Outline

# Modeling

### K. Subramani<sup>1</sup>

<sup>1</sup>Lane Department of Computer Science and Electrical Engineering West Virginia University

November 1, 2016









2 Fundamental Steps





2 Fundamental Steps

Assumptions of the linear programming model





2 Fundamental Steps

Assumptions of the linear programming model

Forms of a linear program





Pundamental Steps

Assumptions of the linear programming model

Forms of a linear program

## Motivating Examples

Models and Model Types Fundamental Steps Assumptions of the linear programming model Forms of a linear program Motivating Examples

## Need for models

### Models and Model Types Fundamental Steps

Fundamental Steps Assumptions of the linear programming model Forms of a linear program Motivating Examples

## Need for models

### Main Points

Linear Programming Linear Programming

Fundamental Steps Assumptions of the linear programming model Forms of a linear program Motivating Examples

## Need for models

### Main Points

Most interesting decision problems occur in large and complex systems.

Fundamental Steps Assumptions of the linear programming model Forms of a linear program Motivating Examples

## Need for models

### Main Points

- Most interesting decision problems occur in large and complex systems.
- 2 The "what-if" question cannot be answered by trial and error.

Fundamental Steps Assumptions of the linear programming model Forms of a linear program Motivating Examples

## Need for models

### Main Points

- Most interesting decision problems occur in large and complex systems.
- 2 The "what-if" question cannot be answered by trial and error.
- Models can be "good" or "bad".

Fundamental Steps Assumptions of the linear programming model Forms of a linear program Motivating Examples

## Need for models

### Main Points

- Most interesting decision problems occur in large and complex systems.
- 2 The "what-if" question cannot be answered by trial and error.
- Models can be "good" or "bad".
- The solution to a model is different from a solution to the actual system.

Models and Model Types Fundamental Steps Assumptions of the linear programming model Forms of a linear program Motivating Examples

# Types of Models

### Models and Model Types Fundamental Steps

Fundamental Steps Assumptions of the linear programming model Forms of a linear program Motivating Examples

# Types of Models

Fundamental Steps Assumptions of the linear programming model Forms of a linear program Motivating Examples

# Types of Models

## Model Types

Scale Model

Fundamental Steps Assumptions of the linear programming model Forms of a linear program Motivating Examples

# Types of Models

### Model Types

Scale Model - Aerodynamics.

Fundamental Steps Assumptions of the linear programming model Forms of a linear program Motivating Examples

# Types of Models

- Scale Model Aerodynamics.
- 2 Pictorial Model

Fundamental Steps Assumptions of the linear programming model Forms of a linear program Motivating Examples

# Types of Models

- Scale Model Aerodynamics.
- 2 Pictorial Model Spatial relationships.

Fundamental Steps Assumptions of the linear programming model Forms of a linear program Motivating Examples

## Types of Models

- Scale Model Aerodynamics.
- 2 Pictorial Model Spatial relationships.
- Flow Chart for Networks

Fundamental Steps Assumptions of the linear programming model Forms of a linear program Motivating Examples

## Types of Models

- Scale Model Aerodynamics.
- 2 Pictorial Model Spatial relationships.
- Solution Flow Chart for Networks Functional relationships.

Fundamental Steps Assumptions of the linear programming model Forms of a linear program Motivating Examples

## Types of Models

- Scale Model Aerodynamics.
- 2 Pictorial Model Spatial relationships.
- Solution Flow Chart for Networks Functional relationships.
- Matrix

Fundamental Steps Assumptions of the linear programming model Forms of a linear program Motivating Examples

## Types of Models

- Scale Model Aerodynamics.
- 2 Pictorial Model Spatial relationships.
- Solution Flow Chart for Networks Functional relationships.
- Matrix Table-representable relationships.

Fundamental Steps Assumptions of the linear programming model Forms of a linear program Motivating Examples

## Types of Models

- Scale Model Aerodynamics.
- 2 Pictorial Model Spatial relationships.
- Solution Flow Chart for Networks Functional relationships.
- Matrix Table-representable relationships.
- Mathematical Model

Fundamental Steps Assumptions of the linear programming model Forms of a linear program Motivating Examples

## Types of Models

- Scale Model Aerodynamics.
- 2 Pictorial Model Spatial relationships.
- Solution Flow Chart for Networks Functional relationships.
- Matrix Table-representable relationships.
- Mathematical Model Mathematical relationships captured by functions and equations.

Models and Model Types Fundamental Steps Assumptions of the linear programming model Forms of a linear program Motivating Examples

# Guidelines for Model Building

Fundamental Steps Assumptions of the linear programming model Forms of a linear program Motivating Examples

## Guidelines for Model Building

### **General Guidelines**

Linear Programming Linear Programming

Fundamental Steps Assumptions of the linear programming model Forms of a linear program Motivating Examples

## Guidelines for Model Building

### **General Guidelines**

Primary purpose of model.

Fundamental Steps Assumptions of the linear programming model Forms of a linear program Motivating Examples

## Guidelines for Model Building

### **General Guidelines**

- Primary purpose of model.
- 2 Requirements identification and Model type.

Fundamental Steps Assumptions of the linear programming model Forms of a linear program Motivating Examples

## Guidelines for Model Building

### General Guidelines

- Primary purpose of model.
- 2 Requirements identification and Model type.
- 3 Level of detail.

Fundamental Steps Assumptions of the linear programming model Forms of a linear program Motivating Examples

## Guidelines for Model Building

### **General Guidelines**

- Primary purpose of model.
- 2 Requirements identification and Model type.
- 3 Level of detail.
- Definition of input, output and relationships.

Models and Model Types Fundamental Steps Assumptions of the linear programming model Forms of a linear program Motivating Examples

## **Important Terms**

Models and Model Types Fundamental Steps Assumptions of the linear programming model Forms of a linear program Motivating Examples

## **Important Terms**

### Definitions

### Models and Model Types Fundamental Steps

Fundamental Steps Assumptions of the linear programming model Forms of a linear program Motivating Examples

## **Important Terms**

Definitions

Variable.

Fundamental Steps Assumptions of the linear programming model Forms of a linear program Motivating Examples

## **Important Terms**

### Definitions

### Variable.

2 Decision variable.

Fundamental Steps Assumptions of the linear programming model Forms of a linear program Motivating Examples

## **Important Terms**

### Definitions

### Variable.

- 2 Decision variable.
- Continuous variable.

Fundamental Steps Assumptions of the linear programming model Forms of a linear program Motivating Examples

## **Important Terms**

### Definitions

### Variable.

- 2 Decision variable.
- Continuous variable.
- Discrete variable.
Fundamental Steps Assumptions of the linear programming model Forms of a linear program Motivating Examples

# **Important Terms**

### Definitions

## Variable.

- 2 Decision variable.
- Continuous variable.
- Discrete variable.
- Linear function.

Fundamental Steps Assumptions of the linear programming model Forms of a linear program Motivating Examples

## **Important Terms**

- Variable.
- 2 Decision variable.
- Continuous variable.
- Oiscrete variable.
- Linear function.
- Nonlinear function.

Fundamental Steps Assumptions of the linear programming model Forms of a linear program Motivating Examples

## **Important Terms**

- Variable.
- 2 Decision variable.
- Continuous variable.
- Oiscrete variable.
- Linear function.
- Nonlinear function.
- Mathematical model.

Fundamental Steps Assumptions of the linear programming model Forms of a linear program Motivating Examples

## **Important Terms**

- Variable.
- 2 Decision variable.
- Continuous variable.
- Oiscrete variable.
- Linear function.
- Nonlinear function.
- Mathematical model.
- Equation.

Fundamental Steps Assumptions of the linear programming model Forms of a linear program Motivating Examples

## **Important Terms**

- Variable.
- 2 Decision variable.
- Continuous variable.
- Oiscrete variable.
- Linear function.
- Nonlinear function.
- Mathematical model.
- Equation.
- Inequality.

Fundamental Steps Assumptions of the linear programming model Forms of a linear program Motivating Examples

## **Important Terms**

- Variable.
- 2 Decision variable.
- Continuous variable.
- Oiscrete variable.
- Linear function.
- Nonlinear function.
- Mathematical model.
- Equation.
- Inequality.
- Objective.

Fundamental Steps Assumptions of the linear programming model Forms of a linear program Motivating Examples

## **Important Terms**

- Variable.
- 2 Decision variable.
- Continuous variable.
- Oiscrete variable.
- Linear function.
- Nonlinear function.
- Mathematical model.
- Equation.
- Inequality.
- Objective.
- Constraint.

# **Basic Steps**

# **Basic Steps**

Formulating a linear program

# **Basic Steps**

### Formulating a linear program

O Determine the decision (or control or structural) variables.

## **Basic Steps**

### Formulating a linear program

- O Determine the decision (or control or structural) variables.
- Pormulate the objective function.

## **Basic Steps**

### Formulating a linear program

- O Determine the decision (or control or structural) variables.
- 2 Formulate the objective function.
- Formulate the constraints.

# General Form of a Linear Program

General Form of a Linear Program

## General Form

The general form of a linear programming is:

General Form of a Linear Program

## General Form

The general form of a linear programming is:

Optimize  $z = c_1 \cdot x_1 + c_2 \cdot x_2 + \cdots + c_n \cdot x_n$ 

General Form of a Linear Program

## General Form

The general form of a linear programming is:

Optimize 
$$z = c_1 \cdot x_1 + c_2 \cdot x_2 + \cdots + c_n \cdot x_n$$

General Form of a Linear Program

## General Form

The general form of a linear programming is:

Optimize 
$$z = c_1 \cdot x_1 + c_2 \cdot x_2 + \cdots + c_n \cdot x_n$$

General Form of a Linear Program

## General Form

The general form of a linear programming is:

Optimize 
$$z = c_1 \cdot x_1 + c_2 \cdot x_2 + \cdots + c_n \cdot x_n$$

$$a_{1,1} \cdot x_1 + \cdots + a_{1,n} \cdot x_n \{ \leq =, \text{ or } \geq \} b_1$$

General Form of a Linear Program

## General Form

The general form of a linear programming is:

Optimize 
$$z = c_1 \cdot x_1 + c_2 \cdot x_2 + \cdots + c_n \cdot x_n$$

$$a_{1,1} \cdot x_1 + \cdots + a_{1,n} \cdot x_n \{ \leq =, \text{ or } \geq \} b_1$$

General Form of a Linear Program

## General Form

The general form of a linear programming is:

Optimize 
$$z = c_1 \cdot x_1 + c_2 \cdot x_2 + \cdots + c_n \cdot x_n$$

$$a_{1,1} \cdot x_1 + \cdots + a_{1,n} \cdot x_n \{ \leq , =, \text{ or } \geq \} b_1$$
  
$$\vdots$$
  
$$a_{m,1} \cdot x_1 + \cdots + a_{m,n} \cdot x_n \{ \leq , =, \text{ or } \geq \} b_m$$

General Form of a Linear Program

## General Form

The general form of a linear programming is:

Optimize 
$$z = c_1 \cdot x_1 + c_2 \cdot x_2 + \cdots + c_n \cdot x_n$$

$$a_{1,1} \cdot x_1 + \cdots + a_{1,n} \cdot x_n \{\leq =, \text{ or } \geq b_1$$
  
$$\vdots$$
  
$$a_{m,1} \cdot x_1 + \cdots + a_{m,n} \cdot x_n \{\leq =, \text{ or } \geq b_m$$
  
$$x_1, \dots, x_n \geq 0$$

# **Compact representation**

# **Compact representation**

#### Compact form

This can be written more compactly as

## Compact representation

#### Compact form

This can be written more compactly as

Optimize  $z = \sum_{j=1}^{n} c_j \cdot x_j$ 

# **Compact representation**

#### Compact form

This can be written more compactly as

Optimize 
$$z = \sum_{j=1}^{n} c_j \cdot x_j$$

subject to

# **Compact representation**

### Compact form

This can be written more compactly as

Optimize 
$$z = \sum_{j=1}^{n} c_j \cdot x_j$$

subject to

$$\sum_{i=1}^{n} a_{i,j} \cdot x_j \{ \leq =, \text{ or } \geq \} b_i$$
, for  $i = 1, ..., m$ 

# **Compact representation**

### Compact form

This can be written more compactly as

Optimize 
$$z = \sum_{j=1}^{n} c_j \cdot x_j$$

subject to

$$\sum_{i=1}^{n} a_{i,j} \cdot x_{j} \{ \leq =, \text{ or } \geq \} b_{i}, \text{ for } i = 1, \dots, m$$

 $x_i \geq 0$  for  $i = 1, \ldots, n$ 

# Assumptions

## Assumptions

Linear Programming Linear Programming

# Assumptions

## Assumptions

Certainty

Linear Programming Linear Programming

# Assumptions

### Assumptions

Certainty - No stochastics in problem parameters.

# Assumptions

- Certainty No stochastics in problem parameters.
- Proportionality

## Assumptions

- Certainty No stochastics in problem parameters.
- Proportionality Variable x<sub>ij</sub> contributes c<sub>ij</sub> · x<sub>ij</sub> to the cost and a<sub>ij</sub> · x<sub>ij</sub> to the i<sup>th</sup> constraint.

## Assumptions

- Certainty No stochastics in problem parameters.
- Proportionality Variable x<sub>ij</sub> contributes c<sub>ij</sub> · x<sub>ij</sub> to the cost and a<sub>ij</sub> · x<sub>ij</sub> to the i<sup>th</sup> constraint. No setup costs or economies of scale.

## Assumptions

- Certainty No stochastics in problem parameters.
- Proportionality Variable x<sub>ij</sub> contributes c<sub>ij</sub> · x<sub>ij</sub> to the cost and a<sub>ij</sub> · x<sub>ij</sub> to the i<sup>th</sup> constraint. No setup costs or economies of scale.
- Additivity

## Assumptions

- Certainty No stochastics in problem parameters.
- Proportionality Variable x<sub>ij</sub> contributes c<sub>ij</sub> · x<sub>ij</sub> to the cost and a<sub>ij</sub> · x<sub>ij</sub> to the i<sup>th</sup> constraint. No setup costs or economies of scale.
- 3 Additivity Total cost is the *sum* of cost contributions of each variable.
## Assumptions

### Assumptions

- Certainty No stochastics in problem parameters.
- Proportionality Variable x<sub>ij</sub> contributes c<sub>ij</sub> · x<sub>ij</sub> to the cost and a<sub>ij</sub> · x<sub>ij</sub> to the i<sup>th</sup> constraint. No setup costs or economies of scale.
- Additivity Total cost is the sum of cost contributions of each variable. No interactions reduce or increase the level of the combined contributions

## Assumptions

### Assumptions

- Certainty No stochastics in problem parameters.
- Proportionality Variable x<sub>ij</sub> contributes c<sub>ij</sub> · x<sub>ij</sub> to the cost and a<sub>ij</sub> · x<sub>ij</sub> to the i<sup>th</sup> constraint. No setup costs or economies of scale.
- Additivity Total cost is the sum of cost contributions of each variable. No interactions reduce or increase the level of the combined contributions
- Oivisibility

## Assumptions

### Assumptions

- Certainty No stochastics in problem parameters.
- Proportionality Variable x<sub>ij</sub> contributes c<sub>ij</sub> · x<sub>ij</sub> to the cost and a<sub>ij</sub> · x<sub>ij</sub> to the i<sup>th</sup> constraint. No setup costs or economies of scale.
- Additivity Total cost is the sum of cost contributions of each variable. No interactions reduce or increase the level of the combined contributions
- Oivisibility Variables are continuous and not discrete.

# Forms of a linear program

# Forms of a linear program

#### Forms

Linear Programming

## Forms of a linear program

#### Forms

General Form (Already discussed).

## Forms of a linear program

#### Forms

- General Form (Already discussed).
- 2 Canonical form:

## Forms of a linear program

#### Forms

- General Form (Already discussed).
- 2 Canonical form:

 $\begin{array}{ccc} \max \mathbf{c} \cdot \mathbf{x} \\ \mathbf{A} \cdot \mathbf{x} &\leq \mathbf{b} \\ \mathbf{x} &\geq \mathbf{0} \end{array}$ 

# Forms of a linear program

#### Forms

- General Form (Already discussed).
- 2 Canonical form:

 $\begin{array}{ccc} \max \mathbf{c} \cdot \mathbf{x} \\ \mathbf{A} \cdot \mathbf{x} &\leq \mathbf{b} \\ \mathbf{x} &\geq \mathbf{0} \end{array}$ 

3 Standard form:

Models and Model Types **Fundamental Steps** Assumptions of the linear programming model Motivating Examples

## Forms of a linear program

#### Forms

- General Form (Already discussed).
- 2 Canonical for

| anonical form: |                         |                         |   |
|----------------|-------------------------|-------------------------|---|
|                | max <b>c</b> · <b>x</b> |                         |   |
|                | A · x                   | $\leq$                  | b |
|                | x                       | $\geq$                  | 0 |
| Standard form: |                         |                         |   |
|                | ı                       | max <b>c</b> · <b>x</b> |   |
|                | A · x                   | =                       | b |
|                | х                       | $\geq$                  | 0 |

Converting linear programs into standard form

Converting linear programs into standard form

Converting linear programs into standard form

### **Objective function**

If already in maximization form, nothing needs to be done.

Converting linear programs into standard form

- If already in maximization form, nothing needs to be done.
- 2 If in minimization form, maximize the negative of the function.

Converting linear programs into standard form

- If already in maximization form, nothing needs to be done.
- 3 If in minimization form, maximize the negative of the function.  $\min f(x) = -\max(-f(x)).$

Converting linear programs into standard form

- If already in maximization form, nothing needs to be done.
- 3 If in minimization form, maximize the negative of the function.  $\min f(x) = -\max(-f(x)).$
- 3 If there is no objective function, use max 0 · x.

Converting linear programs into standard form

### Objective function

- If already in maximization form, nothing needs to be done.
- 3 If in minimization form, maximize the negative of the function.  $\min f(x) = -\max(-f(x)).$
- If there is no objective function, use max 0 · x.

#### Variables

If a variable (say  $x_1$ ) is unrestricted in sign, replace it with  $x'_1 - x''_1$ , where both  $x'_1, x''_1 \ge 0$ .

Converting linear programs into standard form

### **Objective function**

- If already in maximization form, nothing needs to be done.
- 3 If in minimization form, maximize the negative of the function.  $\min f(x) = -\max(-f(x)).$
- If there is no objective function, use max 0 · x.

#### Variables

If a variable (say  $x_1$ ) is unrestricted in sign, replace it with  $x'_1 - x''_1$ , where both  $x'_1, x''_1 \ge 0$ .

#### Constraints

Converting linear programs into standard form

### Objective function

- If already in maximization form, nothing needs to be done.
- 3 If in minimization form, maximize the negative of the function.  $\min f(x) = -\max(-f(x)).$
- If there is no objective function, use max 0 · x.

#### Variables

If a variable (say  $x_1$ ) is unrestricted in sign, replace it with  $x'_1 - x''_1$ , where both  $x'_1, x''_1 \ge 0$ .

### Constraints

• If a constraint is in the  $\leq$  form, use a slack variable.

Converting linear programs into standard form

### Objective function

- If already in maximization form, nothing needs to be done.
- 3 If in minimization form, maximize the negative of the function.  $\min f(x) = -\max(-f(x)).$
- If there is no objective function, use max 0 · x.

#### Variables

If a variable (say  $x_1$ ) is unrestricted in sign, replace it with  $x'_1 - x''_1$ , where both  $x'_1, x''_1 \ge 0$ .

### Constraints

- If a constraint is in the  $\leq$  form, use a slack variable.
- 2 If a constraint is in the  $\geq$  form, use a surplus variable.

Converting linear programs into standard form

### Objective function

- If already in maximization form, nothing needs to be done.
- 3 If in minimization form, maximize the negative of the function.  $\min f(x) = -\max(-f(x)).$
- If there is no objective function, use max 0 · x.

#### Variables

If a variable (say  $x_1$ ) is unrestricted in sign, replace it with  $x'_1 - x''_1$ , where both  $x'_1, x''_1 \ge 0$ .

### Constraints

- If a constraint is in the  $\leq$  form, use a slack variable.
- 2 If a constraint is in the  $\geq$  form, use a surplus variable.

Both slack and surplus variables are inherently non-negative.

# Equivalence of the feasibility and optimization versions

Equivalence of the feasibility and optimization versions

### Equivalence

Linear Programming

Motivating Examples

Equivalence of the feasibility and optimization versions

### Equivalence

O Can you solve the feasibility version of linear programs, given an oracle for the optimization version?

Motivating Examples

Equivalence of the feasibility and optimization versions

#### Equivalence

- O Can you solve the feasibility version of linear programs, given an oracle for the optimization version?
- On you solve the optimization version of linear programs given an oracle for the feasibility version?

## Exercise

## Exercise

Exercise on constraint conversion

## Exercise

### Exercise on constraint conversion

Convert the following Linear Program into Standard Form.

Minimize  $z = 2 \cdot x_1 - 3 \cdot x_2 + 5 \cdot x_3 + x_4$ 

## Exercise

### Exercise on constraint conversion

Convert the following Linear Program into Standard Form.

Minimize  $z = 2 \cdot x_1 - 3 \cdot x_2 + 5 \cdot x_3 + x_4$ 

subject to

## Exercise

### Exercise on constraint conversion

Convert the following Linear Program into Standard Form.

$$\text{Minimize } z = 2 \cdot x_1 - 3 \cdot x_2 + 5 \cdot x_3 + x_4$$

subject to

## Solution

# Solution

### Constraint conversion

Linear Programming Linear Programming

# Solution

### Constraint conversion

Converting the constraints we get,

# Solution

### Constraint conversion

Converting the constraints we get,

$$-x_1 + 3 \cdot x_2 - x_3 + 2 \cdot x_4 + s_1 = -12$$
  

$$5 \cdot x_1 + x_2 + 4 \cdot x_3 - x_4 - s_2 = 10$$
  

$$3 \cdot x_1 - 2 \cdot x_2 + x_3 - x_4 = -8$$

# Solution

### Constraint conversion

Converting the constraints we get,

$$\begin{aligned} -x_1 + 3 \cdot x_2 - x_3 + 2 \cdot x_4 + s_1 &= -12 \\ 5 \cdot x_1 + x_2 + 4 \cdot x_3 - x_4 - s_2 &= 10 \\ 3 \cdot x_1 - 2 \cdot x_2 + x_3 - x_4 &= -8 \end{aligned}$$

Adding the bounds on the slack and surplus variables

 $x_1, x_2, x_3, x_4, s_1, s_2 \ge 0$ 

# Solution

### Constraint conversion

Converting the constraints we get,

$$\begin{aligned} -x_1 + 3 \cdot x_2 - x_3 + 2 \cdot x_4 + s_1 &= -12 \\ 5 \cdot x_1 + x_2 + 4 \cdot x_3 - x_4 - s_2 &= 10 \\ 3 \cdot x_1 - 2 \cdot x_2 + x_3 - x_4 &= -8 \end{aligned}$$

Adding the bounds on the slack and surplus variables

 $x_1, x_2, x_3, x_4, s_1, s_2 \ge 0$ 

Finally, converting the objective function
## Solution

### Constraint conversion

Converting the constraints we get,

$$\begin{aligned} -x_1 + 3 \cdot x_2 - x_3 + 2 \cdot x_4 + s_1 &= -12 \\ 5 \cdot x_1 + x_2 + 4 \cdot x_3 - x_4 - s_2 &= 10 \\ 3 \cdot x_1 - 2 \cdot x_2 + x_3 - x_4 &= -8 \end{aligned}$$

Adding the bounds on the slack and surplus variables

 $x_1, x_2, x_3, x_4, s_1, s_2 \ge 0$ 

Finally, converting the objective function

Maximize 
$$z = -2 \cdot x_1 + 3 \cdot x_2 - 5 \cdot x_3 - x_4 + 0s_1 + 0s_2$$

# A Classification problem

# A Classification problem

### Example

Linear Programming Linear Programming

# A Classification problem

#### Example

• Assume that you measure the heights and weights of *n* Danish men and *m* Danish women.

# A Classification problem

### Example

- Assume that you measure the heights and weights of *n* Danish men and *m* Danish women.
- 2 This data is plotted as points on the x y plane.

## A Classification problem

### Example

- Assume that you measure the heights and weights of *n* Danish men and *m* Danish women.
- 2 This data is plotted as points on the x y plane.

The goal is to find a linear classifier

## A Classification problem

#### Example

- Assume that you measure the heights and weights of *n* Danish men and *m* Danish women.
- 2 This data is plotted as points on the x y plane.

The goal is to find a linear classifier (straight line) that separates the points representing the Danish men from the Danish women.

# A product mix problem

# A product mix problem

### Example

Linear Programming Linear Programming

# A product mix problem

### Example

# A product mix problem

### Example

We have two gadgets to produce:  $\alpha$  and  $\beta$ .

• The return for a unit of  $\alpha$  is \$20.

# A product mix problem

### Example

- The return for a unit of  $\alpha$  is \$20.
- 2 Each unit of  $\alpha$  requires 4 hours of assembly and 1 hour of testing.

## A product mix problem

#### Example

- The return for a unit of  $\alpha$  is \$20.
- 2 Each unit of  $\alpha$  requires 4 hours of assembly and 1 hour of testing.
- **③** The return for a unit of  $\beta$  is \$30.

## A product mix problem

#### Example

- The return for a unit of  $\alpha$  is \$20.
- 2 Each unit of  $\alpha$  requires 4 hours of assembly and 1 hour of testing.
- **③** The return for a unit of  $\beta$  is \$30.
- **④** Each unit of  $\beta$  requires 3 hours of assembly and 2 hours of testing.

## A product mix problem

#### Example

- The return for a unit of  $\alpha$  is \$20.
- 2 Each unit of  $\alpha$  requires 4 hours of assembly and 1 hour of testing.
- **③** The return for a unit of  $\beta$  is \$30.
- **④** Each unit of  $\beta$  requires 3 hours of assembly and 2 hours of testing.
- **(3)** We must produce at least 25 units of  $\alpha$ .

## A product mix problem

#### Example

- The return for a unit of  $\alpha$  is \$20.
- 2 Each unit of  $\alpha$  requires 4 hours of assembly and 1 hour of testing.
- **③** The return for a unit of  $\beta$  is \$30.
- **④** Each unit of  $\beta$  requires 3 hours of assembly and 2 hours of testing.
- **③** We must produce at least 25 units of  $\alpha$ .
- We have a total of 240 hours available for assembly and 140 hours for testing.

## A product mix problem

#### Example

We have two gadgets to produce:  $\alpha$  and  $\beta$ .

- The return for a unit of  $\alpha$  is \$20.
- 2 Each unit of  $\alpha$  requires 4 hours of assembly and 1 hour of testing.
- **③** The return for a unit of  $\beta$  is \$30.
- **④** Each unit of  $\beta$  requires 3 hours of assembly and 2 hours of testing.
- **(**) We must produce at least 25 units of  $\alpha$ .
- We have a total of 240 hours available for assembly and 140 hours for testing.

How many units of  $\alpha$  and  $\beta$  should be produced to maximize our return?

# Modeling the product mix problem

# Modeling the product mix problem

### Decision Variables

# Modeling the product mix problem

### **Decision Variables**

Let  $x_1$  denote the number of units of  $\alpha$  and  $x_2$  denote the number of units of  $\beta$  to be manufactured.

# Modeling the product mix problem

### **Decision Variables**

Let  $x_1$  denote the number of units of  $\alpha$  and  $x_2$  denote the number of units of  $\beta$  to be manufactured.

### Objective function

# Modeling the product mix problem

#### **Decision Variables**

Let  $x_1$  denote the number of units of  $\alpha$  and  $x_2$  denote the number of units of  $\beta$  to be manufactured.

### Objective function

 $\max 20 \cdot x_1 + 30 \cdot x_2$ .

# Modeling the product mix problem

#### **Decision Variables**

Let  $x_1$  denote the number of units of  $\alpha$  and  $x_2$  denote the number of units of  $\beta$  to be manufactured.

#### Objective function

 $\max 20 \cdot x_1 + 30 \cdot x_2.$ 

# Modeling the product mix problem

#### **Decision Variables**

Let  $x_1$  denote the number of units of  $\alpha$  and  $x_2$  denote the number of units of  $\beta$  to be manufactured.

#### Objective function

 $\max 20 \cdot x_1 + 30 \cdot x_2.$ 

# Modeling the product mix problem

#### **Decision Variables**

Let  $x_1$  denote the number of units of  $\alpha$  and  $x_2$  denote the number of units of  $\beta$  to be manufactured.

#### Objective function

 $\max 20 \cdot x_1 + 30 \cdot x_2.$ 

$$4 \cdot x_1 + 3 \cdot x_2 \le 240$$

# Modeling the product mix problem

#### **Decision Variables**

Let  $x_1$  denote the number of units of  $\alpha$  and  $x_2$  denote the number of units of  $\beta$  to be manufactured.

#### Objective function

 $\max 20 \cdot x_1 + 30 \cdot x_2.$ 

# Modeling the product mix problem

#### **Decision Variables**

Let  $x_1$  denote the number of units of  $\alpha$  and  $x_2$  denote the number of units of  $\beta$  to be manufactured.

#### Objective function

 $\max 20 \cdot x_1 + 30 \cdot x_2.$ 

# Modeling the product mix problem

#### **Decision Variables**

Let  $x_1$  denote the number of units of  $\alpha$  and  $x_2$  denote the number of units of  $\beta$  to be manufactured.

#### Objective function

 $\max 20 \cdot x_1 + 30 \cdot x_2.$ 

# Portfolio optimization

# Portfolio optimization

### Example

Linear Programming Linear Programming

# Portfolio optimization

### Example

## Portfolio optimization

### Example

We want to invest \$50,000 among three strategies: savings certificates, municipal bonds, and stocks.

• The annual return on each investment is 7%, 9%, and 14% respectively.

## Portfolio optimization

### Example

- The annual return on each investment is 7%, 9%, and 14% respectively.
- 2 We will not re-invest the interest at the end of the year.

## Portfolio optimization

### Example

- The annual return on each investment is 7%, 9%, and 14% respectively.
- 2 We will not re-invest the interest at the end of the year.
- We do not want to invest less than \$10,000 in bonds.

## Portfolio optimization

#### Example

- The annual return on each investment is 7%, 9%, and 14% respectively.
- 2 We will not re-invest the interest at the end of the year.
- We do not want to invest less than \$10,000 in bonds.
- The investment in stocks should not exceed the combined total investment in the other two strategies.

### Portfolio optimization

#### Example

- The annual return on each investment is 7%, 9%, and 14% respectively.
- 2 We will not re-invest the interest at the end of the year.
- We do not want to invest less than \$10,000 in bonds.
- The investment in stocks should not exceed the combined total investment in the other two strategies.
- The savings certificate investment should be between \$5,000 and \$15,000.
## Portfolio optimization

### Example

We want to invest \$50,000 among three strategies: savings certificates, municipal bonds, and stocks.

- The annual return on each investment is 7%, 9%, and 14% respectively.
- 2 We will not re-invest the interest at the end of the year.
- We do not want to invest less than \$10,000 in bonds.
- The investment in stocks should not exceed the combined total investment in the other two strategies.
- The savings certificate investment should be between \$5,000 and \$15,000.

How should we invest the money in order to maximize our return?

Modeling the portfolio optimization problem

Modeling the portfolio optimization problem

**Decision Variables** 

# Modeling the portfolio optimization problem

### **Decision Variables**

Let  $x_1$ ,  $x_2$  and  $x_3$  denote the amounts to be invested in savings certificates, municipal bonds and stocks respectively.

# Modeling the portfolio optimization problem

### **Decision Variables**

Let  $x_1$ ,  $x_2$  and  $x_3$  denote the amounts to be invested in savings certificates, municipal bonds and stocks respectively.

**Objective Function** 

# Modeling the portfolio optimization problem

### **Decision Variables**

Let  $x_1$ ,  $x_2$  and  $x_3$  denote the amounts to be invested in savings certificates, municipal bonds and stocks respectively.

### **Objective Function**

 $\max 0.07 \cdot x_1 + 0.09 \cdot x_2 + 0.14 \cdot x_3.$ 

# Modeling the portfolio optimization problem

### **Decision Variables**

Let  $x_1$ ,  $x_2$  and  $x_3$  denote the amounts to be invested in savings certificates, municipal bonds and stocks respectively.

### **Objective Function**

 $\max 0.07 \cdot x_1 + 0.09 \cdot x_2 + 0.14 \cdot x_3.$ 

# Modeling the portfolio optimization problem

### **Decision Variables**

Let  $x_1$ ,  $x_2$  and  $x_3$  denote the amounts to be invested in savings certificates, municipal bonds and stocks respectively.

### **Objective Function**

 $\max 0.07 \cdot x_1 + 0.09 \cdot x_2 + 0.14 \cdot x_3.$ 

# Modeling the portfolio optimization problem

### **Decision Variables**

Let  $x_1$ ,  $x_2$  and  $x_3$  denote the amounts to be invested in savings certificates, municipal bonds and stocks respectively.

### **Objective Function**

 $\max 0.07 \cdot x_1 + 0.09 \cdot x_2 + 0.14 \cdot x_3.$ 

$$x_2 \geq 10,000$$

# Modeling the portfolio optimization problem

### **Decision Variables**

Let  $x_1$ ,  $x_2$  and  $x_3$  denote the amounts to be invested in savings certificates, municipal bonds and stocks respectively.

### **Objective Function**

 $\max 0.07 \cdot x_1 + 0.09 \cdot x_2 + 0.14 \cdot x_3.$ 

$$x_2 \ge 10,000$$
  
 $x_3 \le x_1 + x_2$ 

# Modeling the portfolio optimization problem

### **Decision Variables**

Let  $x_1$ ,  $x_2$  and  $x_3$  denote the amounts to be invested in savings certificates, municipal bonds and stocks respectively.

### **Objective Function**

 $\max 0.07 \cdot x_1 + 0.09 \cdot x_2 + 0.14 \cdot x_3.$ 

$$egin{array}{rcl} x_2 &\geq & 10,000 \ x_3 &\leq & x_1+x_2 \ x_1 &\geq & 5000 \end{array}$$

# Modeling the portfolio optimization problem

### **Decision Variables**

Let  $x_1$ ,  $x_2$  and  $x_3$  denote the amounts to be invested in savings certificates, municipal bonds and stocks respectively.

### **Objective Function**

 $\max 0.07 \cdot x_1 + 0.09 \cdot x_2 + 0.14 \cdot x_3.$ 

# Modeling the portfolio optimization problem

### **Decision Variables**

Let  $x_1$ ,  $x_2$  and  $x_3$  denote the amounts to be invested in savings certificates, municipal bonds and stocks respectively.

### **Objective Function**

 $\max 0.07 \cdot x_1 + 0.09 \cdot x_2 + 0.14 \cdot x_3.$ 

# Modeling the portfolio optimization problem

### **Decision Variables**

Let  $x_1$ ,  $x_2$  and  $x_3$  denote the amounts to be invested in savings certificates, municipal bonds and stocks respectively.

### **Objective Function**

 $\max 0.07 \cdot x_1 + 0.09 \cdot x_2 + 0.14 \cdot x_3.$ 

### Constraints

X

# Farmland Use

# Farmland Use

### Example

Linear Programming Linear Programming

# Farmland Use

### Example

# Farmland Use

### Example

We own 500 acres of land, in which we grow corn, wheat, soybeans and oats.

An acre yields 110 bushels of corn,

# Farmland Use

### Example

We own 500 acres of land, in which we grow corn, wheat, soybeans and oats.

An acre yields 110 bushels of corn, 35 bushels of wheat,

## Farmland Use

### Example

We own 500 acres of land, in which we grow corn, wheat, soybeans and oats.

An acre yields 110 bushels of corn, 35 bushels of wheat, 32 bushels of soybeans,

## Farmland Use

### Example

We own 500 acres of land, in which we grow corn, wheat, soybeans and oats.

 An acre yields 110 bushels of corn, 35 bushels of wheat, 32 bushels of soybeans, and 55 bushels of oats.

## Farmland Use

### Example

- An acre yields 110 bushels of corn, 35 bushels of wheat, 32 bushels of soybeans, and 55 bushels of oats.
- O To receive federal subsidies, we may not plant more than 120 acres of soybeans.

## Farmland Use

### Example

- An acre yields 110 bushels of corn, 35 bushels of wheat, 32 bushels of soybeans, and 55 bushels of oats.
- O To receive federal subsidies, we may not plant more than 120 acres of soybeans.
- We require at least 10,000 bushels of corn product due to a contract with a local dairy farm.

## Farmland Use

#### Example

- An acre yields 110 bushels of corn, 35 bushels of wheat, 32 bushels of soybeans, and 55 bushels of oats.
- O To receive federal subsidies, we may not plant more than 120 acres of soybeans.
- We require at least 10,000 bushels of corn product due to a contract with a local dairy farm.
- The total wheat acreage should not be less than that used for soybeans and oats.

## Farmland Use

### Example

- An acre yields 110 bushels of corn, 35 bushels of wheat, 32 bushels of soybeans, and 55 bushels of oats.
- O To receive federal subsidies, we may not plant more than 120 acres of soybeans.
- We require at least 10,000 bushels of corn product due to a contract with a local dairy farm.
- The total wheat acreage should not be less than that used for soybeans and oats.
- The selling price per bushel of corn is \$0.36; of wheat, \$0.90; of soybeans, \$0.82; of oats, \$0.98.

## Farmland Use

### Example

We own 500 acres of land, in which we grow corn, wheat, soybeans and oats.

- An acre yields 110 bushels of corn, 35 bushels of wheat, 32 bushels of soybeans, and 55 bushels of oats.
- ② To receive federal subsidies, we may not plant more than 120 acres of soybeans.
- We require at least 10,000 bushels of corn product due to a contract with a local dairy farm.
- The total wheat acreage should not be less than that used for soybeans and oats.
- The selling price per bushel of corn is \$0.36; of wheat, \$0.90; of soybeans, \$0.82; of oats, \$0.98.

How many acres of each product should be grown to maximize our profit?

Modeling the Farmland Use problem

Modeling the Farmland Use problem

### Decision Variables

Modeling the Farmland Use problem

### **Decision Variables**

Let  $x_1$ ,  $x_2$ ,  $x_3$  and  $x_4$  denote the acreage of corn, what, soybeans and oats respectively.

Modeling the Farmland Use problem

### **Decision Variables**

Let  $x_1$ ,  $x_2$ ,  $x_3$  and  $x_4$  denote the acreage of corn, what, soybeans and oats respectively.

### **Objective Function**

Modeling the Farmland Use problem

### **Decision Variables**

Let  $x_1$ ,  $x_2$ ,  $x_3$  and  $x_4$  denote the acreage of corn, what, soybeans and oats respectively.

### **Objective Function**

 $\max(0.36) \cdot 110 \cdot x_1 + (0.9) \cdot 35 \cdot x_2 + (0.82) \cdot 32 \cdot x_3 + (0.98) \cdot 55 \cdot x_4.$ 

Modeling the Farmland Use problem

### **Decision Variables**

Let  $x_1$ ,  $x_2$ ,  $x_3$  and  $x_4$  denote the acreage of corn, what, soybeans and oats respectively.

### **Objective Function**

 $\max(0.36) \cdot 110 \cdot x_1 + (0.9) \cdot 35 \cdot x_2 + (0.82) \cdot 32 \cdot x_3 + (0.98) \cdot 55 \cdot x_4.$ 

Modeling the Farmland Use problem

### **Decision Variables**

Let  $x_1$ ,  $x_2$ ,  $x_3$  and  $x_4$  denote the acreage of corn, what, soybeans and oats respectively.

### **Objective Function**

 $\max(0.36) \cdot 110 \cdot x_1 + (0.9) \cdot 35 \cdot x_2 + (0.82) \cdot 32 \cdot x_3 + (0.98) \cdot 55 \cdot x_4.$ 

Modeling the Farmland Use problem

### **Decision Variables**

Let  $x_1$ ,  $x_2$ ,  $x_3$  and  $x_4$  denote the acreage of corn, what, soybeans and oats respectively.

### **Objective Function**

 $\max(0.36) \cdot 110 \cdot x_1 + (0.9) \cdot 35 \cdot x_2 + (0.82) \cdot 32 \cdot x_3 + (0.98) \cdot 55 \cdot x_4.$ 

$$x_1 + x_2 + x_3 + x_4 \leq 500$$

Modeling the Farmland Use problem

### **Decision Variables**

Let  $x_1$ ,  $x_2$ ,  $x_3$  and  $x_4$  denote the acreage of corn, what, soybeans and oats respectively.

### **Objective Function**

 $\max(0.36) \cdot 110 \cdot x_1 + (0.9) \cdot 35 \cdot x_2 + (0.82) \cdot 32 \cdot x_3 + (0.98) \cdot 55 \cdot x_4.$ 

$$\begin{array}{rrrrr} x_1 + x_2 + x_3 + x_4 & \leq & 500 \\ x_3 & \leq & 120 \end{array}$$

Modeling the Farmland Use problem

### **Decision Variables**

Let  $x_1$ ,  $x_2$ ,  $x_3$  and  $x_4$  denote the acreage of corn, what, soybeans and oats respectively.

### **Objective Function**

 $\max(0.36) \cdot 110 \cdot x_1 + (0.9) \cdot 35 \cdot x_2 + (0.82) \cdot 32 \cdot x_3 + (0.98) \cdot 55 \cdot x_4.$
Modeling the Farmland Use problem

#### **Decision Variables**

Let  $x_1$ ,  $x_2$ ,  $x_3$  and  $x_4$  denote the acreage of corn, what, soybeans and oats respectively.

### **Objective Function**

 $\max(0.36) \cdot 110 \cdot x_1 + (0.9) \cdot 35 \cdot x_2 + (0.82) \cdot 32 \cdot x_3 + (0.98) \cdot 55 \cdot x_4.$ 

#### Constraints

Modeling the Farmland Use problem

#### **Decision Variables**

Let  $x_1$ ,  $x_2$ ,  $x_3$  and  $x_4$  denote the acreage of corn, what, soybeans and oats respectively.

### **Objective Function**

 $\max(0.36) \cdot 110 \cdot x_1 + (0.9) \cdot 35 \cdot x_2 + (0.82) \cdot 32 \cdot x_3 + (0.98) \cdot 55 \cdot x_4.$ 

#### Constraints

# Transportation

# Transportation

### Example

Linear Programming Linear Programming

# Transportation

### Example

## Transportation

## Example

We have three warehouses and four clients.

Warehouses 1, 2, and 3 have 6, 000, 9, 000, and 4, 000 units available respectively.

## Transportation

### Example

- Warehouses 1, 2, and 3 have 6, 000, 9, 000, and 4, 000 units available respectively.
- Clients 1, 2, 3, and 4 want 3, 900, 5, 200, 2, 700, and 6, 400 units respectively.

# Transportation

### Example

- Warehouses 1, 2, and 3 have 6, 000, 9, 000, and 4, 000 units available respectively.
- Clients 1, 2, 3, and 4 want 3, 900, 5, 200, 2, 700, and 6, 400 units respectively.
- The cost to ship a unit from a given warehouse to a given client varies according to the following table:

## Transportation

### Example

- Warehouses 1, 2, and 3 have 6, 000, 9, 000, and 4, 000 units available respectively.
- Clients 1, 2, 3, and 4 want 3, 900, 5, 200, 2, 700, and 6, 400 units respectively.
- The cost to ship a unit from a given warehouse to a given client varies according to the following table:

|           | Client |   |   |   |  |
|-----------|--------|---|---|---|--|
| Warehouse | 1      | 2 | 3 | 4 |  |
| 1         | 7      | 3 | 8 | 4 |  |
| 2         | 8      | 5 | 6 | 3 |  |
| 3         | 4      | 6 | 9 | 6 |  |

# Transportation

### Example

We have three warehouses and four clients.

- Warehouses 1, 2, and 3 have 6, 000, 9, 000, and 4, 000 units available respectively.
- 2 Clients 1, 2, 3, and 4 want 3, 900, 5, 200, 2, 700, and 6, 400 units respectively.
- The cost to ship a unit from a given warehouse to a given client varies according to the following table:

|           | Client |   |   |   |  |
|-----------|--------|---|---|---|--|
| Warehouse | 1      | 2 | 3 | 4 |  |
| 1         | 7      | 3 | 8 | 4 |  |
| 2         | 8      | 5 | 6 | 3 |  |
| 3         | 4      | 6 | 9 | 6 |  |

 Items should be shipped from warehouses to clients, so all client demands are met.

## Transportation

### Example

We have three warehouses and four clients.

- Warehouses 1, 2, and 3 have 6, 000, 9, 000, and 4, 000 units available respectively.
- Clients 1, 2, 3, and 4 want 3, 900, 5, 200, 2, 700, and 6, 400 units respectively.
- The cost to ship a unit from a given warehouse to a given client varies according to the following table:

|           | Client |   |   |   |  |
|-----------|--------|---|---|---|--|
| Warehouse | 1      | 2 | 3 | 4 |  |
| 1         | 7      | 3 | 8 | 4 |  |
| 2         | 8      | 5 | 6 | 3 |  |
| 3         | 4      | 6 | 9 | 6 |  |

 Items should be shipped from warehouses to clients, so all client demands are met.

How can we perform the shipping while minimizing our shipping cost?

Modeling the Transportation problem

Modeling the Transportation problem

## **Decision Variables**

Linear Programming Linear Programming

Modeling the Transportation problem

### **Decision Variables**

Let  $x_{i,j}$  denote the number of units to be shipped from warehouse *i* to client *j*, where  $i \in \{1, 2, 3\}$  and  $j \in \{1, 2, 3, 4\}$ .

Modeling the Transportation problem

#### **Decision Variables**

Let  $x_{i,j}$  denote the number of units to be shipped from warehouse *i* to client *j*, where  $i \in \{1, 2, 3\}$  and  $j \in \{1, 2, 3, 4\}$ .

### **Objective Function**

Modeling the Transportation problem

#### **Decision Variables**

Let  $x_{i,j}$  denote the number of units to be shipped from warehouse *i* to client *j*, where  $i \in \{1, 2, 3\}$  and  $j \in \{1, 2, 3, 4\}$ .

### **Objective Function**

min 
$$7 \cdot x_{1,1} + 3 \cdot x_{1,2} + 8 \cdot x_{1,3} + 4 \cdot x_{1,4}$$
  
 $9 \cdot x_{2,1} + 5 \cdot x_{2,2} + 6 \cdot x_{2,3} + 3 \cdot x_{2,4}$   
 $4 \cdot x_{3,1} + 6 \cdot x_{3,2} + 9 \cdot x_{3,3} + 6 \cdot x_{3,4}$ 

# Modeling (contd.)

# Modeling (contd.)

## Constraints

Linear Programming Linear Programming

# Modeling (contd.)

### Constraints

# Modeling (contd.)

### Constraints

$$\sum_{j=1}^{4} x_{1,j} \leq 6000$$

# Modeling (contd.)

### Constraints

$$\sum_{j=1}^{4} x_{1,j} \leq 6000$$
$$\sum_{j=1}^{4} x_{2,j} \leq 9000$$

# Modeling (contd.)

### Constraints

$$\sum_{j=1}^{4} x_{1,j} \leq 6000$$
$$\sum_{j=1}^{4} x_{2,j} \leq 9000$$
$$\sum_{i=1}^{4} x_{3,j} \leq 4000$$

# Modeling (contd.)

### Constraints

The supply constraints:

$$\sum_{j=1}^{4} x_{1,j} \leq 6000$$
$$\sum_{j=1}^{4} x_{2,j} \leq 9000$$
$$\sum_{j=1}^{4} x_{3,j} \leq 4000$$

# Modeling (contd.)

### Constraints

The supply constraints:

$$\sum_{j=1}^{4} x_{1,j} \leq 6000$$
  
 $\sum_{j=1}^{4} x_{2,j} \leq 9000$   
 $\sum_{i=1}^{4} x_{3,j} \leq 4000$ 

$$\sum_{i=1}^{3} x_{i,1} = 3900$$

# Modeling (contd.)

### Constraints

The supply constraints:

$$\sum_{j=1}^{4} x_{1,j} \leq 6000$$
  
 $\sum_{j=1}^{4} x_{2,j} \leq 9000$   
 $\sum_{j=1}^{4} x_{3,j} \leq 4000$ 

$$\sum_{i=1}^{3} x_{i,1} = 3900$$
$$\sum_{i=1}^{3} x_{i,2} = 5200$$

# Modeling (contd.)

### Constraints

The supply constraints:

$$\sum_{j=1}^{4} x_{1,j} \leq 6000$$
$$\sum_{j=1}^{4} x_{2,j} \leq 9000$$
$$\sum_{j=1}^{4} x_{3,j} \leq 4000$$

$$\sum_{i=1}^{3} x_{i,1} = 3900$$
$$\sum_{i=1}^{3} x_{i,2} = 5200$$
$$\sum_{i=1}^{3} x_{i,3} = 2700$$

# Modeling (contd.)

### Constraints

The supply constraints:

$$\sum_{j=1}^{4} x_{1,j} \leq 6000$$
$$\sum_{j=1}^{4} x_{2,j} \leq 9000$$
$$\sum_{j=1}^{4} x_{3,j} \leq 4000$$

$$\sum_{i=1}^{3} x_{i,1} = 3900$$
$$\sum_{i=1}^{3} x_{i,2} = 5200$$
$$\sum_{i=1}^{3} x_{i,3} = 2700$$
$$\sum_{i=1}^{3} x_{i,4} = 6400$$

# Modeling (contd.)

### Constraints

The supply constraints:

$$\sum_{j=1}^{4} x_{1,j} \leq 6000$$
$$\sum_{j=1}^{4} x_{2,j} \leq 9000$$
$$\sum_{j=1}^{4} x_{3,j} \leq 4000$$

The demand constraints:

$$\sum_{i=1}^{3} x_{i,1} = 3900$$
$$\sum_{i=1}^{3} x_{i,2} = 5200$$
$$\sum_{i=1}^{3} x_{i,3} = 2700$$
$$\sum_{i=1}^{3} x_{i,4} = 6400$$

Non-negativity constraints:  $x_{ij} \ge 0, i = 1, 2, 3, j = 1, 2, 3, 4.$ 

# Short-term financing

# Short-term financing

## The problem

# Short-term financing

### The problem

• Companies routinely face the problem of short-term commitments.

# Short-term financing

### The problem

- O Companies routinely face the problem of short-term commitments.
- **2** We need an optimal combination of financial instruments to meet those commitments.

# Short-term financing

### The problem

- O Companies routinely face the problem of short-term commitments.
- **2** We need an optimal combination of financial instruments to meet those commitments.
- Onsider the following table:

| Month         | Jan           | Feb           | March | April  | May  | June  |
|---------------|---------------|---------------|-------|--------|------|-------|
| Net Cash flow | -150 <i>K</i> | -100 <i>K</i> | 200 K | -200 K | 50 K | 300 K |

# Short-term financing

#### The problem

- O Companies routinely face the problem of short-term commitments.
- **2** We need an optimal combination of financial instruments to meet those commitments.
- Onsider the following table:

| Month         | Jan           | Feb    | March | April  | May  | June  |
|---------------|---------------|--------|-------|--------|------|-------|
| Net Cash flow | -150 <i>K</i> | -100 K | 200 K | -200 K | 50 K | 300 K |

• The company has a credit line of \$100 K at an interest rate of 1% per month.

# Short-term financing

#### The problem

- O Companies routinely face the problem of short-term commitments.
- **2** We need an optimal combination of financial instruments to meet those commitments.
- Onsider the following table:

| Month         | Jan           | Feb    | March | April  | May  | June  |
|---------------|---------------|--------|-------|--------|------|-------|
| Net Cash flow | -150 <i>K</i> | -100 K | 200 K | -200 K | 50 K | 300 K |

- The company has a credit line of \$100 K at an interest rate of 1% per month.
- In any of the first three months, it can issue 90-day commercial paper.

# Short-term financing

#### The problem

- O Companies routinely face the problem of short-term commitments.
- **2** We need an optimal combination of financial instruments to meet those commitments.
- Onsider the following table:

| Month         | Jan           | Feb    | March | April  | May  | June  |
|---------------|---------------|--------|-------|--------|------|-------|
| Net Cash flow | -150 <i>K</i> | -100 K | 200 K | -200 K | 50 K | 300 K |

- The company has a credit line of \$100 K at an interest rate of 1% per month.
- In any of the first three months, it can issue 90-day commercial paper.
- Second Se
### Short-term financing

#### The problem

- O Companies routinely face the problem of short-term commitments.
- **2** We need an optimal combination of financial instruments to meet those commitments.
- Onsider the following table:

| Month         | Jan           | Feb    | March | April  | May  | June  |
|---------------|---------------|--------|-------|--------|------|-------|
| Net Cash flow | -150 <i>K</i> | -100 K | 200 K | -200 K | 50 K | 300 K |

- The company has a credit line of \$100 K at an interest rate of 1% per month.
- In any of the first three months, it can issue 90-day commercial paper.
- Excess funds can be reinvested at an interest rate of 0.3% per month.
- Any paper issued in January through March requires a 2% interest rate payment three months later.

# Modeling

# Modeling

### Decision Variables

Linear Programming Linear Programming

### Modeling

### Decision Variables

### Modeling

### **Decision Variables**

Let

•  $x_i$  denote the amount drawn from the credit line in month *i*,

### Modeling

### **Decision Variables**

- **(**)  $x_i$  denote the amount drawn from the credit line in month *i*,
- 2  $y_i$  denote the amount of commercial paper issued in month *i*,

### Modeling

#### **Decision Variables**

- **(**)  $x_i$  denote the amount drawn from the credit line in month *i*,
- 2  $y_i$  denote the amount of commercial paper issued in month *i*,
- 3  $z_i$  denote the excess funds in month *i*, and

### Modeling

### **Decision Variables**

- **(**)  $x_i$  denote the amount drawn from the credit line in month *i*,
- 2  $y_i$  denote the amount of commercial paper issued in month *i*,
- 3  $z_i$  denote the excess funds in month *i*, and
- v denote the company's wealth after June.

### Modeling

### **Decision Variables**

#### Let

- **(**)  $x_i$  denote the amount drawn from the credit line in month *i*,
- 2  $y_i$  denote the amount of commercial paper issued in month *i*,
- 3  $z_i$  denote the excess funds in month *i*, and
- v denote the company's wealth after June.

#### **Objective Function**

### Modeling

### **Decision Variables**

#### Let

- **(**)  $x_i$  denote the amount drawn from the credit line in month *i*,
- 2  $y_i$  denote the amount of commercial paper issued in month *i*,
- 3  $z_i$  denote the excess funds in month *i*, and
- v denote the company's wealth after June.

#### **Objective Function**

max v

# Modeling (contd.)

# Modeling (contd.)

#### Constraints

Linear Programming Linear Programming

# Modeling (contd.)

#### Constraints

 $x_1 + y_1 - z_1 = 150$ 

# Modeling (contd.)

$$x_1 + y_1 - z_1 = 150$$
  
$$x_2 + y_2 - 1.01 \cdot x_1 + 1.003 \cdot z_1 - z_2 = 100$$

# Modeling (contd.)

$$x_1 + y_1 - z_1 = 150$$
  

$$x_2 + y_2 - 1.01 \cdot x_1 + 1.003 \cdot z_1 - z_2 = 100$$
  

$$x_3 + y_3 - 1.01 \cdot x_2 + 1.003 \cdot z_2 - z_3 = -200$$

# Modeling (contd.)

$$\begin{aligned} x_1 + y_1 - z_1 &= 150\\ x_2 + y_2 - 1.01 \cdot x_1 + 1.003 \cdot z_1 - z_2 &= 100\\ x_3 + y_3 - 1.01 \cdot x_2 + 1.003 \cdot z_2 - z_3 &= -200\\ x_4 - 1.02 \cdot y_1 - 1.01 \cdot x_3 + 1.003 \cdot z_3 - z_4 &= 200 \end{aligned}$$

# Modeling (contd.)

$$\begin{aligned} x_1 + y_1 - z_1 &= 150\\ x_2 + y_2 - 1.01 \cdot x_1 + 1.003 \cdot z_1 - z_2 &= 100\\ x_3 + y_3 - 1.01 \cdot x_2 + 1.003 \cdot z_2 - z_3 &= -200\\ x_4 - 1.02 \cdot y_1 - 1.01 \cdot x_3 + 1.003 \cdot z_3 - z_4 &= 200\\ x_5 - 1.02 \cdot y_2 - 1.01 \cdot x_4 + 1.003 \cdot z_4 - z_5 &= -50 \end{aligned}$$

# Modeling (contd.)

$$\begin{aligned} x_1 + y_1 - z_1 &= 150\\ x_2 + y_2 - 1.01 \cdot x_1 + 1.003 \cdot z_1 - z_2 &= 100\\ x_3 + y_3 - 1.01 \cdot x_2 + 1.003 \cdot z_2 - z_3 &= -200\\ x_4 - 1.02 \cdot y_1 - 1.01 \cdot x_3 + 1.003 \cdot z_3 - z_4 &= 200\\ x_5 - 1.02 \cdot y_2 - 1.01 \cdot x_4 + 1.003 \cdot z_4 - z_5 &= -50\\ - 1.02 \cdot y_3 - 1.01 \cdot x_5 + 1.003 \cdot z_5 - v &= -300 \end{aligned}$$

# Modeling (contd.)

$$\begin{array}{rclrcrcrc} x_1+y_1-z_1 &=& 150\\ x_2+y_2-1.01\cdot x_1+1.003\cdot z_1-z_2 &=& 100\\ x_3+y_3-1.01\cdot x_2+1.003\cdot z_2-z_3 &=& -200\\ x_4-1.02\cdot y_1-1.01\cdot x_3+1.003\cdot z_3-z_4 &=& 200\\ x_5-1.02\cdot y_2-1.01\cdot x_4+1.003\cdot z_4-z_5 &=& -50\\ -1.02\cdot y_3-1.01\cdot x_5+1.003\cdot z_5-v &=& -300\\ x_i &\leq& 100, \ i=1,2,3,4,5 \end{array}$$

# Modeling (contd.)

$$\begin{array}{rcl} x_1 + y_1 - z_1 &=& 150 \\ x_2 + y_2 - 1.01 \cdot x_1 + 1.003 \cdot z_1 - z_2 &=& 100 \\ x_3 + y_3 - 1.01 \cdot x_2 + 1.003 \cdot z_2 - z_3 &=& -200 \\ x_4 - 1.02 \cdot y_1 - 1.01 \cdot x_3 + 1.003 \cdot z_3 - z_4 &=& 200 \\ x_5 - 1.02 \cdot y_2 - 1.01 \cdot x_4 + 1.003 \cdot z_4 - z_5 &=& -50 \\ - 1.02 \cdot y_3 - 1.01 \cdot x_5 + 1.003 \cdot z_5 - v &=& -300 \\ x_i &\leq& 100, \ i = 1, 2, 3, 4, 5 \\ x_i, y_i, z_i &\geq& 0 \end{array}$$

### **Final points**

# Final points

### Choice of variables

Linear Programming Linear Programming

### **Final points**

#### Choice of variables

**(**) Why was the interest on  $x_1$  not included in the equation for March?

### **Final points**

#### Choice of variables

Why was the interest on x<sub>1</sub> not included in the equation for March?

2 Choice of variables is crucial.