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Introduction

When dealing with real-world problems, performing a thorough, objective, and
systematic analysis of the majority of decisions is more complex than we expect.

We normally use models such as mathematical formulas, decision trees, and flow
charts as aids for these decision making problems.

These models do not make the decisions, but are used to complement and improve the
decision process.

Definition

A linear model is a mathematical model consisting solely of linear functions.

A linear function is one in which all terms consist of a single continuous-valued
variable and in which each variable is raised to the power of 1.
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Example

Examples of linear functions:

f (x1, x2) = x1 + x2

f (x1, x2, x3) = 3 · x1 + 7 · x2 − 8 · x3

Examples of nonlinear functions:

f (x1, x2) = 2 · x2
1 + 3 · x3.7

2

f (x1, x2) = 4 · x1 − 3 · x1 · x2 + 2 · x2
2
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What is Linear Programming?

Definition

Linear programming, or linear optimization, is an approach to the modeling and
solution of linear mathematical models.

Specifically, we are concerned with those models that seek to optimize a linear
measure of performance.

Example

maximize 7 · x1 + 10 · x2 Objective Function
subject to x1 + x2 ≤ 10 Constraints

3 · x1 − x2 ≥ 4
x1, x2 ≥ 0 Variables
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Notes

If we can place a problem in the form of a linear programming model, then we have
some powerful tools for obtaining a solution and analyzing how the solution changes
when changing the variables.

The important thing to note is that the key ingredient in linear programming is the
model.
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Applications of Linear Programming

Examples

1 Blending (petroleum products to produce gasoline, ingredients to form a chemical
product)

2 Mixes (weapons to use against a given threat, investment mixes, capital
budgeting)

3 Diet Problem (determining foods that satisfy calories, vitamins, and minerals while
limiting fat and cholesterol)

4 Production Scheduling (how many items to produce to satisfy customer demand,
storage limitations)

5 Assignment (workers to tasks to minimize cost, missiles to targets)
6 Transportation/Dispatching (shipping scheme to satisfy customer demand while

minimizing transport cost)
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Vectors

Definition

A vector is an ordered array of numbers.

It can be either a row or a column of elements.

We use lowercase boldface type to denote vectors.

Example

a =

(
15
24

)
c =

(
4 −2 3 1

)
0 =

0
0
0



We denote an m-dimensional column vector b as b =


b1
b2
...

bm

.
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Vectors

Geometric Representation

The collection of all m-dimensional vectors is called Euclidean m-space and is
denoted by Em.

Vectors can be represented geometrically, where a vector can be thought of as either a
point or as an arrow directed from the origin to the point.

Example

Euclidean 2-space, E2.

(
5
2

)
(
−4
6

)

(
−7
−1

)
(

0
−4

)
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Vectors

Vector Addition

Vectors of the same type (row or column) can be added if they have the same number
of entries (dimension).

Given two vectors a and b, we simply add one element in a with the corresponding
element in b that is in the same position.

In other words, given c = a + b where ci is the element in the i th position, we have
ci = ai + bi .

Vector addition satisfies both the commutative (a + b = b + a) and associative
(a + (b + c) = (a + b) + c = a + b + c) laws.
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Vector Addition Example

a =

4
0
7

 b =

5
9
1

 c =
(
6 8 0

)
d =


4

10
2
3



a + b =

4
0
7

+

5
9
1

 =

9
9
8


a + c is undefined (not the same type)
a + d is undefined (different number of elements)
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Vectors

Multiplication of a Vector by a Scalar

We define a scalar as an element of E1, Euclidean 1-space.

Some examples include 3, 19, 37.5, and 2
3 .

To multiply a vector by a scalar, we simply multiply each element in the vector by the
scalar.

For example, if we are given a scalar α, a row vector a, and a column vector b, we have

α · a = α · (a1, a2, . . . , an) = (α · a1, α · a2, . . . , α · an)

α · b = α ·


b1
b2
...

bm

 =


α · b1
α · b2

...
α · bm


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Vectors

Vector Multiplication

We can multiply two vectors, if both have the same number of entries, one of them is a
row vector, and the other is a column vector.

The result, often called the dot product, is a scalar.

By convention, having a · b or ab means a is the row vector and b is the column vector.

To multiply the vectors, we multiply the corresponding entries and add the results.

What this means that if we assume the vectors have m entries, we have

a · b = ab =
m∑

i=1

ai · bi = α.

We should also note that vector multiplication satisfies the distributive law
a · (b + c) = a · b + a · c.
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Vector Multiplication Example

a =

3
0
7

 b =

−2
10
1

 c =
(
4 9 2

)

d =
(
5 1 4 2

)
e =

(
3 −2

)

c · a =
(
4 9 2

)3
0
7

 = 12 + 0 + 14 = 26

c · b =
(
4 9 2

)−2
10
1

 = −8 + 90 + 2 = 84
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Vectors

Norm of a Vector

The Euclidean norm of a vector a ∈ En, denoted by ‖a‖, is a measure of the size of a

and is given by ‖a‖ =
( n∑

i=1

(ai )
2

)1/2

. The Euclidean norm is also denoted by ‖a‖2

Example

a =

 3
2
−1

 ‖a‖ = [32 + 22 + (−1)2]1/2 = (14)1/2

Note

The dot product of two vectors can also be defined by using the Euclidean norm, which
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Special Vectors

Special Vector Types

Unit Vector - Has a 1 in the j th position and 0’s elsewhere. We normally denote this by
ej , where 1 appears in the j th position.
For example, if ej ∈ E3,

e1 =

1
0
0

 e2 =

0
1
0

 e3 =

0
0
1


Null or Zero Vector - Denoted by 0, is a vector having only 0’s.

Sum Vector - Denoted by 1, is a vector having only 1’s.

We call this the sum vector because the dot product of 1 and some vector a is a scalar
that is equal to the sum of the elements in a.
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Special Vectors (contd.)

Sum Vector

1 · a =
(
1 1 · · · 1

)


a1
a2
...

an

 = a1 + a2 + · · ·+ an =
n∑

i=1

ai
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Vector Combinations

Combinations

Given two vectors x and y and two scalars α1 and α2, α1 · x + α2 · y is called a linear
combination of the vectors x and y.

The combination is said to be convex, if α1, α2 ≥ 0 and α1 + α2 = 1.

The combination is said to be conical, if α1, α2 ≥ 0.

The combination is said to be affine, if α1 + α2 = 1.

Observation

The above notions can be generalized to vector sets of 3 or more vectors.
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Vectors

Linear Dependence and Independence

A set of vectors, a1, a2, . . . , am is linearly dependent, if there exist some scalars, αi ,
that are not all zero such that

α1 · a1 + α2 · a2 + · · ·+ αm · am = 0

If the only set of scalars, αi , for which the above equation holds is
α1 = α2 = · · · = αm = 0, the vectors are linearly independent.

Affine Dependence

A set of vectors, a1, a2, . . . , am is affinely dependent, if it is linearly dependent and
the scalars establishing the linear dependence sum to 0.

A set of vectors which is not affinely dependent, is said to be affinely independent.
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Linear Dependence

Example

Prove that the following vectors are linearly dependent:

a1 =

(
1
1

)
a2 =

(
2
3

)
a3 =

(
8

11

)

2a1 + 3a2 − 1a3 = 2
(

1
1

)
+ 3

(
2
3

)
− 1

(
8

11

)
=

(
0
0

)
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Vectors

Example

Prove that the following vectors are linearly independent:

a1 =

(
1
1

)
a2 =

(
2
0

)

Consider the equation

α1

(
1
1

)
+ α2

(
2
0

)
=

(
0
0

)

α1 + 2α2 = 0

α1 = 0

We can see that the only solution is α1 = α2 = 0. This means a1 and a2 are linearly
independent.
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Exercise

Exercise

Give an example of a vector set which is linearly dependent, but not affinely dependent.

Example

Consider the following set of vectors:

a =
(1

0

)
,b =

(0
1

)
and c =

(1
1

)

Observe that a + b− c = 0 and hence the vectors are linearly dependent.

Assume that they are affinely dependent. Then, as per the definition of affine
independence, there must exist scalars, α1, α2, α3 not all 0, such that
α1 · a + α2 · b + α3 · c = 0 and

∑3
i=1 αi = 0.
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Example (contd.)

Example

Observe that,

α1 · a + α2 · b + α3 · c = 0

⇒ α1 ·
(1

0

)
+ α2 ·

(0
1

)
+ α3 ·

(1
1

)
=

(0
0

)

This means that

α1 + α3 = 0⇒ α1 = −α3

α2 + α3 = 0⇒ α2 = −α3

Finally, since
∑3

i=1 αi = 0, we have, −α3 − α3 + α3 = 0.

It follows that α1 = α2 = α3 = 0 and the vectors are affinely independent.
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=

(0
0

)

This means that

α1 + α3 = 0⇒ α1 = −α3

α2 + α3 = 0⇒ α2 = −α3

Finally, since
∑3

i=1 αi = 0, we have, −α3 − α3 + α3 = 0.

It follows that α1 = α2 = α3 = 0 and the vectors are affinely independent.
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Vectors

Spanning Sets and Bases

The vectors b1,b2, . . . ,bp ∈ En are called a spanning set, if every vector in En can
be written as a linear combination of the bi .

In other words, if v ∈ En, then there exist scalars α1, α2, . . . , αp such that
v = α1 · b1 + α2 · b2 + · · ·+ αp · bp .

We say that the vectors b1,b2, . . . ,bn ∈ En are called a basis for En if they are
linearly independent, and form a spanning set for En.

Note that a basis is a minimal spanning set.

This is because adding a new vector would make the set linearly dependent and
removing one of the vectors would mean the remaining ones no longer span En.
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Matrices

Definition

A matrix is a rectangular array of numbers.

We represent them by uppercase boldface type with m rows and n columns.

The order of a matrix is the number of rows and columns of the matrix, so the example
below would be an m x n matrix.

Example

A =


a1,1 a1,2 · · · a1,n
a2,1 a2,2 · · · a2,n

...
...

. . .
...

am,1 am,2 · · · am,n


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Matrices

Matrix Addition

If two matrices are of the same order, then we can add them together.

To add two matrices, we add the elements in each corresponding position.

For example, if C = A + B, then ci,j = ai,j + bi,j for every i and j . Matrix addition
satisfies both the commutative and associative laws.

Example

A =

(
7 1 −2
3 3 0

)
B =

(
2 −3 4
1 5 9

)
C =

2 1
7 3
9 2



A + B =

(
7 1 −2
3 3 0

)
+

(
2 −3 4
1 5 9

)
=

(
9 −2 2
4 8 9

)
A + C is undefined
B + C is undefined
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Matrices

Multiplication by a Scalar

As with vectors, if we have a scalar α and a matrix A, the product α · A is obtained by
multiplying each element ai,j by α.

α · A =


α · a1,1 α · a1,2 · · · α · a1,n
α · a2,1 α · a2,2 · · · α · a2,n

...
...

. . .
...

α · am,1 α · am,2 · · · α · am,n



Example

β = 3, A =

 8 3
−1 2
7 1

 β · A = 3 ·

 8 3
−1 2
7 1

 =

24 9
−3 6
21 3


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Matrices

Matrix Multiplication

Two matrices A and B can be multiplied if and only if the number of columns in A is
equal to the number of rows in B.

If A is an m x n matrix, and B is a p x q matrix, then A · B = C is defined as an m x q
matrix if and only if n = p.

Each element in C is given by ci,j =
n∑

k=1

ai,k · bk,j , where n is the number of columns of

A (or rows of B).

Observe that i varies from 1 through m, where m is the number of rows of A. Likewise,
j varies from 1 through q, where q is the number of columns of B.

Matrix multiplication satisfies the associative and distributive laws, but it does not
satisfy the commutative law in general.
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Matrix Multiplication example

Example

A =

7 1
4 −3
2 0

 B =

(
2 1 7
0 −1 4

)

A · B =

7 1
4 −3
2 0

 · (2 1 7
0 −1 4

)
=

14 6 53
8 7 16
4 2 14


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Matrices

Special Matrices

Diagonal Matrix - A square matrix (m = n) whose entries that are not on the diagonal
are zero.

A =

a1,1 0 0
0 a2,2 0
0 0 a3,3


Identity Matrix - A diagonal matrix where all diagonal elements are equal to 1. We
denote this matrix as Im or I.

I3 =

1 0 0
0 1 0
0 0 1


Null or Zero Matrix - All elements are equal to zero and is denoted as 0. Note that this
does not have to be a square matrix.

0 =

(
0 0 0
0 0 0

)
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Matrices

Special Matrices (Contd.)

Matrix Transpose

- The transpose of A, denoted as At , is a reordering of A by
interchanging the rows and columns. For example, row 1 of A would be column 1 of At .

A =


a1,1 a1,2 · · · a1,n
a2,1 a2,2 · · · a2,n

...
...

. . .
...

am,1 am,2 · · · am,n

 At =


a1,1 a2,1 · · · am,1
a1,2 a2,2 · · · am,2

...
...

. . .
...

a1,n a2,n · · · am,n


Symmetric Matrix - A matrix A, where A = At .

A =

1 2 3
2 6 4
3 4 9


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Special Matrices (Contd.)

Augmented Matrix - A matrix where the rows and columns of another matrix are
appended to the original matrix. If A is augmented with B, we get (A,B) or (A|B).

A =

(
1 4
5 6

)
B =

(
3 2
1 9

)
(A |B) =

(
1 4 3 2
5 6 1 9

)
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Determinants

Given a square matrix A, the determinant denoted by |A| or det(A) is a number
associated with A.

The determinant of a 1 x 1 matrix: |a1,1| = a1,1

The determinant of a 2 x 2 matrix:
∣∣∣∣ a1,1 a1,2

a2,1 a2,2

∣∣∣∣ = a1,1 · a2,2 − a1,2 · a2,1
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Cofactor of a matrix

Cofactor

Every element of a determinant, except for a 1 x 1 matrix, has an associated minor.

To get the minor, we remove the row and column corresponding to the element and find
the determinant of the new matrix.

We denote the minor of and element ai,j in matrix A as |Ai,j |.

The cofactor of an element is its minor with the sign (−1)i+j associated to it.

Example

Let

A =

 7 −1 0
3 2 1
8 1 −4


The cofactor for a2,1 = 3 is

(−1)2+1 · |A2,1| = (−1)
∣∣∣∣ −1 0

1 −4

∣∣∣∣ = −4
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Matrices

Computing Determinants

The determinant of a matrix A of order n is found by expanding along a row or a
column.

For any row i , this would be

|A| =
n∑

j=1

ai,j · (−1)i+j · |Ai,j |

and for any column j , this would be

|A| =
n∑

i=1

ai,j · (−1)i+j · |Ai,j |
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Matrices

Example

Let

A =

1 4 3
2 0 2
1 3 5

 .
Compute |A|.
Expanding along column 3, we get

|A| = 3 · (−1)1+3 ·
∣∣∣∣2 0
1 3

∣∣∣∣ + 2 · (−1)2+3 ·
∣∣∣∣1 4
1 3

∣∣∣∣+ 5 · (−1)3+3 ·
∣∣∣∣1 4
2 0

∣∣∣∣
= 3 · (6)− 2 · (−1) + 5 · (−8) = − 20
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Computing Determinants (contd.)

The expansion of determinants can become complex for larger orders.

Let A denote a matrix and let det(A) denote its determinant.

We can simplify the process by utilizing five properties.
1 If every element of a row of A is zero, then det(A) = 0.
2 If two rows of A have elements that are proportional to one another, then

det(A) = 0.
3 If two rows of a determinant are interchanged, the det(A) changes sign.
4 Elements of any row may be multiplied by a nonzero constant if the entire

determinant is multiplied by the reciprocal of the constant.
5 To the elements of any row, you may add a constant times the corresponding

element of any other row without changing the determinant.

Note that we can interchange the words “row” and “column”.
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Adjoint

If A is a square matrix, the adjoint of A, denoted as Aα, can be found using the
following process:

1 Replace each element ai,j of A by its cofactor.
2 Take the transpose of the matrix of cofactors found in step 1.

Example

Let γi,j = (−1)i+j · |Ai,j | be the cofactor for ai,j . Then,

Aα =


γ1,1 γ2,1 · · · γn,1
γ1,2 γ2,2 · · · γn,2

...
...

. . .
...

γ1,n γ2,n · · · γn,n


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Inverse

The inverse of a square matrix A is denoted as A−1.

For a matrix to have an inverse, it must be nonsingular, i.e., its determinant cannot be
zero.

Given a nonsingular matrix A, we find the inverse by

A−1 =
1
|A|
· Aα
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Inverse (example)

Example

A =

(
2 1
6 5

)
|A| = 2 · (5)− 1 · (6) = 10− 6 = 4

cof (A) =

(
|5| −|6|
−|1| |2|

)

Aα =

(
|5| −|1|
−|6| |2|

)
=

(
5 −1
−6 2

)

A−1 =
1
|A|
· Aα =

1
4
·
(

5 −1
−6 2

)
=

( 5
4 − 1

4
− 3

2
1
2

)
We can then check A · A−1 = I to make sure we are correct.
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Matrices

Gauss-Jordan Elimination

This is another method for computing the inverse of a matrix.

The idea is to augment the matrix with the identity matrix and then perform elementary
row operations.

Elementary Row Operations

1 Interchange a row i with a row j .
2 Multiply a row i by a nonzero scalar α.
3 Replace a row i by a row i plus a multiple of some row j .
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Matrices

Finding the Inverse of a matrix using Gauss-Jordan Elimination

A =

(
2 1
6 5

)
(A | I) =

(
2 1 1 0
6 5 0 1

)
Multiply the first row by 1

2 : (
1 1

2
1
2 0

6 5 0 1

)
Multiply the first row by −6 and add the result to the second row:(

1 1
2

1
2 0

0 2 −3 1

)

Multiply the second row by 1
2 : (

1 1
2

1
2 0

0 1 − 3
2

1
2

)
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Matrices

Gauss-Jordan Elimination (Contd.)

Multiply the second row by − 1
2 and add the result to the first row:(

1 0 5
2 − 1

4
0 1 − 3

2
1
2

)
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Matrices

Rank of a Matrix

The rank of an m x n matrix A, denoted as r(A), is the maximum number of linearly
independent columns (or rows) of A.

By definition, r(A) ≤ min{m, n}. If r(A) = min{m, n}, then A is said to be of full rank.

There are several ways to get the rank, but the method used here will use elementary
row operations to get (

Ik D
0 0

)
This shows that r(A) = k .
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Rank (example)

Example

A =

1 1 1 3 1
2 1 2 3 0
1 3 1 9 5



Reduced form of A =

 1 0 1 0 −1
0 1 0 3 2
0 0 0 0 0

 =

(
I2 D
0 0

)
This means that the rank of A is 2.
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Linear Equations

Equations

One of the best known uses for matrices and determinants is for solving simultaneous
linear equations.

Matrices and vectors give us a nice method for expressing the problem.

Example

a1,1 · x1 + a1,2 · x2 + · · · + a1,n · xn = b1
a2,1 · x1 + a2,2 · x2 + · · · + a2,n · xn = b2

...
am,1 · x1 + am,2 · x2 + · · · + am,n · xn = bm
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A =


a1,1 a1,2 · · · a1,n
a2,1 a2,2 · · · a2,n

...
...

. . .
...

am,1 am,2 · · · am,n



b =


b1
b2
...

bm



x =


x1
x2
...

xm


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Solutions

The set of linear equations A · x = b has either no solution, a unique solution, or an
infinite number of solutions.

When determining if a solution exists, we are trying to find scalars x1, x2, . . . , xn so that
b can be written as a linear combination of the columns of A.

Conditions where a solution exists for A · x = b:
1 If r(A |b) = r(A) + 1, then no solution exists. This is because if the addition of b

to the columns of A, increases the rank of the set by 1, then b cannot be written
as a linear combination of the columns of A.

2 If r(A |b) = r(A), then there does exist a solution. This is because we can write b
as a linear combination of the columns of A.
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A Unique Solution of A · x = b

There are several methods for solving for a unique solution, including Cramer’s rule
and Gaussian elimination.

We will first use Cramer’s rule; however, we should note that this is not an efficient
approach computationally. Let Aj be the matrix A where the j th column is replaced by
b.

Cramer’s rule states that the unique solution is given by xj =
|Aj |
|A| , for all j = 1, . . . , n.
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Using Cramer’s Rule

2 · x1 + x2 + 2 · x3 = 6
2 · x1 + 3 · x2 + x3 = 9

x1 + x2 + x3 = 3

A =

2 1 2
2 3 1
1 1 1

 b =

6
9
3

 x =

x1
x2
x3



x1 =

∣∣∣∣∣∣∣∣
6 1 2
9 3 1
3 1 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
2 1 2
2 3 1
1 1 1

∣∣∣∣∣∣∣∣
= 6

1 = 6 x2 =

∣∣∣∣∣∣∣∣
2 6 2
2 9 1
1 3 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
2 1 2
2 3 1
1 1 1

∣∣∣∣∣∣∣∣
= 0 x3 =

∣∣∣∣∣∣∣∣
2 1 6
2 3 9
1 1 3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
2 1 2
2 3 1
1 1 1

∣∣∣∣∣∣∣∣
= −3
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Another approach to finding a unique solution is by using the inverse.
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Using Gauss-Jordan Elimination

Another approach is using the Gauss-Jordan elimination.

The idea is to use elementary row operations to reduce the augmented matrix (A |b) to
the form (I |A−1b).

Example

A =

2 1 2
2 3 1
1 1 1

 b =

6
9
3



(A |b) =

 2 1 2 6
2 3 1 9
1 1 1 3


Multiply the first row by 1

2 :  1 1
2 1 3

2 3 1 9
1 1 1 3


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2 :  1 1
2 1 3

2 3 1 9
1 1 1 3


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Example

Multiply the first row by −2 and add the result to the second row, and multiply the first
row by −1 and add the result to the third row: 1 1

2 1 3
0 2 −1 3
0 1

2 0 0


Multiply the second row by 1

2 :  1 1
2 1 3

0 1 − 1
2

3
2

0 1
2 0 0


Multiply the second row by − 1

2 and add the result to both the first and third rows: 1 0 5
4

9
4

0 1 − 1
2

3
2

0 0 1
4 − 3

4


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9
4

0 1 − 1
2

3
2

0 0 1 −3
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Multiply the third row by − 5

4 and add the result to the first row, and multiply the third
row by 1

2 and add the result to the second row:

(I |A−1 · b) =

 1 0 0 6
0 1 0 0
0 0 1 −3



x = A−1 · b =

 6
0
−3


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Infinite Number of Solutions

This case is one of most interest since this scenario is the most likely to happen in
linear programming.

This happens when r(A) = r(A |b) < n, where n is the number of variables.

Example

3 · x1 + x2 − x3 = 8
x1 + x2 + x3 = 4

We see that r(A) = r(A |b) = 2 < 3, where

A =

(
3 1 −1
1 1 1

)
, andb =

(
8
4

)
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Infinite Number of Solutions (Contd.)

For this case, we can choose r equations, where r is the rank, and find r of the
variables in terms of the remaining n − r variables.

3 · x1 + x2 − x3 = 8
x1 + x2 + x3 = 4

Solving for x1 and x2 gets
x1 = 2 + x3
x2 = 2 − 2 · x3

x =

x1
x2
x3

 =

 2 + x3
2− 2 · x3

x3


Although there are an infinite number of solutions, we will be concerned with only a
finite number of them.
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variables in terms of the remaining n − r variables.

3 · x1 + x2 − x3 = 8
x1 + x2 + x3 = 4

Solving for x1 and x2 gets
x1 = 2 + x3
x2 = 2 − 2 · x3

x =

x1
x2
x3

 =

 2 + x3
2− 2 · x3

x3


Although there are an infinite number of solutions, we will be concerned with only a
finite number of them.
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