cap (B \cap C)') = \emptyset$

Solution

Let $L = [A \cup (B \cap C)] \cap ([A' \cup (B \cap C)] \cap (B \cap C)').$

Since intersection is associative, we can rewrite L as:

 $L_1 = ([A \cup (B \cap C)] \cap [A' \cup (B \cap C)]) \cap (B \cap C)'.$

Since union is commutative, we can rewrite L_1 as:

 $L_2 = ([(B \cap C) \cup A] \cap [(B \cap C) \cup A']) \cap (B \cap C)'.$

Now, recall that union distributes over intersection,

A more difficult example

Exercise

Show that

 $[A \cup (B \cap C)] \cap ([A' \cup (B \cap C)] \cap (B \cap C)') = \emptyset$

Solution

Let $L = [A \cup (B \cap C)] \cap ([A' \cup (B \cap C)] \cap (B \cap C)').$

Since intersection is associative, we can rewrite L as:

$$L_1 = ([A \cup (B \cap C)] \cap [A' \cup (B \cap C)]) \cap (B \cap C)'.$$

Since union is commutative, we can rewrite L_1 as:

$$L_2 = ([(B \cap C) \cup A] \cap [(B \cap C) \cup A']) \cap (B \cap C)'.$$

Now, recall that union distributes over intersection, i.e.,

 $A \cup (B \cap C) =$

A more difficult example

Exercise

Show that

 $[A \cup (B \cap C)] \cap ([A' \cup (B \cap C)] \cap (B \cap C)') = \emptyset$

Solution

Let $L = [A \cup (B \cap C)] \cap ([A' \cup (B \cap C)] \cap (B \cap C)').$

Since intersection is associative, we can rewrite L as:

$$L_1 = ([A \cup (B \cap C)] \cap [A' \cup (B \cap C)]) \cap (B \cap C)'.$$

Since union is commutative, we can rewrite L_1 as:

$$L_2 = ([(B \cap C) \cup A] \cap [(B \cap C) \cup A']) \cap (B \cap C)'.$$

Now, recall that union distributes over intersection, i.e.,

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C).$$

A more difficult example

Exercise

Show that

 $[A \cup (B \cap C)] \cap ([A' \cup (B \cap C)] \cap (B \cap C)') = \emptyset$

Solution

Let $L = [A \cup (B \cap C)] \cap ([A' \cup (B \cap C)] \cap (B \cap C)').$

Since intersection is associative, we can rewrite L as:

$$L_1 = ([A \cup (B \cap C)] \cap [A' \cup (B \cap C)]) \cap (B \cap C)'.$$

Since union is commutative, we can rewrite L_1 as:

$$L_2 = ([(B \cap C) \cup A] \cap [(B \cap C) \cup A']) \cap (B \cap C)'.$$

Now, recall that union distributes over intersection, i.e.,

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C).$$

Hence, L_2 can be rewritten as:

A more difficult example

Exercise

Show that

 $[A \cup (B \cap C)] \cap ([A' \cup (B \cap C)] \cap (B \cap C)') = \emptyset$

Solution

Let $L = [A \cup (B \cap C)] \cap ([A' \cup (B \cap C)] \cap (B \cap C)').$

Since intersection is associative, we can rewrite L as:

$$L_1 = ([A \cup (B \cap C)] \cap [A' \cup (B \cap C)]) \cap (B \cap C)'.$$

Since union is commutative, we can rewrite L_1 as:

$$L_2 = ([(B \cap C) \cup A] \cap [(B \cap C) \cup A']) \cap (B \cap C)'.$$

Now, recall that union distributes over intersection, i.e.,

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C).$$

Hence, L_2 can be rewritten as:

$$L_3 = [(B \cap C) \cup (A \cap A')] \cap (B \cap C)'.$$

Example (contd.)

Example (contd.)

Solution (contd.)

Example (contd.)

Solution (contd.)

However, $A \cap A' =$

Example (contd.)

Solution (contd.)

However, $A \cap A' = \emptyset$.

Example (contd.)

Solution (contd.)

However, $A \cap A' = \emptyset$.

Hence, L_3 can be rewritten as:

Example (contd.)

Solution (contd.)

However, $A \cap A' = \emptyset$.

Hence, L_3 can be rewritten as:

 $L_4 = [(B \cap C) \cup \emptyset] \cap (B \cap C)'.$

Example (contd.)

Solution (contd.)

However, $A \cap A' = \emptyset$.

Hence, L_3 can be rewritten as:

 $L_4 = [(B \cap C) \cup \emptyset] \cap (B \cap C)'.$

But $P \cup \emptyset = P$, for any set P.

Example (contd.)

Solution (contd.)

However, $A \cap A' = \emptyset$.

Hence, L_3 can be rewritten as:

 $L_4 = [(B \cap C) \cup \emptyset] \cap (B \cap C)'.$

But $P \cup \emptyset = P$, for any set P.

It follows that L_4 can be rewritten as:

Example (contd.)

Solution (contd.)

However, $A \cap A' = \emptyset$.

Hence, L_3 can be rewritten as:

 $L_4 = [(B \cap C) \cup \emptyset] \cap (B \cap C)'.$

But $P \cup \emptyset = P$, for any set P.

It follows that L_4 can be rewritten as:

 $L_5 = (B \cap C) \cap (B \cap C)'.$

Example (contd.)

Solution (contd.)

However, $A \cap A' = \emptyset$.

Hence, L_3 can be rewritten as:

 $L_4 = [(B \cap C) \cup \emptyset] \cap (B \cap C)'.$

But $P \cup \emptyset = P$, for any set *P*.

It follows that L_4 can be rewritten as:

 $L_5 = (B \cap C) \cap (B \cap C)'.$

Note that $A \cap A' = \emptyset$ as discussed before.

Example (contd.)

Solution (contd.)

However, $A \cap A' = \emptyset$.

Hence, L_3 can be rewritten as:

 $L_4 = [(B \cap C) \cup \emptyset] \cap (B \cap C)'.$

But $P \cup \emptyset = P$, for any set *P*.

It follows that L_4 can be rewritten as:

 $L_5 = (B \cap C) \cap (B \cap C)'.$

Note that $A \cap A' = \emptyset$ as discussed before.

It follows that $L_5 = \emptyset$.

Duality

Principle

Fundamentals Sets and Combinatorics

Duality

Principle

Let P denote some arbitrary set expression.

Duality

Principle

Let P denote some arbitrary set expression.

The dual of *P* denoted by P_D is the set expression obtained by substituting \cap for \cup and vice versa and *S* for \emptyset and vice versa.

Duality

Principle

Let P denote some arbitrary set expression.

The dual of *P* denoted by P_D is the set expression obtained by substituting \cap for \cup and vice versa and *S* for \emptyset and vice versa.

Theorem

Duality

Principle

Let P denote some arbitrary set expression.

The dual of *P* denoted by P_D is the set expression obtained by substituting \cap for \cup and vice versa and *S* for \emptyset and vice versa.

Theorem

A set identity is true if and only if its dual is true.

Duality

Principle

Let P denote some arbitrary set expression.

The dual of *P* denoted by P_D is the set expression obtained by substituting \cap for \cup and vice versa and *S* for \emptyset and vice versa.

Theorem

A set identity is true if and only if its dual is true.

Note

Duality

Principle

Let P denote some arbitrary set expression.

The dual of *P* denoted by P_D is the set expression obtained by substituting \cap for \cup and vice versa and *S* for \emptyset and vice versa.

Theorem

A set identity is true if and only if its dual is true.

Note

Duality is useful in proving set identities.

Duality

Principle

Let P denote some arbitrary set expression.

The dual of *P* denoted by P_D is the set expression obtained by substituting \cap for \cup and vice versa and *S* for \emptyset and vice versa.

Theorem

A set identity is true if and only if its dual is true.

Note

Duality is useful in proving set identities.

Example

Duality

Principle

Let P denote some arbitrary set expression.

The dual of *P* denoted by P_D is the set expression obtained by substituting \cap for \cup and vice versa and *S* for \emptyset and vice versa.

Theorem

A set identity is true if and only if its dual is true.

Note

Duality is useful in proving set identities.

Example

Show that

 $[A \cap (B \cup C)] \cup ([A' \cap (B \cup C)] \cup (B \cup C)') = S.$

Countable and Uncountable sets

Countable and Uncountable sets

Definition

Countable and Uncountable sets

Definition

The *number* of elements in a set *S* is called its cardinality.

Countable and Uncountable sets

Definition

The *number* of elements in a set *S* is called its cardinality.

The cardinality of set S is denoted by |S|.

Countable and Uncountable sets

Definition

The *number* of elements in a set *S* is called its cardinality.

The cardinality of set S is denoted by |S|.

Definition

Countable and Uncountable sets

Definition

The *number* of elements in a set *S* is called its cardinality.

The cardinality of set S is denoted by |S|.

Definition

A set *S* is said to be *finite*, if |S| = k, for some $k \in \mathcal{N}$.

Countable and Uncountable sets

Definition

The *number* of elements in a set S is called its cardinality.

The cardinality of set S is denoted by |S|.

Definition

A set *S* is said to be *finite*, if |S| = k, for some $k \in \mathcal{N}$.

Definition

Countable and Uncountable sets

Definition

The number of elements in a set S is called its cardinality.

The cardinality of set S is denoted by |S|.

Definition

A set *S* is said to be *finite*, if |S| = k, for some $k \in \mathcal{N}$.

Definition

A set *S* is said to be *denumerable*, if its cardinality is ∞ , but its elements can be enumerated in some order.

Countable and Uncountable sets

Definition

The *number* of elements in a set S is called its cardinality.

The cardinality of set S is denoted by |S|.

Definition

A set *S* is said to be *finite*, if |S| = k, for some $k \in \mathcal{N}$.

Definition

A set *S* is said to be *denumerable*, if its cardinality is ∞ , but its elements can be enumerated in some order.

For example, $\mathcal{N}, \mathcal{O}^+, \mathcal{E}^+, \mathcal{Z}^+, \mathcal{Z}^-$,

Countable and Uncountable sets

Definition

The *number* of elements in a set S is called its cardinality.

The cardinality of set S is denoted by |S|.

Definition

A set *S* is said to be *finite*, if |S| = k, for some $k \in \mathcal{N}$.

Definition

A set *S* is said to be *denumerable*, if its cardinality is ∞ , but its elements can be enumerated in some order.

For example, \mathcal{N} , \mathcal{O}^+ , \mathcal{E}^+ , \mathcal{Z}^+ , \mathcal{Z}^- , \mathcal{Z} and so on.

Countable and Uncountable sets

Definition

The *number* of elements in a set S is called its cardinality.

The cardinality of set S is denoted by |S|.

Definition

A set *S* is said to be *finite*, if |S| = k, for some $k \in \mathcal{N}$.

Definition

A set *S* is said to be *denumerable*, if its cardinality is ∞ , but its elements can be enumerated in some order.

For example, \mathcal{N} , \mathcal{O}^+ , \mathcal{E}^+ , \mathcal{Z}^+ , \mathcal{Z}^- , \mathcal{Z} and so on.

Definition

Countable and Uncountable sets

Definition

The *number* of elements in a set S is called its cardinality.

The cardinality of set S is denoted by |S|.

Definition

A set *S* is said to be *finite*, if |S| = k, for some $k \in \mathcal{N}$.

Definition

A set *S* is said to be *denumerable*, if its cardinality is ∞ , but its elements can be enumerated in some order.

For example, \mathcal{N} , \mathcal{O}^+ , \mathcal{E}^+ , \mathcal{Z}^+ , \mathcal{Z}^- , \mathcal{Z} and so on.

Definition

A set S is said to be countable, if it is either finite or denumerable.

Countable and Uncountable sets

Definition

The *number* of elements in a set S is called its cardinality.

The cardinality of set S is denoted by |S|.

Definition

A set *S* is said to be *finite*, if |S| = k, for some $k \in \mathcal{N}$.

Definition

A set S is said to be *denumerable*, if its cardinality is ∞ , but its elements can be enumerated in some order.

```
For example, \mathcal{N}, \mathcal{O}^+, \mathcal{E}^+, \mathcal{Z}^+, \mathcal{Z}^-, \mathcal{Z} and so on.
```

Definition

A set S is said to be countable, if it is either finite or denumerable. If it is not countable, it is said to be uncountable.

Countability examples

Countability examples

Example

Fundamentals Sets and Combinatorics

Countability examples

Example

Is the set Q^+ (positive rationals) countable?

Countability examples

Example

Is the set Q^+ (positive rationals) countable?

Countability examples

Example

Is the set Q^+ (positive rationals) countable?

Solution

$\begin{bmatrix} 1/1, 1/2, 1/3, 1/4, \dots \end{bmatrix}$

Countability examples

Example

Is the set Q^+ (positive rationals) countable?

$$\begin{bmatrix} 1/1, 1/2, 1/3, 1/4, \dots \\ 2/1, 2/2, 2/3, 2/4, \dots \end{bmatrix}$$

Countability examples

Example

Is the set Q^+ (positive rationals) countable?

Countability examples

Example

Is the set Q^+ (positive rationals) countable?

$$\left[\begin{array}{ccccc} 1/1, & 1/2, & 1/3, & 1/4, \dots \\ 2/1, & 2/2, & 2/3, & 2/4, \dots \\ 3/1, & 3/2, & 3/3, & 3/4, \dots \\ & & \vdots & \vdots & \vdots \\ & & \vdots & \vdots & \vdots \end{array}\right]$$

Cantor's Theorem

Cantor's Theorem

Theorem

Fundamentals Sets and Combinatorics

Cantor's Theorem

Theorem

The set of all real numbers in the interval [0, 1] is uncountable.

Proof of Cantor's theorem

Proof of Cantor's theorem

Proof.

Fundamentals Sets and Combinatorics

Proof of Cantor's theorem

Proof.

Assume the contrary, i.e., assume that the set of real numbers in [0, 1] is denumerable using some enumeration strategy.

Proof of Cantor's theorem

Proof.

Assume the contrary, i.e., assume that the set of real numbers in [0, 1] is denumerable using some enumeration strategy.

Proof of Cantor's theorem

Proof.

Assume the contrary, i.e., assume that the set of real numbers in [0, 1] is denumerable using some enumeration strategy.

Let d_{ij} denote the j^{th} digit in the i^{th} number of the enumeration.

Proof of Cantor's theorem

Proof.

Assume the contrary, i.e., assume that the set of real numbers in [0, 1] is denumerable using some enumeration strategy.

Let d_{ij} denote the j^{th} digit in the i^{th} number of the enumeration.

Accordingly, the enumeration can be represented as:

Proof of Cantor's theorem

Proof.

Assume the contrary, i.e., assume that the set of real numbers in [0, 1] is denumerable using some enumeration strategy.

Let d_{ij} denote the j^{th} digit in the i^{th} number of the enumeration.

Accordingly, the enumeration can be represented as:

Proof of Cantor's theorem

Proof.

Assume the contrary, i.e., assume that the set of real numbers in [0, 1] is denumerable using some enumeration strategy.

Let d_{ij} denote the j^{th} digit in the i^{th} number of the enumeration.

Accordingly, the enumeration can be represented as:

 $0.d_{11}d_{12}d_{13}\ldots$

Proof of Cantor's theorem

Proof.

Assume the contrary, i.e., assume that the set of real numbers in [0, 1] is denumerable using some enumeration strategy.

Let d_{ij} denote the j^{th} digit in the i^{th} number of the enumeration.

Accordingly, the enumeration can be represented as:

 $0.d_{11}d_{12}d_{13}...$ $0.d_{21}d_{22}d_{23}...$

Proof of Cantor's theorem

Proof.

Assume the contrary, i.e., assume that the set of real numbers in [0, 1] is denumerable using some enumeration strategy.

Let d_{ij} denote the j^{th} digit in the i^{th} number of the enumeration.

Accordingly, the enumeration can be represented as:

 $\begin{array}{l} 0.d_{11}d_{12}d_{13}\ldots \\ 0.d_{21}d_{22}d_{23}\ldots \\ 0.d_{31}d_{32}d_{33}\ldots \end{array}$

Proof of Cantor's theorem

Proof.

Assume the contrary, i.e., assume that the set of real numbers in [0, 1] is denumerable using some enumeration strategy.

Let d_{ij} denote the j^{th} digit in the i^{th} number of the enumeration.

Accordingly, the enumeration can be represented as:

 $\begin{array}{l} 0.d_{11}d_{12}d_{13}\ldots \\ 0.d_{21}d_{22}d_{23}\ldots \\ 0.d_{31}d_{32}d_{33}\ldots \end{array}$

Proof of Cantor's theorem

Proof.

Assume the contrary, i.e., assume that the set of real numbers in [0, 1] is denumerable using some enumeration strategy.

Let d_{ij} denote the j^{th} digit in the i^{th} number of the enumeration.

Accordingly, the enumeration can be represented as:

 $\begin{array}{l} 0.d_{11}d_{12}d_{13}\ldots \\ 0.d_{21}d_{22}d_{23}\ldots \\ 0.d_{31}d_{32}d_{33}\ldots \end{array}$

Proof of Cantor's theorem

Proof of Cantor's theorem

Proof.

Fundamentals Sets and Combinatorics

Proof of Cantor's theorem

Proof.

Construct the real number $p = 0.p_1p_2p_3...$ as follows:

Proof of Cantor's theorem

Proof.

Construct the real number $p = 0.p_1p_2p_3...$ as follows:

 $p_i = 5$, if $d_{ii} \neq 5$ and

Proof of Cantor's theorem

Proof.

Construct the real number $p = 0.p_1p_2p_3...$ as follows:

 $p_i = 5$, if $d_{ii} \neq 5$ and $p_i = 6$, if $d_{ii} = 5$.

Proof of Cantor's theorem

Proof.

Construct the real number $p = 0.p_1p_2p_3...$ as follows:

 $p_i = 5$, if $d_{ii} \neq 5$ and $p_i = 6$, if $d_{ii} = 5$.

Is p a real number in [0, 1]?

Proof of Cantor's theorem

Proof.

Construct the real number $p = 0.p_1p_2p_3...$ as follows:

 $p_i = 5$, if $d_{ii} \neq 5$ and $p_i = 6$, if $d_{ii} = 5$.

Is p a real number in [0, 1]?

Does p belong to the enumeration?

Proof of Cantor's theorem

Proof.

Construct the real number $p = 0.p_1p_2p_3...$ as follows:

 $p_i = 5$, if $d_{ii} \neq 5$ and $p_i = 6$, if $d_{ii} = 5$.

Is p a real number in [0, 1]?

Does p belong to the enumeration?

It follows that the set of reals in [0, 1] cannot be enumerated, i.e., the set is uncountable.