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Definition and Notation
Relationships between sets

Sets of Sets
Operations on elements of a Set

Operations on Sets
Set Identities
Countability

Set Fundamentals

Definition

A set is an unordered collection of objects.

Note

Not an adequate definition. Barber’s paradox.

Fundamental Question in Set theory

The fundamental question in set theory is membership,

i.e., does object x belong to set A.

This is denoted as: does x ∈ A?

Definition

Two sets are equal, if they contain the same elements. Logically,

A = B ⇔ (∀x)[x ∈ A↔ x ∈ B].
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Fundamentals (contd.)

Representing Sets

Three techniques:

(i) The extensional method - Explicitly enumerate all the elements of the set.

For example, A = {1, 5, 7}, B = {1, 2, 3, . . . , 100}, C = {red , white, blue}.
(ii) The intensional method - Specify a property P that characterizes the set elements.

For example, A = {x | x is an integer less than 7, but at least 3}.
(iii) Recursion - We can describe the set of all even positive integers as follows:

(a) 2 ∈ S. (b) if x ∈ S, then so is (does) (x + 2).
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Definition and Notation
Relationships between sets

Sets of Sets
Operations on elements of a Set

Operations on Sets
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Countability

Important Sets

Some important sets

(i) N - The set of non-negative integers {0, 1, . . . , }.
(ii) Z - The set of all integers {. . . ,−1, 0, 1, . . .}.
(iii) Q - The set of all rational numbers.

(iv) < - The set of all real numbers.

(v) C - The set of all complex numbers.

(vi) ∅ - The set with no elements or null set. Note that {∅} 6= ∅!
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Relationships

Definition

Subset - A is said to be a subset of B, denoted by A ⊆ B, if (∀x)[x ∈ A→ x ∈ B].

Definition

Proper subset - A is said to be a proper subset of B, denoted by A ⊂ B, if A ⊆ B, but
A 6= B.

Example

The statement ∅ ⊆ C is always true, since the statement (∀x)(x ∈ ∅ → x ∈ C) is
vacuously true.

Definition

A = B ⇔ (A ⊆ B) and (B ⊆ A).
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Example

Let A = {x | x is a multiple of 8} and B = {x | x is a multiple of 4}. Show that A ⊆ B.

Proof.

Let x ∈ A.

Hence, x = 8 · k , for some integer k .

It follows that x = 4 · 2 · k = 4 ·m, for some integer m.

Hence, x ∈ B.
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Power Set

Definition

The set of all possible subsets of a set S is called its power set and denoted by P(S).

Example

Let S = {0, 1}. P(S) = {φ, {0}, {1}, {0, 1}}.

Exercise

Show that if a set has n elements, then its power set will have 2n elements.
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Binary operations

Definition

◦ is a binary operation on a set S, if for every ordered pair (x , y) of S,

(a) x ◦ y exists,

(b) x ◦ y is unique, and

(c) x ◦ y is a member of S.

The properties “exists” and “is unique” are collectively referred to as the property of
being “well-defined”.

The property that x ◦ y ∈ S is called the closure property, i.e., S is closed under
operation ◦.
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Example

Example

(i) Is + an operation on N?

(ii) Is − an operation on N? Z?

(iii) Is ÷ an operation on <?
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x ◦ y =
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Definition

# is said to be a unary operation on S, if for all x ∈ S, x# is well-defined and S is
closed under #.

Example

The operation x# = −x is a unary operation on Z, but not on N .

Example

The operation x# =
√

x is not a unary operation on N , Z or Q.

But it is a unary operation on <+ (the set of non-negative reals).
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Is the operation ◦ well-defined?

◦ 1 2 3
1 2 3 3
2 1 2 1
3 2 3 1
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Operations on Sets

Fundamentals

For discussing operations on sets, we assume the existence of a ground set S and its
power set P(S).

All operations are defined on the elements of P(S).

P(S) is called the universal set or the universe of discourse.

Principal Operations

Let A,B ∈ P(S), i.e., A and B are subsets of S.

(i) A ∪ B (union) is defined as: {x | x ∈ A or x ∈ B}.
(ii) A ∩ B (intersection) is defined as: {x | x ∈ A and x ∈ B}.

Two sets are said to be disjoint if A ∩ B = ∅.
(iii) A′ (complement) is defined as : {x | x ∈ S and x 6∈ A}.
(iv) A− B (difference) is defined as: {x | x ∈ A and x 6∈ B}.
(v) A× B (Cartesian Product) is defined as: {(x , y) | x ∈ A and y ∈ B}.
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Example

Let A = {1, 2, 3} and B = {a, b, 1}.
Compute A ∪ B, A ∩ B, A− B, A× B and B × A.

Solution

1 A ∪ B = {1, 2, 3, a, b}.
2 A ∩ B = {1}.
3 A− B = {2, 3}.
4 A× B = {(1, a), (1, b), (1, 1), (2, a), (2, b), (2, 1), (3, a), (3, b), (3, 1)}.
5 B × A = {(a, 1), (a, 2), (a, 3), (b, 1), (b, 2), (b, 3), (1, 1), (1, 2), (1, 3)}.

Note

A× A is referred to as A2, A× A× A as A3 and so on.
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Set Identities

Basic Identities

Recall that all sets under discussion are subsets of the ground set S.

Commutative :

{
A ∪ B = B ∪ A.
A ∩ B = B ∩ A.

Associative :

{
(A ∪ B) ∪ C = A ∪ (B ∪ C).
(A ∩ B) ∩ C = A ∩ (B ∩ C).

Distributive :

{
A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C).
A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C).
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Set Identities (contd.)

Basic Identities

Identity :

{
A ∪ ∅ = A.
A ∩ S = A.

Complement :
{

A ∪ A′ = S.
A ∩ A′ = ∅.

DeMorgan :

{
(A ∪ B)′ = A′ ∩ B′.
(A ∩ B)′ = A′ ∪ B′.
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Proving set identities

Tips and Techniques

(i) You will be asked to prove that some set expression (which is a set, say A) is
equal to some other set expression (which is also a set, say B).

(ii) Establish set inclusion in each direction, i.e., show that A ⊆ B and B ⊆ A.

(iii) Convert statements into propositional or predicate logic.

(iv) Use already proved identities from propositional and predicate logic.

(v) Convert the deduction into a statement in set theory.
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Examples

Example

Show that A ∪ B = B ∪ A.

Proof.

Let P denote the proposition x ∈ A and let Q denote the proposition x ∈ B.
Observe that

x ∈ (A ∪ B) → (x ∈ A) or (x ∈ B), definition of union

→ P ∨ Q

→ Q ∨ P, commutativity of disjunction

→ (x ∈ B) ∨ (x ∈ A)

→ x ∈ (B ∪ A), definition of union

We have thus shown that (A ∪ B) ⊆ (B ∪ A).

In order to establish equality, you also need to show that (B ∪ A) ⊆ (A ∪ B).

Simply reverse the above argument!
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Observe that,

x ∈ (A ∪ B)′ → x 6∈ (A ∪ B)

→ (x ∈ (A ∪ B))′

→ [(x ∈ A) or (x ∈ B)]′, definition of union

→ (P ∨ Q)′

→ P′ ∧ Q′, De Morgan’s law for propositional logic

→ (x 6∈ A) and (x 6∈ B)

→ (x ∈ A′) and (x ∈ B′)

→ x ∈ (A′ ∩ B′), definition of intersection

⇒ (A ∪ B)′ ⊆ (A′ ∩ B′).

You can reverse the argument to show that (A′ ∩ B′) ⊆ (A ∪ B)′.
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A more difficult example

Exercise

Show that

[A ∪ (B ∩ C)] ∩ ([A′ ∪ (B ∩ C)] ∩ (B ∩ C)′) = ∅

Solution

Let L = [A ∪ (B ∩ C)] ∩ ([A′ ∪ (B ∩ C)] ∩ (B ∩ C)′).

Since intersection is associative, we can rewrite L as:

L1 = ([A ∪ (B ∩ C)] ∩ [A′ ∪ (B ∩ C)]) ∩ (B ∩ C)′.

Since union is commutative, we can rewrite L1 as:

L2 = ([(B ∩ C) ∪ A] ∩ [(B ∩ C) ∪ A′]) ∩ (B ∩ C)′.

Now, recall that union distributes over intersection, i.e.,

A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C).

Hence, L2 can be rewritten as:

L3 = [(B ∩ C) ∪ (A ∩ A′)] ∩ (B ∩ C)′.
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Example (contd.)

Solution (contd.)

However, A ∩ A′ = ∅.
Hence, L3 can be rewritten as:

L4 = [(B ∩ C) ∪ ∅] ∩ (B ∩ C)′.

But P ∪ ∅ = P, for any set P.

It follows that L4 can be rewritten as:

L5 = (B ∩ C) ∩ (B ∩ C)′.

Note that A ∩ A′ = ∅ as discussed before.

It follows that L5 = ∅.
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Duality

Principle

Let P denote some arbitrary set expression.

The dual of P denoted by PD is the set expression obtained by substituting ∩ for ∪ and
vice versa and S for ∅ and vice versa.

Theorem

A set identity is true if and only if its dual is true.

Note

Duality is useful in proving set identities.

Example

Show that

[A ∩ (B ∪ C)] ∪ ([A′ ∩ (B ∪ C)] ∪ (B ∪ C)′) = S.
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Countable and Uncountable sets

Definition

The number of elements in a set S is called its cardinality.

The cardinality of set S is denoted by |S|.

Definition

A set S is said to be finite, if |S| = k , for some k ∈ N .

Definition

A set S is said to be denumerable, if its cardinality is∞, but its elements can be
enumerated in some order.

For example, N , O+, E+, Z+, Z−, Z and so on.

Definition

A set S is said to be countable, if it is either finite or denumerable.
If it is not countable, it is said to be uncountable.
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Countability examples

Example

Is the set Q+ (positive rationals) countable?

Solution 
1/1, 1/2, 1/3, 1/4, . . .
2/1, 2/2, 2/3, 2/4, . . .
3/1, 3/2, 3/3, 3/4, . . .

...
...

...
...


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Cantor’s Theorem

Theorem

The set of all real numbers in the interval [0, 1] is uncountable.
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Proof of Cantor’s theorem

Proof.

Assume the contrary, i.e., assume that the set of real numbers in [0, 1] is denumerable
using some enumeration strategy.

Let dij denote the j th digit in the i th number of the enumeration.

Accordingly, the enumeration can be represented as:

0.d11d12d13 . . .

0.d21d22d23 . . .

0.d31d32d33 . . .

...
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Proof of Cantor’s theorem

Proof.

Construct the real number p = 0.p1p2p3 . . . as follows:

pi = 5, if dii 6= 5 and pi = 6, if dii = 5.

Is p a real number in [0, 1]?

Does p belong to the enumeration?

It follows that the set of reals in [0, 1] cannot be enumerated, i.e., the set is
uncountable.

Fundamentals Sets and Combinatorics



Definition and Notation
Relationships between sets

Sets of Sets
Operations on elements of a Set

Operations on Sets
Set Identities
Countability

Proof of Cantor’s theorem

Proof.

Construct the real number p = 0.p1p2p3 . . . as follows:

pi = 5, if dii 6= 5 and pi = 6, if dii = 5.

Is p a real number in [0, 1]?

Does p belong to the enumeration?

It follows that the set of reals in [0, 1] cannot be enumerated, i.e., the set is
uncountable.

Fundamentals Sets and Combinatorics



Definition and Notation
Relationships between sets

Sets of Sets
Operations on elements of a Set

Operations on Sets
Set Identities
Countability

Proof of Cantor’s theorem

Proof.

Construct the real number p = 0.p1p2p3 . . . as follows:

pi = 5, if dii 6= 5 and pi = 6, if dii = 5.

Is p a real number in [0, 1]?

Does p belong to the enumeration?

It follows that the set of reals in [0, 1] cannot be enumerated, i.e., the set is
uncountable.

Fundamentals Sets and Combinatorics



Definition and Notation
Relationships between sets

Sets of Sets
Operations on elements of a Set

Operations on Sets
Set Identities
Countability

Proof of Cantor’s theorem

Proof.

Construct the real number p = 0.p1p2p3 . . . as follows:

pi = 5, if dii 6= 5 and

pi = 6, if dii = 5.

Is p a real number in [0, 1]?

Does p belong to the enumeration?

It follows that the set of reals in [0, 1] cannot be enumerated, i.e., the set is
uncountable.

Fundamentals Sets and Combinatorics



Definition and Notation
Relationships between sets

Sets of Sets
Operations on elements of a Set

Operations on Sets
Set Identities
Countability

Proof of Cantor’s theorem

Proof.

Construct the real number p = 0.p1p2p3 . . . as follows:

pi = 5, if dii 6= 5 and pi = 6, if dii = 5.

Is p a real number in [0, 1]?

Does p belong to the enumeration?

It follows that the set of reals in [0, 1] cannot be enumerated, i.e., the set is
uncountable.

Fundamentals Sets and Combinatorics



Definition and Notation
Relationships between sets

Sets of Sets
Operations on elements of a Set

Operations on Sets
Set Identities
Countability

Proof of Cantor’s theorem

Proof.

Construct the real number p = 0.p1p2p3 . . . as follows:

pi = 5, if dii 6= 5 and pi = 6, if dii = 5.

Is p a real number in [0, 1]?

Does p belong to the enumeration?

It follows that the set of reals in [0, 1] cannot be enumerated, i.e., the set is
uncountable.

Fundamentals Sets and Combinatorics



Definition and Notation
Relationships between sets

Sets of Sets
Operations on elements of a Set

Operations on Sets
Set Identities
Countability

Proof of Cantor’s theorem

Proof.

Construct the real number p = 0.p1p2p3 . . . as follows:

pi = 5, if dii 6= 5 and pi = 6, if dii = 5.

Is p a real number in [0, 1]?

Does p belong to the enumeration?

It follows that the set of reals in [0, 1] cannot be enumerated, i.e., the set is
uncountable.

Fundamentals Sets and Combinatorics



Definition and Notation
Relationships between sets

Sets of Sets
Operations on elements of a Set

Operations on Sets
Set Identities
Countability

Proof of Cantor’s theorem

Proof.

Construct the real number p = 0.p1p2p3 . . . as follows:

pi = 5, if dii 6= 5 and pi = 6, if dii = 5.

Is p a real number in [0, 1]?

Does p belong to the enumeration?

It follows that the set of reals in [0, 1] cannot be enumerated, i.e., the set is
uncountable.

Fundamentals Sets and Combinatorics


	Definition and Notation
	Relationships between sets
	Sets of Sets
	Operations on elements of a Set
	Operations on Sets
	Set Identities
	Countability

