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Motivating Examples

A Motivating Example

Example

max z = 4 · x1 + x2 + 5 · x3 + 3 · x4 (1)

x1 − x2 − x3 + 3 · x4 ≤ 1 (2)

5 · x1 + x2 + 3 · x3 + 8 · x4 ≤ 55 (3)

− x1 + 2 · x2 + 3 · x3 − 5 · x4 ≤ 3 (4)

x1, x2, x3, x4 ≥ 0 (5)

Establishing bounds on z∗

Consider the point (0, 0, 1, 0). Can you conclude z∗ ≥ 5.

From the point (3, 0, 2, 0), we can conclude that z∗ ≥ 22.

How about an upper bound? (3)+(4) gives 4 · x1 + 3 · x2 + 6 · x3 + 3 · x4 ≤ 58.

Can you conclude z∗ ≤ 58?
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Motivating Examples

Finding bounds

Establishing an upper bound

In general, you want the linear combination of constraints that provides the smallest
upper bound.

How to find this linear combination?

Formulate it as a linear program!

Multiplying the constraint equations by y1, y2, y3, where the yi ≥ 0 (Why?), we get,

y1 · (x1 − x2 − x3 + 3 · x4) ≤ y1 · (1)
y2 · (5 · x1 + x2 + 3 · x3 + 8 · x4) ≤ y2 · (55)

y3 · (−x1 + 2 · x2 + 3 · x3 − 5 · x4) ≤ y3 · (3)
y1, y2, y3 ≥ 0

Summing up the above equations, we get,

(y1 + 5 · y2 − y3) · x1 + (−y1 + y2 + 2 · y3) · x2+

(−y1 + 3 · y2 + 3 · y3) · x3 + (3 · y1 + 8 · y2 − 5 · y3) · x4 ≤ (y1 + 55 · y2 + 3 · y3)
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How to find this linear combination?

Formulate it as a linear program!

Multiplying the constraint equations by y1, y2, y3, where the yi ≥ 0 (Why?), we get,
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Finding bounds (contd)

Optimizing the bound

In order to get the best bound on z, we must minimize (y1 + 55 · y2 + 3 · y3) so that,

y1 + 5 · y2 − y3 ≥ 4

− y1 + y2 + 2 · y3 ≥ 1

− y1 + 3 · y2 + 3 · y3 ≥ 5

3 · y1 + 8 · y2 − 5 · y3 ≥ 3

y1, y2, y3 ≥ 0
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Dual of the Canonical form

Dual

Given the system (Primal)

z = max c · x
A · x ≤ b

x ≥ 0

the dual is defined as:

w = min b · y
y · A ≥ c

y ≥ 0

The constraint system y · A ≥ c can also be written as: AT · y ≥ c.
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Dual of the Alternate Form
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Dual of the Alternate Form

Dual (Alternate form)

Given the system (Primal)

z = max c · x
A · x ≤ b

the dual is defined as:

w = min b · y
y · A = c

y ≥ 0
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Example

Example

Find the dual of:

max 4 · x1 + 2 · x2

x1 + x2 ≤ 2

x1 + 2 · x2 ≤ 15

2 · x1 − x2 ≤ 12

x1, x2 ≥ 0
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Self-Involutoriness of Duality

Theorem

The dual of the dual is the primal.

Proof.

Let the primal system be:

max c · x
A · x ≤ b

x ≥ 0

As per definition, its dual is:

min b · y
AT · y ≥ c

y ≥ 0
The dual can be rewritten as:

−max (−b) · y
−AT · y ≤ −c

y ≥ 0

As per definition, the dual of
the dual is:

−min −c · w
(−AT)T · w ≥ −b

w ≥ 0
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Proof (contd.)

Proof

The dual of the dual is thus:

max c · w
A · w ≤ b

w ≥ 0

The theorem follows.
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The Weak Duality theorem

Theorem

Given the primal and dual forms discussed above,

z = c · x′ ≤ y′ · b = w

where x′ and y′ are any primal feasible and dual feasible solution respectively.

Proof

Since x′ is primal feasible, we must have, A · x′ ≤ b, x′ ≥ 0.

Since y′ is dual feasible, we must have, y′ · A ≥ c, y′ ≥ 0.

It follows that y′ · A · x′ ≤ y′ · b and y′ · A · x′ ≥ c · x′.

The theorem follows.
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Motivating Examples

Consequences of the weak duality theorem

Corollary

If the primal is unbounded, the dual is infeasible.

Corollary

If the dual is unbounded, the primal is infeasible.

Example

What is the primal dual relationship in the following linear program:

max x1 + 2 · x2

−x1 + 2 · x2 ≤ −2

x1 − 2 · x2 ≤ −2

x1, x2 ≥ 0
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Motivating Examples

Optimality theorem from Weak duality

Corollary

If x is primal feasible and y is dual feasible, and c · x = y · b, then x is primal optimal
and y is dual optimal.
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Motivating Examples

The Strong Duality Theorem

Theorem

Given the canonical forms of the primal and dual, if both the primal and the dual are
feasible, then both have finite optimal solutions having the same value.

Proof

As per the weak duality theorem, the feasibility of the primal implies a finite optimal for
the dual and the feasibility of the dual implies a finite optimal for the primal.

Consider the standard form of the primal:

max c · x
A · x + xs = b

x, xs ≥ 0

Let B denote the optimal basis of the primal in standard form.

Then the optimal point is x =
(B−1·b

0

)
and the the optimal solution for the primal is

z = cB · B−1 · b.
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Proof of strong duality (contd.)

Proof

What we need now is a feasible dual having the same solution value as z.

Consider y = cB · B−1.

The value of the dual at this point is: cB · B−1 · b.

Since B is an optimal basis, we must have (zj − cj ) ≥ 0 for all the columns of (A, I).

It follows that cB · B−1 · A− c ≥ 0 and cB · B−1 · I ≥ 0.

In other words, cB · B−1 · A ≥ c and cB · B−1 ≥ 0.

In other words, the solution y = cB · B−1 is optimal for the dual.
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Motivating Examples

Application of concepts

Example

Solve the linear program

max 10 · x1 + 6 · x2 − 4 · x3 + x4 + 12 · x5

2 · x1 + x2 + x3 + 3 · x5 ≤ 18

x1 + x2 − x3 + x4 + 2 · x5 ≤ 6

x1, x2, x3, x4, x5 ≥ 0
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Duality for certificate generation

Certifying algorithm

A certifying algorithm can either produce x ∈ Rn
+, such that A · x = b , or y ∈ Rm such

that y · A ≥ 0 and y · b < 0.
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