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Geometric Interpretation of 2-dimensional linear programs
Convexity

Extreme Points

Representing constraints as sections of a plane

Geometric View of Constraints

An equality, such as x1 + x2 = 3, can be viewed as a line in the x1,x2 plane.
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Geometric Interpretation of 2-dimensional linear programs
Convexity

Extreme Points

Geometric View of Constraints

Similarly an inequality, such as x1 + x2 ≤ 3, can be viewed as as the half plane above
or below a line in the x1,x2 plane.
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We are assuming non-negativity here.
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Geometric Interpretation of 2-dimensional linear programs
Convexity

Extreme Points

Geometric View of Constraints

For a system of constraints the section of the plane corresponding to solutions to that
system is simply the intersection of the portions of the plane corresponding to each
constraint. For instance, the constraints
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x1, x2 ≥ 0

would produce
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Geometric Interpretation of 2-dimensional linear programs
Convexity

Extreme Points

Geometric representation of the objective function

Objective Function

For a fixed z, the objective function is simply an equality, and can thus be represented
as a line in the x1 − x2 plane.

If we allow z to vary then the objective function can be represented as a series of
parallel lines each corresponding to a different value for z.

If we are trying to maximize z then we find the maximum z for which the corresponding
line passes though the portion of the plane corresponding to the system of constraints.

It also helps to find the gradient of z as it identifies the direction in which z grows the
fastest. (This is the gradient of the function.)

As the objective function is of the form z = c1 · x1 + c2 · x2, the gradient is simply the
vector (c1, c2).
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Geometric Interpretation of 2-dimensional linear programs
Convexity

Extreme Points

Handling the objective function

For example adding the objective function z = x1 + 2x2 to our previous example yields
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Geometric Interpretation of 2-dimensional linear programs
Convexity

Extreme Points

Observation

Thus trying to maximize z would yield z = 6, when x1 = 0 and x2 = 3.

Similarly trying to minimize z would yield z = 2, when x1 = 0 and x2 = 1.
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Geometric Interpretation of 2-dimensional linear programs
Convexity

Extreme Points

Exercise 1

Solve the following linear program graphically

minimize z = 4 · x1 + 5 · x2

subject to

3 · x1 + 2 · x2 ≤ 24

x1 ≥ 5

3 · x1 − x2 ≤ 6

x1, x2 ≥ 0
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Geometric Interpretation of 2-dimensional linear programs
Convexity

Extreme Points

Solution

If the constraints are plotted onto a graph we see,
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Linear Programming Linear Programming



Geometric Interpretation of 2-dimensional linear programs
Convexity

Extreme Points

Solution

If the constraints are plotted onto a graph we see,

0

x2

x1

3x1 + 2x2 = 24

x1 = 5

3x1 − x2 = 6

Linear Programming Linear Programming



Geometric Interpretation of 2-dimensional linear programs
Convexity

Extreme Points

Solution

If the constraints are plotted onto a graph we see,

0

x2

x1

3x1 + 2x2 = 24

x1 = 5

3x1 − x2 = 6

Linear Programming Linear Programming



Geometric Interpretation of 2-dimensional linear programs
Convexity

Extreme Points

Solution

If the constraints are plotted onto a graph we see,

0

x2

x1

3x1 + 2x2 = 24

x1 = 5

3x1 − x2 = 6

Linear Programming Linear Programming



Geometric Interpretation of 2-dimensional linear programs
Convexity

Extreme Points

Solution

If the constraints are plotted onto a graph we see,

0

x2

x1

3x1 + 2x2 = 24

x1 = 5

3x1 − x2 = 6

Linear Programming Linear Programming



Geometric Interpretation of 2-dimensional linear programs
Convexity

Extreme Points

Solution

If the constraints are plotted onto a graph we see,

0

x2

x1

3x1 + 2x2 = 24

x1 = 5

3x1 − x2 = 6

Linear Programming Linear Programming



Geometric Interpretation of 2-dimensional linear programs
Convexity

Extreme Points

Solution

If the constraints are plotted onto a graph we see,

0

x2

x1

3x1 + 2x2 = 24

x1 = 5

3x1 − x2 = 6

Linear Programming Linear Programming



Geometric Interpretation of 2-dimensional linear programs
Convexity

Extreme Points

Solution

If the constraints are plotted onto a graph we see,

0

x2

x1

3x1 + 2x2 = 24

x1 = 5

3x1 − x2 = 6

Linear Programming Linear Programming



Geometric Interpretation of 2-dimensional linear programs
Convexity

Extreme Points

Solution

If the constraints are plotted onto a graph we see,

0

x2

x1

3x1 + 2x2 = 24

x1 = 5

3x1 − x2 = 6

Linear Programming Linear Programming



Geometric Interpretation of 2-dimensional linear programs
Convexity

Extreme Points

Observation

There are no points which satisfy all three constraints. Thus no solution exists.
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Geometric Interpretation of 2-dimensional linear programs
Convexity

Extreme Points

Exercise 2

Solve the following system of constraints graphically

minimize z = x1 − 4 · x2

subject to

x1 + x2 ≤ 12

−2 · x1 + x2 ≤ 4

x2 ≤ 8

x1 − 3 · x2 ≤ 4

x1, x2 ≥ 0
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Geometric Interpretation of 2-dimensional linear programs
Convexity
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Solution

Plotting the constraints and then checking various values of z we get:

0

x2

x1

x1 + x2 = 12

−2x1 + x2 = 4

x2 = 8

x1 − 3x2 = 4

z = 0

z = −10

z = −20

z = −30
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Extreme Points

Observation

Thus, the minimum value of z is z = −30 and occurs at (x1, x2) = (2, 8).
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Exercise 3

Solve the following linear program graphically

maximize z = x1 + 2 · x2

subject to

−2 · x1 + x2 ≤ 2

2 · x1 + 5 · x2 ≥ 10

x1 − 4 · x2 ≤ 2

x1, x2 ≥ 0
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Geometric Interpretation of 2-dimensional linear programs
Convexity

Extreme Points

Observation

Thus, there is no maximum value of z as z can be increased indefinitely and the
system will still be feasible.
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Geometric Interpretation of 2-dimensional linear programs
Convexity

Extreme Points

Hyperplanes and Halfspaces

Definition (Hyperplane)

A hyperplane is a set of points, x = (x1, x2, . . . , xn)t , that satisfy a · x = b, where
a = (a1, a2, . . . , an) and b is a scalar.

Definition (Halfspace)

A closed halfspace corresponding to a hyperplane ax = b is either of the sets
H+ = {x : a · x ≥ b} or H− = {x : a · x ≤ b}. If the inequalities involved are strict then
the corresponding halfspace are referred to as open halfspaces.
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Geometric Interpretation of 2-dimensional linear programs
Convexity

Extreme Points

Convexity and Polyhedral Sets

Definition (Convex Set)

A set, S, is convex if for any two points x1, x2 ∈ S then all points on the line segment
connecting x1 and x2 are in S.

This means that ∀α ∈ [0, 1], α · x1 + (1− α) · x2 ∈ S.

In other words, the convex combination of all points in S, should also be in S.

Definition (Convex function)

Given a convex set S, a function f : S → < is called convex, if ∀ x, y ∈ S, λ ∈ [0, 1],
we have,

f (λ · x + (1− λ) · y) ≤ λ · f (x) + (1− λ) · f (y).

If < holds as opposed to ≤, the function is said to be strictly convex.

Exercise

Are linear functions convex? How about affine functions?
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Geometric Interpretation of 2-dimensional linear programs
Convexity

Extreme Points

Local optimum and Global optimum

Theorem

Consider the following optimization problem:

minx f (x)

s.t . x ∈ S

If S is a convex set and f is a convex function of x on S, then all local optima are also
global optima.
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Geometric Interpretation of 2-dimensional linear programs
Convexity

Extreme Points

Polyhedra

Definition (Polyhedral Set)

A set S is polyhedral if it is the intersection of a finite number of halfspaces.

Systems of constraints as Polyhedral Sets

A constraint system of the form S = {x : A · x ≤ b, x ≥ 0} is a polyhedral set as each
constraint corresponds to a halfspace.
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Extreme points

Definition (Extreme Point)

A point x in a convex set S is said to be an extreme point if it does not lie on the interior
of a line segment connecting two distinct points in S.

Mathematically there do not exist x1, x2 ∈ S, x1 6= x2, and α ∈ (0, 1) such that
x = α · x1 + (1− α) · x2.
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Properties of Extreme points

Goal

We want to develop a method of identifying the extreme points of a system of
constraints in standard form.

Theorem

Extreme Point Theorem - Let S = {x : A · x = b, x ≥ 0}, where A is m × n and
rank(A) = m < n.

x is an extreme point of S , if and only if x is the intersection of n linearly independent
hyperplanes.
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Proof of Extreme Point Theorem

Only if.

Let x be an extreme point of S.

To get a contradiction we will assume that x lies on less than n linearly independent
hyperplanes.

By definition of S, x lies on the m linearly independent hyperplanes forming the
constraint set A · x = b.

Thus, x must also lie on exactly p < n −m of the hyperplanes corresponding to the
constraints x ≥ 0.

Without loss of generality we can assume that x i = 0 for i = 1, . . . , p and x i > 0 for
i = p + 1, . . . , n.

Thus, we can create a new system of constraints Q · x = h formed by adding the
constraints xi = 0, for i = 1, . . . , p to A · x = b.

As Q is an (m + p)× n matrix where m + p < n, the columns of Q are linearly
dependent.

Thus, there exists y 6= 0 such that Q · y = 0.
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Proof (contd.)

Only If

Now let us consider the points x̃ = x + λ · y and x̂ = x− λ · y where λ > 0.

We have that Q · x̃ = Q · (x + λ · y) = h + λ · 0 = h and
Q · x̂ = Q(x− λ · y) = h− λ · 0 = h.

Thus, A · x̃ = A · x̂ = b and x̃i = x̂i = 0, for i = 1, . . . , p.

Since x j > 0, for j = p + 1, . . . , n, there exists a λ such that
x̃j = x j + λ · yj > 0 and x̂j = x j − λ · yj > 0, for j = p + 1, . . . , n.

Thus x̃, x̂ ∈ S.

However x = 1
2 · x̃ + 1

2 · x̂, contradicting the fact that x is an extreme point of S.

Thus x must lie on n linearly independent hyperplanes.
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Convexity
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Proof (contd.)

If.

Let x lie on the intersection of n linearly independent hyperplanes.

Without loss of generality, we can define the n independent hyperplanes defining x to
be:

A · x = b (1)

xi = 0, i = 1, 2, . . . , (n −m)

Note that x is the unique solution to System (1). Why?

Assume that, x is not an extreme point. It follows that,

x = α · x̃ + (1− α) · x̂,

where x̃, x̂ ∈ S and α ∈ (0, 1).

What do we need to show? That x̃ = x̂ = x.
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Proof (contd.)

If

First, observe that,

xi = α · x̃i + (1− α) · x̂i = 0, for i = 1, 2, . . . , (n −m)

We can immediately conclude that, xi = x̃i = x̂i = 0, for i = 1, 2, . . . (n −m).

Let A = (a1, a2, . . . , an).

Since, A · x = A · x̃ = A · x̂ = b, we have,

n∑
j=n−m+1

xj · aj =
n∑

j=n−m+1

x̃j · aj =
n∑

j=n−m+1

x̂j · aj = b.

Since x is the unique solution to System (1), , it follows that the columns
an−m+1, an−m+2, . . . an are linearly independent.
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Hence,

xi = x̃i = x̂i , i = (n −m + 1), . . . , n

The claim follows.
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Geometric Interpretation of 2-dimensional linear programs
Convexity

Extreme Points

Polytopes

Definition (Bounded Set)

A subset S of Rn is bounded if it can be contained within an n-dimensional ball.

Definition (Unbounded Set)

An unbounded set is a set which is not bounded.

Note

We will only be dealing with bounded polyhedra for the rest of this topic.

Such polyhedra are called polytopes.
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Geometric Interpretation of 2-dimensional linear programs
Convexity

Extreme Points

Representation theorem

Theorem

Let S = {x : A · x = b, x ≥ 0} be non-empty, and let E be the set of extreme points of
S.

Then,
1 S has at least one extreme point and at most a finite number of extreme points,

thus E = {x1, . . . , xp} 6= ∅.
2 if x ∈ S, then x can be written as a convex combination of extreme points
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Geometric Interpretation of 2-dimensional linear programs
Convexity

Extreme Points

Extreme point solutions

Theorem

Let S = {x : A · x = b, x ≥ 0} and consider the following linear program:

maximize z = c · x
subject to x ∈ S.

Suppose S is bounded and has extreme points E = {x1, . . . , xp} 6= ∅.

If S is bounded, a finite optimal solution exists.

Furthermore, an extreme point optimal solution exists.
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Geometric Interpretation of 2-dimensional linear programs
Convexity

Extreme Points

Extreme points and basic feasible solutions

Goal

We have now shown that we can solve linear programs by restricting ourselves to the
extreme points of the feasible space.

However we still need to develop a way of finding these extreme point non-graphically.

Finding basic feasible solutions

Consider a linear system of equations A · x = b, where A is an m × n matrix
b = (b1, . . . , bm)t , and x = (x1, . . . , xn)t .

Assume that rank(A) = m ≤ n. That is we assume that the rows of A are linearly
independent.

We also assume that the columns of A can be rearranged so that A can be written as
A = (B : N), where B is a nonsingular m ×m matrix.

We will refer to B as the basis matrix.
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Extreme Points

Finding basic feasible solutions

The Method

We can rewrite A · x = b as B · xB + N · xN = b, where x =
(xB

xN

)
.

As B is non-singular, the inverse of B exists.

Thus, B−1 · B · xB + B−1 · N · xN = B−1 · b.

This is equivalent to stating that xB = B−1 · b− B−1 · N · xN .

If we set xN = 0 then xB = B−1 · b and x =
(B−1·b

0

)
.

This value is called a basic solution.

We refer to the xB as the vector of basic variables and we refer to xN as the vector of
nonbasic variables.

If x ≥ 0, then x is called a basic feasible solution.

If any of the components of xB is 0, then the basic solution is said to be degenerate,
otherwise it is non-degenerate.
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Proof (contd.)

If

Let x be a basic feasible solution of S.

Since x is a bfs, there exists a basis matrix B such that,

x =
(xB

xN

)
=
(B−1 · b

0

)
This implies that x is the unique solution to B · xB + B · xN = b, xN = 0, or
equivalently, A · x = b, xN = 0.

Since x is unique, it follows that the hyperplanes are constituting the system A · x = b,
xN = 0 are linearly independent.

There are clearly m + (n −m) = n of these hyperplanes, i.e., x lies at the intersection
of n linearly independent hyperplanes.

It follows that x is an extreme point of S.
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Example

Example

Given the matrix A =

(
1 0 2
0 1 1

)
and vector b =

(
1
2

)
, find the basic feasible

solutions to A · x = b, x ≥ 0.

Solution

A =

(
1 0 2
0 1 1

)
and b =

(
1
2

)
.

B =

(
1 0
0 1

)
. Thus, B−1 =

(
1 0
0 1

)
so B−1b =

(
1
2

)
so x =

 1
2
0

.

B =

(
1 2
0 1

)
. Thus, B−1 =

(
1 −2
0 1

)
so B−1b =

(
−3
2

)
so x =

 −3
0
2

.

B =

(
0 2
1 1

)
. Thus, B−1 =

(
− 1

2 1
1
2 0

)
so B−1b =

( 3
2
1
2

)
so x =

 0
3
2
1
2

.
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Exercise

Exercise

Consider the linear program:

max z = 2 · x1 + 3 · x2

x1 − 2 · x2 ≤ 4

2 · x1 + x2 ≤ 18

x2 ≤ 10

x1, x2 ≥ 0

Graphically map the extreme points and the corresponding basic feasible solutions.

Identify the optimal solution, optimal extreme point and optimal basic feasible solution.
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Summary

Main ideas

1 Assuming that the linear program S = {A · x = b, x ≥ 0} is bounded, then any
linear function c · x will reach its maximum at an extreme point of S.

2 The notions of extreme points and basic feasible solutions are closely related.
3 The basic feasible solutions of S can be enumerated in straightforward fashion.
4 This gives us a straightforward algorithm for minimizing a linear function on S.

Simply enumerate all the basic feasible solutions!
5 If A has m rows and n columns, the number of solutions enumerated will be

(n
m

)
which is approximately 4m, when n = 2 ·m.

6 The Simplex Method will avoid exhaustive enumeration by using intelligent
selection rules.
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