Mathematical Review

K. Subramani¹

¹Lane Department of Computer Science and Electrical Engineering West Virginia University

24, 26 August 2016

Inductive Proof

Subramani Mathematical Review

Inductive Proof

Inductive Proof

3 Logarithms

Inductive Proof

3 Logarithms

Inductive Proof

3 Logarithms

Permutations

5 Combinations

6 The Binomial Theorem

Inductive Proof

3 Logarithms

Permutations

5 Combinations

6 The Binomial Theorem

O Summations

Order of magnitude of functions

Order of magnitude of functions

Motivation

Subramani Mathematical Review

Order of magnitude of functions

Motivation

Order theory enables us to compare functions, just as the theory of arithmetic enables us to compare numbers.

Order of magnitude of functions

Motivation

Order theory enables us to compare functions, just as the theory of arithmetic enables us to compare numbers.

In case of functions, we are interested in *rate of growth*, i.e., does function f grow at a faster rate than function g?

Order of magnitude of functions

Motivation

Order theory enables us to compare functions, just as the theory of arithmetic enables us to compare numbers.

In case of functions, we are interested in *rate of growth*, i.e., does function f grow at a faster rate than function g?

Note

Order of magnitude of functions

Motivation

Order theory enables us to compare functions, just as the theory of arithmetic enables us to compare numbers.

In case of functions, we are interested in *rate of growth*, i.e., does function f grow at a faster rate than function g?

Note

(i) Additive and multiplicative constants do not matter in rate of growth.

Order of magnitude of functions

Motivation

Order theory enables us to compare functions, just as the theory of arithmetic enables us to compare numbers.

In case of functions, we are interested in *rate of growth*, i.e., does function f grow at a faster rate than function g?

Note

- (i) Additive and multiplicative constants do not matter in rate of growth.
- (ii) The starting point of measurement does not matter.

Order of magnitude of functions

Motivation

Order theory enables us to compare functions, just as the theory of arithmetic enables us to compare numbers.

In case of functions, we are interested in *rate of growth*, i.e., does function f grow at a faster rate than function g?

Note

- (i) Additive and multiplicative constants do not matter in rate of growth.
- (ii) The starting point of measurement does not matter.
- (iii) We only care about functions from $\Re_{\geq 0} \to \Re_{\geq 0}$.

Order of magnitude of functions

Motivation

Order theory enables us to compare functions, just as the theory of arithmetic enables us to compare numbers.

In case of functions, we are interested in *rate of growth*, i.e., does function f grow at a faster rate than function g?

Note

- (i) Additive and multiplicative constants do not matter in rate of growth.
- (ii) The starting point of measurement does not matter.
- (iii) We only care about functions from $\Re_{\geq 0} \to \Re_{\geq 0}$.

Example

Order of magnitude of functions

Motivation

Order theory enables us to compare functions, just as the theory of arithmetic enables us to compare numbers.

In case of functions, we are interested in *rate of growth*, i.e., does function f grow at a faster rate than function g?

Note

- (i) Additive and multiplicative constants do not matter in rate of growth.
- (ii) The starting point of measurement does not matter.
- (iii) We only care about functions from $\Re_{\geq 0} \to \Re_{\geq 0}$.

Example

(i) Which function grows faster: $100 \cdot x^2$ or $\frac{1}{10^6} \cdot x^3$?

Order of magnitude of functions

Motivation

Order theory enables us to compare functions, just as the theory of arithmetic enables us to compare numbers.

In case of functions, we are interested in *rate of growth*, i.e., does function f grow at a faster rate than function g?

Note

- (i) Additive and multiplicative constants do not matter in rate of growth.
- (ii) The starting point of measurement does not matter.
- (iii) We only care about functions from $\Re_{\geq 0} \to \Re_{\geq 0}$.

Example

- (i) Which function grows faster: $100 \cdot x^2$ or $\frac{1}{10^6} \cdot x^3$?
- (ii) Which function grows faster: $x^2 10$ or x + 10?

Order of Magnitude Inductive Proof

Inductive Proof Logarithms Permutations Combinations The Binomial Theorem Summations

Order of Magnitude (contd.)

Order of Magnitude (contd.)

Definition

Subramani Mathematical Review

Order of Magnitude (contd.)

Definition

Let f and g be functions mapping non-negative reals to non-negative reals.

Order of Magnitude (contd.)

Definition

Let f and g be functions mapping non-negative reals to non-negative reals.

Then f = O(g), if there exist constants c and n_0 such that for all $n \ge n_0$, $f(x) \le c \cdot g(x)$.

Order of Magnitude (contd.)

Definition

Let f and g be functions mapping non-negative reals to non-negative reals.

Then f = O(g), if there exist constants c and n_0 such that for all $n \ge n_0$, $f(x) \le c \cdot g(x)$.

Definition

Order of Magnitude (contd.)

Definition

Let f and g be functions mapping non-negative reals to non-negative reals.

Then f = O(g), if there exist constants c and n_0 such that for all $n \ge n_0$, $f(x) \le c \cdot g(x)$.

Definition

Let f and g be functions mapping non-negative reals to non-negative reals.

Order of Magnitude (contd.)

Definition

Let f and g be functions mapping non-negative reals to non-negative reals.

Then f = O(g), if there exist constants c and n_0 such that for all $n \ge n_0$, $f(x) \le c \cdot g(x)$.

Definition

Let f and g be functions mapping non-negative reals to non-negative reals.

Then $f = \Omega(g)$, if there exist constants c and n_0 such that for all $n \ge n_0$, $f(x) \ge c \cdot g(x)$.

Order of Magnitude (contd.)

Definition

Let f and g be functions mapping non-negative reals to non-negative reals.

Then f = O(g), if there exist constants c and n_0 such that for all $n \ge n_0$, $f(x) \le c \cdot g(x)$.

Definition

Let f and g be functions mapping non-negative reals to non-negative reals.

Then $f = \Omega(g)$, if there exist constants c and n_0 such that for all $n \ge n_0$, $f(x) \ge c \cdot g(x)$.

Definition

Order of Magnitude (contd.)

Definition

Let f and g be functions mapping non-negative reals to non-negative reals.

Then f = O(g), if there exist constants c and n_0 such that for all $n \ge n_0$, $f(x) \le c \cdot g(x)$.

Definition

Let f and g be functions mapping non-negative reals to non-negative reals.

Then $f = \Omega(g)$, if there exist constants c and n_0 such that for all $n \ge n_0$, $f(x) \ge c \cdot g(x)$.

Definition

Let f and g be functions mapping non-negative reals to non-negative reals.

Order of Magnitude (contd.)

Definition

Let f and g be functions mapping non-negative reals to non-negative reals.

Then f = O(g), if there exist constants c and n_0 such that for all $n \ge n_0$, $f(x) \le c \cdot g(x)$.

Definition

Let f and g be functions mapping non-negative reals to non-negative reals.

Then
$$f = \Omega(g)$$
, if there exist constants c and n_0 such that for all $n \ge n_0$, $f(x) \ge c \cdot g(x)$.

Definition

Let f and g be functions mapping non-negative reals to non-negative reals.

Then f = o(g), if there exist constants c and n_0 such that for all $n \ge n_0$, $f(x) < c \cdot g(x)$.

Order of Magnitude Inductive Proof

Inductive Proof Logarithms Permutations Combinations The Binomial Theorem Summations

Order of Magnitude (contd.)

Order of Magnitude (contd.)

Definition

Subramani Mathematical Review

Order of Magnitude (contd.)

Definition

Let f and g be functions mapping non-negative reals to non-negative reals.

Order of Magnitude (contd.)

Definition

Let f and g be functions mapping non-negative reals to non-negative reals.

Then $f = \Theta(g)$, if f = O(g) and g = O(f).

Order of Magnitude (contd.)

Definition

Let f and g be functions mapping non-negative reals to non-negative reals.

Then $f = \Theta(g)$, if f = O(g) and g = O(f).

Order of Magnitude Inductive Proof Logarithms Permutations The Binomial Theorem

Examples

Summations

Examples

Examples

Subramani Mathematical Review
Summations

Examples

Examples

Subramani Mathematical Review

Examples

(i) Let
$$f(x) = 2 \cdot x^2 - 2$$
 and $g(x) = \frac{1}{100} \cdot x^2 - 100$.

Examples

(i) Let
$$f(x) = 2 \cdot x^2 - 2$$
 and $g(x) = \frac{1}{100} \cdot x^2 - 100$. $f = \Theta(g)$.

Examples

(i) Let
$$f(x) = 2 \cdot x^2 - 2$$
 and $g(x) = \frac{1}{100} \cdot x^2 - 100$. $f = \Theta(g)$.

(ii) Let
$$f(x) = 2 \cdot x^2 - 2$$
 and $g(x) = \frac{1}{100} \cdot x - 100$.

Examples

(i) Let
$$f(x) = 2 \cdot x^2 - 2$$
 and $g(x) = \frac{1}{100} \cdot x^2 - 100$. $f = \Theta(g)$.

(ii) Let
$$f(x) = 2 \cdot x^2 - 2$$
 and $g(x) = \frac{1}{100} \cdot x - 100$. $f = \Omega(g)$.

Examples

- (i) Let $f(x) = 2 \cdot x^2 2$ and $g(x) = \frac{1}{100} \cdot x^2 100$. $f = \Theta(g)$.
- (ii) Let $f(x) = 2 \cdot x^2 2$ and $g(x) = \frac{1}{100} \cdot x 100$. $f = \Omega(g)$. Furthermore, g = o(f).

Test to determine order

Test to determine order

The limit test

Subramani Mathematical Review

Test to determine order

The limit test

Let f and g denote two functions mapping non-negative reals to non-negative reals.

Test to determine order

The limit test

Let f and g denote two functions mapping non-negative reals to non-negative reals.

Let $I = \lim_{x \to \infty} \frac{f(x)}{g(x)}$.

Test to determine order

The limit test

Let f and g denote two functions mapping non-negative reals to non-negative reals.

Let $I = \lim_{x \to \infty} \frac{f(x)}{g(x)}$. Then,

Test to determine order

The limit test

Let f and g denote two functions mapping non-negative reals to non-negative reals.

Let
$$I = \lim_{x \to \infty} \frac{f(x)}{g(x)}$$
. Then

(i) If *I* is a positive constant,

Test to determine order

The limit test

Let f and g denote two functions mapping non-negative reals to non-negative reals.

Let $I = \lim_{x \to \infty} \frac{f(x)}{g(x)}$. Then,

(i) If *I* is a positive constant, then $f = \Theta(g)$.

Test to determine order

The limit test

Let $f \mbox{ and } g$ denote two functions mapping non-negative reals to non-negative reals.

Let
$$I = \lim_{x \to \infty} \frac{f(x)}{g(x)}$$
. Then,
(i) If I is a positive constant, then $f = \Theta(g)$.
(ii) If $I = 0$,

Test to determine order

The limit test

Let f and g denote two functions mapping non-negative reals to non-negative reals.

Let
$$I = \lim_{x \to \infty} \frac{f(x)}{g(x)}$$
. Then,
(i) If I is a positive constant, then $f = \Theta(g)$.
(ii) If $I = 0$, then $f = o(g)$.

Test to determine order

The limit test

Let $f \mbox{ and } g \mbox{ denote two functions mapping non-negative reals to non-negative reals.}$

Let
$$I = \lim_{x \to \infty} \frac{f(x)}{g(x)}$$
. Then,
(i) If I is a positive constant, then $f = \Theta(g)$.
(ii) If $I = 0$, then $f = o(g)$.
(iii) If $I = \infty$,

Test to determine order

The limit test

Let f and g denote two functions mapping non-negative reals to non-negative reals.

Let
$$l = \lim_{x \to \infty} \frac{f(x)}{g(x)}$$
. Then,
(i) If l is a positive constant, then $f = \Theta(g)$.
(ii) If $l = 0$, then $f = o(g)$.
(iii) If $l = \infty$, then $g = o(f)$.

Test to determine order

The limit test

Let f and g denote two functions mapping non-negative reals to non-negative reals.

Let
$$I = \lim_{x \to \infty} \frac{f(x)}{g(x)}$$
. Then,
(i) If I is a positive constant, then $f = \Theta(g)$.
(ii) If $I = 0$, then $f = o(g)$.
(iii) If $I = \infty$, then $g = o(f)$.

Test to determine order

The limit test

Let f and g denote two functions mapping non-negative reals to non-negative reals.

Let
$$I = \lim_{x \to \infty} \frac{f(x)}{g(x)}$$
. Then,
(i) If I is a positive constant, then $f = \Theta(g)$
(ii) If $I = 0$, then $f = o(g)$.
(iii) If $I = \infty$, then $g = o(f)$.

If
$$\lim_{x\to\infty} f(x) = \infty$$
 and if $\lim_{x\to\infty} g(x) = \infty$, then,

Test to determine order

The limit test

Let f and g denote two functions mapping non-negative reals to non-negative reals.

Let
$$l = \lim_{x \to \infty} \frac{f(x)}{g(x)}$$
. Then,
(i) If l is a positive constant, then $f = \Theta(g)$
(ii) If $l = 0$, then $f = o(g)$.
(iii) If $l = \infty$, then $g = o(f)$.

If
$$\lim_{x\to\infty} f(x) = \infty$$
 and if $\lim_{x\to\infty} g(x) = \infty$, then,

$$\lim_{x \to \infty} \frac{f(x)}{g(x)} = \lim_{x \to \infty} \frac{f'(x)}{g'(x)}$$

Test to determine order

The limit test

Let f and g denote two functions mapping non-negative reals to non-negative reals.

Let
$$I = \lim_{x\to\infty} \frac{f(x)}{g(x)}$$
. Then,
(i) If I is a positive constant, then $f = \Theta(g)$
(ii) If $I = 0$, then $f = o(g)$.
(iii) If $I = \infty$, then $g = o(f)$.

Note

If
$$\lim_{x\to\infty} f(x) = \infty$$
 and if $\lim_{x\to\infty} g(x) = \infty$, then,

$$\lim_{x \to \infty} \frac{f(x)}{g(x)} = \lim_{x \to \infty} \frac{f'(x)}{g'(x)}$$

The above rule is called L'Hospital's rule.

Examples

Examples

Subramani Mathematical Review

Examples

(i) Show that
$$x = o(x^2)$$
.

Examples

- (i) Show that $x = o(x^2)$.
- (ii) Show that $x = o(x \cdot \log x)$.

Examples

- (i) Show that $x = o(x^2)$.
- (ii) Show that $x = o(x \cdot \log x)$.
- (iii) Show that $\log x = o(x)$.

Induction

Induction

Motivation

Subramani Mathematical Review

Induction

Motivation

Reaching arbitrary rungs of a ladder.

Induction

Motivation

Reaching arbitrary rungs of a ladder.

Well-Ordering Principle

Induction

Motivation

Reaching arbitrary rungs of a ladder.

Well-Ordering Principle

Every non-empty set of positive integers has a least element.

Induction

Motivation

Reaching arbitrary rungs of a ladder.

Well-Ordering Principle

Every non-empty set of positive integers has a least element.

Induction

Motivation

Reaching arbitrary rungs of a ladder.

Well-Ordering Principle

Every non-empty set of positive integers has a least element.

Note

Induction can only be applied to a well-ordered domain, where the concept of "next" is unambiguous,

Induction

Motivation

Reaching arbitrary rungs of a ladder.

Well-Ordering Principle

Every non-empty set of positive integers has a least element.

Note

Induction can only be applied to a well-ordered domain, where the concept of "next" is unambiguous, e.g, non-negative integers.

Induction

Motivation

Reaching arbitrary rungs of a ladder.

Well-Ordering Principle

Every non-empty set of positive integers has a least element.

Note

Induction can only be applied to a well-ordered domain, where the concept of "next" is unambiguous, e.g, non-negative integers.

How about all integers?

Induction

Motivation

Reaching arbitrary rungs of a ladder.

Well-Ordering Principle

Every non-empty set of positive integers has a least element.

Note

Induction can only be applied to a well-ordered domain, where the concept of "next" is unambiguous, e.g, non-negative integers.

How about all integers?

How about non-negative reals?

Induction

Motivation

Reaching arbitrary rungs of a ladder.

Well-Ordering Principle

Every non-empty set of positive integers has a least element.

Note

Induction can only be applied to a well-ordered domain, where the concept of "next" is unambiguous, e.g, non-negative integers.

How about all integers?

How about non-negative reals?

How about non-negative rationals?
The first principle of Mathematical Induction

The first principle of Mathematical Induction

The first principle of Mathematical Induction

Principle

Assume that the domain is the set of positive integers.

The first principle of Mathematical Induction

Principle

Assume that the domain is the set of positive integers.

Let P(n) denote a conjecture (argument) that we need to show holds, for every $n \ge 1$.

The first principle of Mathematical Induction

Principle

Assume that the domain is the set of positive integers.

Let P(n) denote a conjecture (argument) that we need to show holds, for every $n \ge 1$.

lf

The first principle of Mathematical Induction

Principle

Assume that the domain is the set of positive integers.

Let P(n) denote a conjecture (argument) that we need to show holds, for every $n \ge 1$. If

• P(1) is true.

The first principle of Mathematical Induction

Principle

Assume that the domain is the set of positive integers.

Let P(n) denote a conjecture (argument) that we need to show holds, for every $n \ge 1$. If

- P(1) is true.
- **2** $(\forall k)[P(k) \text{ is true} \rightarrow P(k+1) \text{ is true}]$

The first principle of Mathematical Induction

Principle

Assume that the domain is the set of positive integers.

Let P(n) denote a conjecture (argument) that we need to show holds, for every $n \ge 1$. If

```
• P(1) is true.
```

```
2 (\forall k)[P(k) \text{ is true} \rightarrow P(k+1) \text{ is true}]
```

then,

The first principle of Mathematical Induction

Principle

Assume that the domain is the set of positive integers.

Let P(n) denote a conjecture (argument) that we need to show holds, for every $n \ge 1$. If

```
• P(1) is true.
```

```
2 (\forall k)[P(k) \text{ is true} \rightarrow P(k+1) \text{ is true}]
```

then,

P(n) is **true**, for all positive integers *n*.

The first principle of Mathematical Induction

Principle

Assume that the domain is the set of positive integers.

Let P(n) denote a conjecture (argument) that we need to show holds, for every $n \ge 1$. If

```
1 P(1) is true.
```

2
$$(\forall k)[P(k) \text{ is true} \rightarrow P(k+1) \text{ is true}]$$

then,

P(n) is **true**, for all positive integers *n*.

Observations

The first principle of Mathematical Induction

Principle

Assume that the domain is the set of positive integers.

Let P(n) denote a conjecture (argument) that we need to show holds, for every $n \ge 1$. If

```
1 P(1) is true.
```

2
$$(\forall k)[P(k) \text{ is true} \rightarrow P(k+1) \text{ is true}]$$

then,

P(n) is **true**, for all positive integers *n*.

Observations

The first principle of Mathematical Induction

Principle

Assume that the domain is the set of positive integers.

Let P(n) denote a conjecture (argument) that we need to show holds, for every $n \ge 1$. If

```
• P(1) is true.
```

2
$$(\forall k)[P(k) \text{ is true} \rightarrow P(k+1) \text{ is true}]$$

then,

P(n) is true, for all positive integers n.

Observations

(i) Showing that P(1) is true is called the basis step.

The first principle of Mathematical Induction

Principle

Assume that the domain is the set of positive integers.

Let P(n) denote a conjecture (argument) that we need to show holds, for every $n \ge 1$. If

```
• P(1) is true.
```

```
2 (\forall k)[P(k) \text{ is true} \rightarrow P(k+1) \text{ is true}]
```

then,

P(n) is true, for all positive integers n.

Observations

- (i) Showing that P(1) is true is called the basis step.
- (ii) Assuming that P(k) is **true**, in order to show that P(k+1) is **true** is called the inductive hypothesis.

First Example

First Example

Example

Subramani Mathematical Review

First Example

Example

Show that the sum of the first *n* integers is $\frac{n \cdot (n+1)}{2}$.

First Example

Example

Show that the sum of the first *n* integers is $\frac{n \cdot (n+1)}{2}$.

Formally, $(\forall n) \left[\sum_{i=1}^{n} i = \frac{n \cdot (n+1)}{2}\right].$

Formal Proof

Formal Proof

Proof.

Subramani Mathematical Review

Formal Proof

Proof.

Let
$$P(n)$$
 denote the predicate $\sum_{i=1}^{n} i = \frac{n \cdot (n+1)}{2}$.

Formal Proof

Proof.

Let
$$P(n)$$
 denote the predicate $\sum_{i=1}^{n} i = \frac{n \cdot (n+1)}{2}$.

We are required to prove the conjecture:

Formal Proof

Proof.

Let P(n) denote the predicate $\sum_{i=1}^{n} i = \frac{n \cdot (n+1)}{2}$.

We are required to prove the conjecture: $(\forall n)P(n)$.

Formal Proof

Proof.

Formal Proof

Proof.

Let P(n) denote the predicate $\sum_{i=1}^{n} i = \frac{n \cdot (n+1)}{2}$. We are required to prove the conjecture: $(\forall n)P(n)$. BASIS (P(1)):

LHS =

Formal Proof

Proof.

LHS =
$$\sum_{i=1}^{1} i$$

Formal Proof

Proof.

$$LHS = \sum_{i=1}^{1} i$$
$$= 1$$

Formal Proof

Proof.

$$LHS = \sum_{i=1}^{1} i$$
$$= 1$$
$$RHS = \frac{1 \cdot (1+1)}{2}$$

Formal Proof

Proof.

LHS =
$$\sum_{i=1}^{1} i$$

= 1
RHS = $\frac{1 \cdot (1+1)}{2} = \frac{1 \cdot (2)}{2}$

Formal Proof

Proof.

LHS =
$$\sum_{i=1}^{1} i$$

= 1
RHS = $\frac{1 \cdot (1+1)}{2} = \frac{1 \cdot (2)}{2} = \frac{2}{2}$

Formal Proof

Proof.

LHS =
$$\sum_{i=1}^{1} i$$

= 1
RHS = $\frac{1 \cdot (1+1)}{2} = \frac{1 \cdot (2)}{2} = \frac{2}{2} = 1$

Formal Proof

Proof.

Let P(n) denote the predicate $\sum_{i=1}^{n} i = \frac{n \cdot (n+1)}{2}$. We are required to prove the conjecture: $(\forall n)P(n)$. BASIS (P(1)):

LHS =
$$\sum_{i=1}^{1} i$$

= 1
RHS = $\frac{1 \cdot (1+1)}{2} = \frac{1 \cdot (2)}{2} = \frac{2}{2} = 1$

Thus, LHS = RHS and P(1) is true.

Example

Proof.

Subramani Mathematical Review

Example

Proof.

Let us assume that P(k) is true, i.e.,

Example

Proof.

Let us assume that P(k) is true, i.e., assume that

Example

Proof.

Let us assume that P(k) is true, i.e., assume that

$$\sum_{i=1}^{k} i =$$

Example

Proof.

Let us assume that P(k) is true, i.e., assume that

$$\sum_{i=1}^k i = \frac{k \cdot (k+1)}{2}$$
Example

Proof.

Let us assume that P(k) is true, i.e., assume that

$$\sum_{i=1}^k i = \frac{k \cdot (k+1)}{2}$$

We need to show that P(k+1) is true,

Example

Proof.

Let us assume that P(k) is true, i.e., assume that

$$\sum_{i=1}^k i = \frac{k \cdot (k+1)}{2}$$

We need to show that P(k+1) is true, i.e., we need to show that

Example

Proof.

Let us assume that P(k) is true, i.e., assume that

$$\sum_{i=1}^k i = \frac{k \cdot (k+1)}{2}$$

We need to show that P(k+1) is true, i.e., we need to show that

$$\sum_{i=1}^{k+1} i =$$

Example

Proof.

Let us assume that P(k) is true, i.e., assume that

$$\sum_{i=1}^k i = \frac{k \cdot (k+1)}{2}$$

We need to show that P(k + 1) is true, i.e., we need to show that

$$\sum_{i=1}^{k+1} i = \frac{(k+1) \cdot (k+2)}{2}$$

Example

Proof.

Let us assume that P(k) is true, i.e., assume that

$$\sum_{i=1}^k i = \frac{k \cdot (k+1)}{2}$$

We need to show that P(k + 1) is true, i.e., we need to show that

$$\sum_{i=1}^{k+1} i = \frac{(k+1) \cdot (k+2)}{2}$$

Proof (contd.)

Proof.

Proof (contd.)

Proof.			
Observe that,			
LHS	=		

Proof (contd.)

Proof.

$$LHS = \sum_{i=1}^{k+1} i$$

Proof (contd.)

Proof.

LHS =
$$\sum_{i=1}^{k+1} i$$

= 1+2+3+...+k+(k+1)

Proof (contd.)

Proof.

LHS =
$$\sum_{i=1}^{k+1} i$$

= 1+2+3+...+k+(k+1)
= (1+2+3+...+k)+(k+1)

Proof (contd.)

Proof.

LHS =
$$\sum_{i=1}^{k+1} i$$

= $1+2+3+\ldots+k+(k+1)$
= $(1+2+3+\ldots+k)+(k+1)$
= $\frac{k \cdot (k+1)}{2} + (k+1)$, using the inductive hypothesis

Proof (contd.)

Proof.

LHS =
$$\sum_{i=1}^{k+1} i$$

= $1+2+3+\ldots+k+(k+1)$
= $(1+2+3+\ldots+k)+(k+1)$
= $\frac{k \cdot (k+1)}{2} + (k+1)$, using the inductive hypothesis
= $(k+1) \cdot (\frac{k}{2}+1)$

Proof (contd.)

Proof.

$$LHS = \sum_{i=1}^{k+1} i$$

= 1+2+3+...+k+(k+1)
= (1+2+3+...+k)+(k+1)
= $\frac{k \cdot (k+1)}{2}$ +(k+1), using the inductive hypothesis
= (k+1) \cdot (\frac{k}{2}+1)
= (k+1) \cdot (\frac{k+2}{2})

Proof (contd.)

Proof.

$$LHS = \sum_{i=1}^{k+1} i$$

= 1+2+3+...+k+(k+1)
= (1+2+3+...+k)+(k+1)
= $\frac{k \cdot (k+1)}{2}$ +(k+1), using the inductive hypothesis
= (k+1) \cdot (\frac{k}{2}+1)
= (k+1) \cdot (\frac{k+2}{2})
= $\frac{(k+1) \cdot (k+2)}{2}$

Proof (contd.)

Proof.

$$LHS = \sum_{i=1}^{k+1} i$$

= 1+2+3+...+k+(k+1)
= (1+2+3+...+k)+(k+1)
= $\frac{k \cdot (k+1)}{2}$ +(k+1), using the inductive hypothesis
= (k+1) \cdot (\frac{k}{2}+1)
= (k+1) \cdot (\frac{k+2}{2})
= $\frac{(k+1) \cdot (k+2)}{2}$ = RHS

Completing the proof

Completing the proof

Final Steps

Subramani Mathematical Review

Completing the proof

Final Steps

Since, LHS=RHS, we have shown that $P(k) \rightarrow P(k+1)$.

Completing the proof

Final Steps

Since, LHS = RHS, we have shown that $P(k) \rightarrow P(k+1)$.

Applying the first principle of mathematical induction, we conclude that the conjecture is **true**, i.e., $(\forall n)P(n)$ holds.

Main Ideas

Subramani Mathematical Review

Main Ideas

(i) Mathematicize the conjecture.

- (i) Mathematicize the conjecture.
- (ii) Prove the basis (usually P(1) and usually easy.)

- (i) Mathematicize the conjecture.
- (ii) Prove the basis (usually P(1) and usually easy.)

```
(iii) Assume P(k).
```


- (i) Mathematicize the conjecture.
- (ii) Prove the basis (usually P(1) and usually easy.)
- (iii) Assume P(k).
- (iv) Show P(k+1).

- (i) Mathematicize the conjecture.
- (ii) Prove the basis (usually P(1) and usually easy.)
- (iii) Assume P(k).
- (iv) Show P(k+1). (The hard part.

- (i) Mathematicize the conjecture.
- (ii) Prove the basis (usually P(1) and usually easy.)
- (iii) Assume P(k).
- (iv) Show P(k + 1). (The hard part. Use mathematical manipulation.)

- (i) Mathematicize the conjecture.
- (ii) Prove the basis (usually P(1) and usually easy.)
- (iii) Assume P(k).
- (iv) Show P(k + 1). (The hard part. Use mathematical manipulation.)
- (v) To show $P(k) \rightarrow P(k+1)$, you may use any of the proof techniques discussed, including exhaustive proof, direct proof, contraposition, contradiction, serendipity and induction!

Another Induction Example

Another Induction Example

Example

Subramani Mathematical Review

Another Induction Example

Example

Show that the sum of the squares of the first *n* integers is $\frac{n \cdot (n+1) \cdot (2 \cdot n+1)}{6}$,

Another Induction Example

Example

Show that the sum of the squares of the first *n* integers is $\frac{n \cdot (n+1) \cdot (2 \cdot n+1)}{6}$, i.e., show that $\sum_{i=1}^{n} i^2 = \frac{n \cdot (n+1) \cdot (2 \cdot n+1)}{6}$.

Proving the Basis

Proving the Basis

Proof.

Subramani Mathematical Review

Proving the Basis

Proof.

BASIS (*P*(1)):
Proving the Basis

Proof.	
BASIS (<i>P</i> (1)):	
	LHS =

Proving the Basis

Proof.

LHS =
$$\sum_{i=1}^{1} i^{i}$$

Proving the Basis

Proof.

$$LHS = \sum_{i=1}^{1} i^2$$
$$= 1$$

Proving the Basis

Proof.

$$LHS = \sum_{i=1}^{1} i^{2}$$

= 1
RHS = $\frac{1 \cdot (1+1) \cdot (2 \cdot 1 + 1)}{6}$

Proving the Basis

Proof.

$$LHS = \sum_{i=1}^{1} i^{2}$$

= 1
$$RHS = \frac{1 \cdot (1+1) \cdot (2 \cdot 1 + 1)}{6}$$

= $\frac{1 \cdot (2) \cdot (3)}{6}$

Proving the Basis

Proof.

$$LHS = \sum_{i=1}^{1} i^{2}$$

= 1
$$RHS = \frac{1 \cdot (1+1) \cdot (2 \cdot 1 + 1)}{6}$$

= $\frac{1 \cdot (2) \cdot (3)}{6}$
= $\frac{6}{6}$

Proving the Basis

Proof.

$$LHS = \sum_{i=1}^{1} i^{2}$$

= 1
$$RHS = \frac{1 \cdot (1+1) \cdot (2 \cdot 1 + 1)}{6}$$

= $\frac{1 \cdot (2) \cdot (3)}{6}$
= $\frac{6}{6}$
= 1

Proving the Basis

Proof.

BASIS (*P*(1)):

LHS =
$$\sum_{i=1}^{1} i^{2}$$

= 1
RHS = $\frac{1 \cdot (1+1) \cdot (2 \cdot 1 + 1)}{6}$
= $\frac{1 \cdot (2) \cdot (3)}{6}$
= $\frac{6}{6}$
= 1

Thus, LHS = RHS and P(1) is true.

Induction example (contd.)

Induction example (contd.)

Proof.

Subramani Mathematical Review

Induction example (contd.)

Proof.

Let us assume that P(k) is true, i.e., assume that

Induction example (contd.)

Proof.

Let us assume that P(k) is true, i.e., assume that

$$\sum_{i=1}^{k} i^2 =$$

Induction example (contd.)

Proof.

Let us assume that P(k) is true, i.e., assume that

$$\sum_{i=1}^{k} i^2 = \frac{k \cdot (k+1) \cdot (2 \cdot k + 1)}{6}.$$

Induction example (contd.)

Proof.

Let us assume that P(k) is true, i.e., assume that

$$\sum_{i=1}^k i^2 = rac{k\cdot(k+1)\cdot(2\cdot k+1)}{6}.$$

We need to show that P(k+1) is true,

Induction example (contd.)

Proof.

Let us assume that P(k) is true, i.e., assume that

$$\sum_{i=1}^{k} i^2 = \frac{k \cdot (k+1) \cdot (2 \cdot k + 1)}{6}.$$

We need to show that P(k+1) is true, i.e., we need to show that $\sum_{i=1}^{k+1} i^2 =$

Induction example (contd.)

Proof.

Let us assume that P(k) is true, i.e., assume that

$$\sum_{i=1}^{k} i^2 = \frac{k \cdot (k+1) \cdot (2 \cdot k + 1)}{6}.$$

Induction example (contd.)

Proof.

Let us assume that P(k) is true, i.e., assume that

$$\sum_{i=1}^{k} i^2 = \frac{k \cdot (k+1) \cdot (2 \cdot k + 1)}{6}.$$

Induction example (contd.)

Proof.

Let us assume that P(k) is true, i.e., assume that

$$\sum_{i=1}^{k} i^2 = \frac{k \cdot (k+1) \cdot (2 \cdot k + 1)}{6}.$$

Induction example (contd.)

Proof.

Let us assume that P(k) is true, i.e., assume that

$$\sum_{i=1}^k i^2 = \frac{k \cdot (k+1) \cdot (2 \cdot k+1)}{6}.$$

$$.HS = \sum_{i=1}^{k+1} i^2$$

Induction example (contd.)

Proof.

Let us assume that P(k) is true, i.e., assume that

$$\sum_{i=1}^{k} i^{2} = \frac{k \cdot (k+1) \cdot (2 \cdot k + 1)}{6}$$

LHS =
$$\sum_{i=1}^{k+1} i^2$$

= $1^2 + 2^2 + 3^2 + \ldots + k^2 + (k+1)^2$

Induction example (contd.)

Proof.

Let us assume that P(k) is true, i.e., assume that

$$\sum_{i=1}^{k} i^{2} = \frac{k \cdot (k+1) \cdot (2 \cdot k + 1)}{6}.$$

$$HS = \sum_{i=1}^{k+1} i^2$$

= $1^2 + 2^2 + 3^2 + \dots + k^2 + (k+1)^2$
= $(1^2 + 2^2 + 3^2 + \dots + k^2) + (k+1)^2$

Induction example (contd.)

Proof.

Let us assume that P(k) is true, i.e., assume that

$$\sum_{i=1}^{k} i^{2} = \frac{k \cdot (k+1) \cdot (2 \cdot k + 1)}{6}$$

$$HS = \sum_{i=1}^{k+1} i^2$$

= $1^2 + 2^2 + 3^2 + \dots + k^2 + (k+1)^2$
= $(1^2 + 2^2 + 3^2 + \dots + k^2) + (k+1)^2$

Induction proof (contd.)

Induction proof (contd.)

Subramani Mathematical Review

Induction proof (contd.)

Proof.

$= \frac{k \cdot (k+1) \cdot (2 \cdot k+1)}{6} + (k+1)^2, \text{ using the inductive hypothesis}$

Induction proof (contd.)

$$= \frac{k \cdot (k+1) \cdot (2 \cdot k+1)}{6} + (k+1)^2, \text{ using the inductive hypothesis}$$
$$= \frac{k+1}{6} (k \cdot (2 \cdot k+1) + 6 \cdot (k+1))$$

Induction proof (contd.)

$$= \frac{k \cdot (k+1) \cdot (2 \cdot k+1)}{6} + (k+1)^2, \text{ using the inductive hypothesis} = \frac{k+1}{6} (k \cdot (2 \cdot k+1) + 6 \cdot (k+1)) = \frac{k+1}{6} (2 \cdot k^2 + k + 6 \cdot k + 6)$$

Induction proof (contd.)

$$= \frac{k \cdot (k+1) \cdot (2 \cdot k+1)}{6} + (k+1)^2, \text{ using the inductive hypothesis}$$

$$= \frac{k+1}{6} (k \cdot (2 \cdot k+1) + 6 \cdot (k+1))$$

$$= \frac{k+1}{6} (2 \cdot k^2 + k + 6 \cdot k + 6)$$

$$= \frac{k+1}{6} (2 \cdot k^2 + 7 \cdot k + 6)$$

Induction proof (contd.)

$$= \frac{k \cdot (k+1) \cdot (2 \cdot k+1)}{6} + (k+1)^2, \text{ using the inductive hypothesis}$$

$$= \frac{k+1}{6} (k \cdot (2 \cdot k+1) + 6 \cdot (k+1))$$

$$= \frac{k+1}{6} (2 \cdot k^2 + k + 6 \cdot k + 6)$$

$$= \frac{k+1}{6} (2 \cdot k^2 + 7 \cdot k + 6)$$

$$= \frac{k+1}{6} (2 \cdot k^2 + 4 \cdot k + 3 \cdot k + 6)$$

Induction proof (contd.)

$$= \frac{k \cdot (k+1) \cdot (2 \cdot k+1)}{6} + (k+1)^2, \text{ using the inductive hypothesis}$$

$$= \frac{k+1}{6} (k \cdot (2 \cdot k+1) + 6 \cdot (k+1))$$

$$= \frac{k+1}{6} (2 \cdot k^2 + k + 6 \cdot k + 6)$$

$$= \frac{k+1}{6} (2 \cdot k^2 + 7 \cdot k + 6)$$

$$= \frac{k+1}{6} (2 \cdot k^2 + 4 \cdot k + 3 \cdot k + 6)$$

$$= \frac{k+1}{6} (2 \cdot k \cdot (k+2) + 3 \cdot (k+2))$$

Induction proof (contd.)

$$= \frac{k \cdot (k+1) \cdot (2 \cdot k+1)}{6} + (k+1)^2, \text{ using the inductive hypothesis}$$

$$= \frac{k+1}{6} (k \cdot (2 \cdot k+1) + 6 \cdot (k+1))$$

$$= \frac{k+1}{6} (2 \cdot k^2 + k + 6 \cdot k + 6)$$

$$= \frac{k+1}{6} (2 \cdot k^2 + 7 \cdot k + 6)$$

$$= \frac{k+1}{6} (2 \cdot k^2 + 4 \cdot k + 3 \cdot k + 6)$$

$$= \frac{k+1}{6} (2 \cdot k \cdot (k+2) + 3 \cdot (k+2))$$

$$= \frac{k+1}{6} (2 \cdot k + 3) \cdot (k+2)$$

Induction proof (contd.)

$$= \frac{k \cdot (k+1) \cdot (2 \cdot k+1)}{6} + (k+1)^2, \text{ using the inductive hypothesis}$$

$$= \frac{k+1}{6} (k \cdot (2 \cdot k+1) + 6 \cdot (k+1))$$

$$= \frac{k+1}{6} (2 \cdot k^2 + k + 6 \cdot k + 6)$$

$$= \frac{k+1}{6} (2 \cdot k^2 + 7 \cdot k + 6)$$

$$= \frac{k+1}{6} (2 \cdot k^2 + 4 \cdot k + 3 \cdot k + 6)$$

$$= \frac{k+1}{6} (2 \cdot k \cdot (k+2) + 3 \cdot (k+2))$$

$$= \frac{k+1}{6} (2 \cdot k + 3) \cdot (k+2))$$

Induction Proof (contd.)

Induction Proof (contd.)

Proof.

Subramani Mathematical Review

Induction Proof (contd.)

Induction Proof (contd.)

Proof. $= \frac{(k+1) \cdot (k+2) \cdot (2 \cdot (k+1)+1)}{6}$ = RHS.
Induction Proof (contd.)

Proof.

$$= \frac{(k+1) \cdot (k+2) \cdot (2 \cdot (k+1) + 1)}{6}$$

= RHS.

Since, LHS = RHS, we have shown that $P(k) \rightarrow P(k+1)$.

Induction Proof (contd.)

Proof. $= \frac{(k+1) \cdot (k+2) \cdot (2 \cdot (k+1) + 1)}{6}$ = RHS.Since, LHS=RHS, we have shown that $P(k) \rightarrow P(k+1)$.

Applying the first principle of mathematical induction, we conclude that the conjecture is true. $\hfill \Box$

Induction Example

Induction Example

Example

Subramani Mathematical Review

Induction Example

Example

Show that the sum of the first n odd integers is n^2 ,

Induction Example

Example

Show that the sum of the first *n* odd integers is n^2 , i.e., show that $\sum_{i=1}^{n} (2 \cdot i - 1) = n^2$.

Proving the conjecture

Proving the conjecture

Proof.

Subramani Mathematical Review

Proving the conjecture

Proof.

Proving the conjecture

Proof.

Proving the conjecture

Proof.		
BASIS (<i>P</i> (1)):		
	LHS =	

Proving the conjecture

Proof.

$$LHS = \sum_{i=1}^{1} (2 \cdot i - 1)$$

Proving the conjecture

Proof.

LHS =
$$\sum_{i=1}^{1} (2 \cdot i - 1)$$

= $2 \cdot 1 - 1$

Proving the conjecture

Proof.

LHS =
$$\sum_{i=1}^{1} (2 \cdot i - 1)$$

= $2 \cdot 1 - 1$
= 1

Proving the conjecture

Proof.

LHS =
$$\sum_{i=1}^{1} (2 \cdot i - 1)$$

= $2 \cdot 1 - 1$
= 1
RHS = 1^{2}

Proving the conjecture

Proof.

LHS =
$$\sum_{i=1}^{1} (2 \cdot i - 1)$$

= $2 \cdot 1 - 1$
= 1
RHS = 1^{2}
= 1

Proving the conjecture

Proof.

LHS =
$$\sum_{i=1}^{1} (2 \cdot i - 1)$$

= $2 \cdot 1 - 1$
= 1
RHS = 1^{2}
= 1

Proving the conjecture

Proof.

BASIS (*P*(1)):

LHS =
$$\sum_{i=1}^{1} (2 \cdot i - 1)$$

= $2 \cdot 1 - 1$
= 1
RHS = 1^{2}
= 1

Thus, LHS = RHS and P(1) is true.

Proof.

Subramani Mathematical Review

Proof.

Let us assume that P(k) is true, i.e., assume that

Proof.

Let us assume that P(k) is true, i.e., assume that

$$\sum_{i=1}^k (2 \cdot i - 1) =$$

Proof.

Let us assume that P(k) is true, i.e., assume that

$$\sum_{i=1}^{k} (2 \cdot i - 1) = k^2$$

Proof.

Let us assume that P(k) is true, i.e., assume that

$$\sum_{i=1}^k (2 \cdot i - 1) = k^2$$

We need to show that P(k+1) is true,

Proof.

Let us assume that P(k) is true, i.e., assume that

$$\sum_{i=1}^k (2 \cdot i - 1) = k^2$$

We need to show that P(k+1) is true, i.e., we need to show that $\sum_{i=1}^{k+1} (2 \cdot i - 1) = (k+1)^2$.

Proof.

Let us assume that P(k) is true, i.e., assume that

$$\sum_{i=1}^k (2 \cdot i - 1) = k^2$$

We need to show that P(k+1) is true, i.e., we need to show that $\sum_{i=1}^{k+1} (2 \cdot i - 1) = (k+1)^2$.

Proof.		

Proof.		

Proof.	
LHS	=

Completing the proof

$$LHS = \sum_{i=1}^{k+1} (2 \cdot i - 1)$$

Completing the proof

LHS =
$$\sum_{i=1}^{k+1} (2 \cdot i - 1)$$

= $1 + 3 + 5 + \dots (2 \cdot k - 1) + (2 \cdot (k + 1) - 1)$

Completing the proof

LHS =
$$\sum_{i=1}^{k+1} (2 \cdot i - 1)$$

= $1 + 3 + 5 + \dots (2 \cdot k - 1) + (2 \cdot (k + 1) - 1)$
= $(1 + 3 + 5 + \dots (2 \cdot k - 1)) + (2 \cdot (k + 1))$

Completing the proof

$$LHS = \sum_{i=1}^{k+1} (2 \cdot i - 1)$$

= 1+3+5+...(2 \cdot k - 1) + (2 \cdot (k + 1) - 1)
= (1+3+5+...(2 \cdot k - 1)) + (2 \cdot k + 1)
= k² + (2 \cdot k + 1), using the inductive hypothesis

Completing the proof

$$LHS = \sum_{i=1}^{k+1} (2 \cdot i - 1)$$

= 1+3+5+...(2 \cdot k - 1) + (2 \cdot (k + 1) - 1)
= (1+3+5+...(2 \cdot k - 1)) + (2 \cdot k + 1)
= k^2 + (2 \cdot k + 1), using the inductive hypothesis
= (k+1)^2

Completing the proof

$$LHS = \sum_{i=1}^{k+1} (2 \cdot i - 1)$$

= 1+3+5+...(2 \cdot k - 1) + (2 \cdot (k + 1) - 1)
= (1+3+5+...(2 \cdot k - 1)) + (2 \cdot k + 1)
= k^2 + (2 \cdot k + 1), using the inductive hypothesis
= (k + 1)^2
= RHS
Completing the proof

Proof.

$$LHS = \sum_{i=1}^{k+1} (2 \cdot i - 1)$$

= 1+3+5+...(2 \cdot k - 1) + (2 \cdot (k + 1) - 1)
= (1+3+5+...(2 \cdot k - 1)) + (2 \cdot k + 1)
= k^2 + (2 \cdot k + 1), using the inductive hypothesis
= (k + 1)^2
= RHS

Completing the proof

Proof.

$$LHS = \sum_{i=1}^{k+1} (2 \cdot i - 1)$$

= 1+3+5+...(2 \cdot k - 1) + (2 \cdot (k + 1) - 1)
= (1+3+5+...(2 \cdot k - 1)) + (2 \cdot k + 1)
= k^2 + (2 \cdot k + 1), using the inductive hypothesis
= (k + 1)^2
= RHS

Since LHS = RHS, we have shown that $P(k) \rightarrow P(k+1)$.

Completing the proof

Proof.

$$LHS = \sum_{i=1}^{k+1} (2 \cdot i - 1)$$

= 1+3+5+...(2 \cdot k - 1) + (2 \cdot (k + 1) - 1)
= (1+3+5+...(2 \cdot k - 1)) + (2 \cdot k + 1)
= k^2 + (2 \cdot k + 1), using the inductive hypothesis
= (k + 1)^2
= RHS

Since LHS = RHS, we have shown that $P(k) \rightarrow P(k+1)$. Applying the first principle of mathematical induction, we conclude that the conjecture is true.

One Final Example

One Final Example

Example

Subramani Mathematical Review

One Final Example

Example

Show that $7^n - 5^n$ is always an even number for $n \ge 0$,

One Final Example

Example

Show that $7^n - 5^n$ is always an even number for $n \ge 0$, i.e., show that $2 \mid (7^n - 5^n)$, $\forall n \ge 0$.

One Final Example

Example

Show that $7^n - 5^n$ is always an even number for $n \ge 0$, i.e., show that $2 \mid (7^n - 5^n)$, $\forall n \ge 0$.

Proof.

One Final Example

Example

Show that $7^n - 5^n$ is always an even number for $n \ge 0$, i.e., show that $2 \mid (7^n - 5^n)$, $\forall n \ge 0$.

Proof.

One Final Example

Example

Show that $7^n - 5^n$ is always an even number for $n \ge 0$, i.e., show that $2 \mid (7^n - 5^n)$, $\forall n \ge 0$.

Proof.

BASIS (P(0)):

LHS =

One Final Example

Example

Show that $7^n - 5^n$ is always an even number for $n \ge 0$, i.e., show that $2 \mid (7^n - 5^n)$, $\forall n \ge 0$.

Proof.

$$LHS = 7^0 - 5^0$$

One Final Example

Example

Show that $7^n - 5^n$ is always an even number for $n \ge 0$, i.e., show that $2 \mid (7^n - 5^n)$, $\forall n \ge 0$.

Proof.

$$LHS = 7^0 - 5^0$$

= 1 - 1

One Final Example

Example

Show that $7^n - 5^n$ is always an even number for $n \ge 0$, i.e., show that $2 \mid (7^n - 5^n)$, $\forall n \ge 0$.

Proof.

$$LHS = 7^0 - 5^0$$
$$= 1 - 1$$
$$= 0$$

One Final Example

Example

Show that $7^n - 5^n$ is always an even number for $n \ge 0$, i.e., show that $2 \mid (7^n - 5^n)$, $\forall n \ge 0$.

Proof.

$$LHS = 7^0 - 5^0$$
$$= 1 - 1$$
$$= 0$$

One Final Example

Example

Show that $7^n - 5^n$ is always an even number for $n \ge 0$, i.e., show that $2 \mid (7^n - 5^n)$, $\forall n \ge 0$.

Proof.

BASIS (P(0)):

$$LHS = 7^0 - 5^0$$

= 1 - 1
= 0

Since the LHS is even, we have proven the basis P(0).

Proof (contd.)

Proof (contd.)

Proof.

Let us assume that P(k) is true, i.e.,

Proof (contd.)

Proof.

Let us assume that P(k) is true, i.e., assume that $(7^k - 5^k)$ is divisible by 2 for some k.

Proof (contd.)

Proof.

Let us assume that P(k) is true, i.e., assume that $(7^k - 5^k)$ is divisible by 2 for some k. It follows that $(7^k - 5^k) = 2 \cdot m$, for some integer m.

Proof (contd.)

Proof.

Let us assume that P(k) is true, i.e., assume that $(7^k - 5^k)$ is divisible by 2 for some k. It follows that $(7^k - 5^k) = 2 \cdot m$, for some integer m.

We need to show that P(k+1) is true,

Proof (contd.)

Proof.

Proof (contd.)

Proof.

Proof (contd.)

Proof.

$$7^{k+1} - 5^{k+1} =$$

Proof (contd.)

Proof.

$$7^{k+1} - 5^{k+1} = 7 \cdot 7^k - 5 \cdot 5^k$$

Proof (contd.)

Proof.

$$\begin{array}{lll} 7^{k+1}-5^{k+1} & = & 7\cdot7^k-5\cdot5^k \\ & = & 7\cdot(2\cdot m+5^k)-5\cdot5^k, \text{ using the inductive hypothesis} \end{array}$$

Proof (contd.)

Proof.

Proof (contd.)

Proof.

Proof (contd.)

Proof.

$$\begin{array}{lll} 7^{k+1} - 5^{k+1} & = & 7 \cdot 7^k - 5 \cdot 5^k \\ & = & 7 \cdot (2 \cdot m + 5^k) - 5 \cdot 5^k, \text{ using the inductive hypothesis} \\ & = & 14 \cdot m + 7 \cdot 5^k - 5 \cdot 5^k \\ & = & 14 \cdot m + 5^k \cdot (7 - 5) \\ & = & 14 \cdot m + 2 \cdot 5^k \end{array}$$

Proof (contd.)

Proof.

Proof (contd.)

Proof.

$$7^{k+1} - 5^{k+1} = 7 \cdot 7^k - 5 \cdot 5^k$$

= $7 \cdot (2 \cdot m + 5^k) - 5 \cdot 5^k$, using the inductive hypothesis
= $14 \cdot m + 7 \cdot 5^k - 5 \cdot 5^k$
= $14 \cdot m + 5^k \cdot (7 - 5)$
= $14 \cdot m + 2 \cdot 5^k$
= $2 \cdot (7 \cdot m + 5^k)$ = some even number!

Proof (contd.)

Proof.

Let us assume that P(k) is true, i.e., assume that $(7^k - 5^k)$ is divisible by 2 for some k. It follows that $(7^k - 5^k) = 2 \cdot m$, for some integer m. We need to show that P(k + 1) is true, i.e., $(7^{k+1} - 5^{k+1})$ is divisible by 2. Observe that,

We have thus shown that $P(k) \rightarrow P(k+1)$.

Proof (contd.)

Proof.

Let us assume that P(k) is true, i.e., assume that $(7^k - 5^k)$ is divisible by 2 for some k. It follows that $(7^k - 5^k) = 2 \cdot m$, for some integer m. We need to show that P(k + 1) is true, i.e., $(7^{k+1} - 5^{k+1})$ is divisible by 2. Observe that,

$$7^{k+1} - 5^{k+1} = 7 \cdot 7^k - 5 \cdot 5^k$$

= $7 \cdot (2 \cdot m + 5^k) - 5 \cdot 5^k$, using the inductive hypothesis
= $14 \cdot m + 7 \cdot 5^k - 5 \cdot 5^k$
= $14 \cdot m + 5^k \cdot (7 - 5)$
= $14 \cdot m + 2 \cdot 5^k$
= $2 \cdot (7 \cdot m + 5^k)$ = some even number!

We have thus shown that $P(k) \rightarrow P(k+1)$. Applying the first principle of mathematical induction, we conclude that the conjecture is true.

Second Principle of Induction

Second Principle of Induction

Principle

Subramani Mathematical Review

Second Principle of Induction

Principle

Assume that the domain is the set of positive integers.
Second Principle of Induction

Principle

Assume that the domain is the set of positive integers.

Let P(n) denote a conjecture which we want to prove holds for every $n \ge 1$.

Second Principle of Induction

Principle

Assume that the domain is the set of positive integers.

Let P(n) denote a conjecture which we want to prove holds for every $n \ge 1$.

lf

Second Principle of Induction

Principle

Assume that the domain is the set of positive integers.

Let P(n) denote a conjecture which we want to prove holds for every $n \ge 1$.

lf

Second Principle of Induction

Principle

Assume that the domain is the set of positive integers.

Let P(n) denote a conjecture which we want to prove holds for every $n \ge 1$.

lf

(i) P(1) is true, and

Second Principle of Induction

Principle

Assume that the domain is the set of positive integers.

Let P(n) denote a conjecture which we want to prove holds for every $n \ge 1$. If

- (i) P(1) is true, and
- (ii) $(\forall r)(1 \le r \le k)[P(r) \text{ is true}] \rightarrow P(k+1) \text{ is true}]$

Second Principle of Induction

Principle

Assume that the domain is the set of positive integers.

Let P(n) denote a conjecture which we want to prove holds for every $n \ge 1$. If

```
(i) P(1) is true, and
```

```
(ii) (\forall r)(1 \le r \le k)[P(r) \text{ is true}] \rightarrow P(k+1) \text{ is true}]
```

then,

Second Principle of Induction

Principle

Assume that the domain is the set of positive integers.

Let P(n) denote a conjecture which we want to prove holds for every $n \ge 1$. If

```
(i) P(1) is true, and
```

```
(ii) (\forall r)(1 \le r \le k)[P(r) \text{ is true}] \rightarrow P(k+1) \text{ is true}]
```

then,

P(n) is true for all n.

Second Principle of Induction

Principle

Assume that the domain is the set of positive integers.

Let P(n) denote a conjecture which we want to prove holds for every $n \ge 1$. If

```
(i) P(1) is true, and
```

```
(ii) (\forall r)(1 \le r \le k)[P(r) \text{ is true}] \rightarrow P(k+1) \text{ is true}]
```

then,

P(n) is true for all n.

Note

Second Principle of Induction

Principle

Assume that the domain is the set of positive integers.

Let P(n) denote a conjecture which we want to prove holds for every $n \ge 1$. If

```
(i) P(1) is true, and
```

```
(ii) (\forall r)(1 \le r \le k)[P(r) \text{ is true}] \rightarrow P(k+1) \text{ is true}]
```

then,

P(n) is true for all n.

Note

Also called Strong Induction. Is necessary, when the first principle does not help us.

Example of Strong Induction

Example of Strong Induction

Example

Subramani Mathematical Review

Example of Strong Induction

Example

Show that every number greater than or equal to 8 can be expressed in the form $5 \cdot a + 3 \cdot b$, for suitably chosen *a* and *b*.

Proving the conjecture

Proof.

(i) The conjecture is clearly true for 8, 9 and 10.

Proving the conjecture

- (i) The conjecture is clearly true for 8, 9 and 10.
- (ii) Assume that the conjecture holds for all $r, 8 \le r \le k$.

Proving the conjecture

- (i) The conjecture is clearly true for 8, 9 and 10.
- (ii) Assume that the conjecture holds for all $r, 8 \le r \le k$.
- (iii) Consider the integer (k + 1).

Proving the conjecture

- (i) The conjecture is clearly true for 8, 9 and 10.
- (ii) Assume that the conjecture holds for all $r, 8 \le r \le k$.
- (iii) Consider the integer (k + 1).
- (iv) Without loss of generality, we assume that $(k + 1) \ge 11$.

Proving the conjecture

- (i) The conjecture is clearly true for 8, 9 and 10.
- (ii) Assume that the conjecture holds for all $r, 8 \le r \le k$.
- (iii) Consider the integer (k + 1).
- (iv) Without loss of generality, we assume that $(k + 1) \ge 11$.
- (v) Observe that (k + 1) 3 = (k 2) is at least 8 and less than k.

Proving the conjecture

- (i) The conjecture is clearly true for 8, 9 and 10.
- (ii) Assume that the conjecture holds for all $r, 8 \le r \le k$.
- (iii) Consider the integer (k + 1).
- (iv) Without loss of generality, we assume that $(k + 1) \ge 11$.
- (v) Observe that (k + 1) 3 = (k 2) is at least 8 and less than k.
- (vi) As per the inductive hypothesis, (k-2) can be expressed in the form $3 \cdot a + 5 \cdot b$, for suitably chosen a and b.

Proving the conjecture

- (i) The conjecture is clearly true for 8, 9 and 10.
- (ii) Assume that the conjecture holds for all $r, 8 \le r \le k$.
- (iii) Consider the integer (k + 1).
- (iv) Without loss of generality, we assume that $(k + 1) \ge 11$.
- (v) Observe that (k + 1) 3 = (k 2) is at least 8 and less than k.
- (vi) As per the inductive hypothesis, (k-2) can be expressed in the form $3 \cdot a + 5 \cdot b$, for suitably chosen a and b.
- (vii) It follows that (k+1) =

Proving the conjecture

- (i) The conjecture is clearly true for 8, 9 and 10.
- (ii) Assume that the conjecture holds for all $r, 8 \le r \le k$.
- (iii) Consider the integer (k + 1).
- (iv) Without loss of generality, we assume that $(k + 1) \ge 11$.
- (v) Observe that (k + 1) 3 = (k 2) is at least 8 and less than k.
- (vi) As per the inductive hypothesis, (k-2) can be expressed in the form $3 \cdot a + 5 \cdot b$, for suitably chosen a and b.
- (vii) It follows that (k + 1) = (k 2) + 3 =

Proving the conjecture

- (i) The conjecture is clearly true for 8, 9 and 10.
- (ii) Assume that the conjecture holds for all $r, 8 \le r \le k$.
- (iii) Consider the integer (k + 1).
- (iv) Without loss of generality, we assume that $(k + 1) \ge 11$.
- (v) Observe that (k + 1) 3 = (k 2) is at least 8 and less than k.
- (vi) As per the inductive hypothesis, (k-2) can be expressed in the form $3 \cdot a + 5 \cdot b$, for suitably chosen a and b.
- (vii) It follows that $(k + 1) = (k 2) + 3 = 3 \cdot a + 5 \cdot b + 3 =$

Proving the conjecture

- (i) The conjecture is clearly true for 8, 9 and 10.
- (ii) Assume that the conjecture holds for all $r, 8 \le r \le k$.
- (iii) Consider the integer (k + 1).
- (iv) Without loss of generality, we assume that $(k + 1) \ge 11$.
- (v) Observe that (k + 1) 3 = (k 2) is at least 8 and less than k.
- (vi) As per the inductive hypothesis, (k-2) can be expressed in the form $3 \cdot a + 5 \cdot b$, for suitably chosen a and b.
- (vii) It follows that $(k + 1) = (k 2) + 3 = 3 \cdot a + 5 \cdot b + 3 = 3 \cdot (a + 1) + 5 \cdot b$ can also be so expressed.

Proving the conjecture

- (i) The conjecture is clearly true for 8, 9 and 10.
- (ii) Assume that the conjecture holds for all $r, 8 \le r \le k$.
- (iii) Consider the integer (k + 1).
- (iv) Without loss of generality, we assume that $(k + 1) \ge 11$.
- (v) Observe that (k + 1) 3 = (k 2) is at least 8 and less than k.
- (vi) As per the inductive hypothesis, (k-2) can be expressed in the form $3 \cdot a + 5 \cdot b$, for suitably chosen a and b.
- (vii) It follows that $(k+1) = (k-2) + 3 = 3 \cdot a + 5 \cdot b + 3 = 3 \cdot (a+1) + 5 \cdot b$ can also be so expressed.
- (viii) Applying the second principle of mathematical induction, we conclude that the conjecture is true, for all $n \ge 8$.

Another Example

Another Example

Example

Subramani Mathematical Review

Another Example

Example

Show that every element in the set $S = \{2, 3, \dots, \}$ is either a prime number or a product of primes.

Proving the conjecture

Proof.

• For the basis, observe that 2 is a prime.

Proving the conjecture

- For the basis, observe that 2 is a prime.
- 2 Assume that the conjecture holds for all $r, 2 \le r \le k$.

Proving the conjecture

Proof.

- For the basis, observe that 2 is a prime.
- 2 Assume that the conjecture holds for all $r, 2 \le r \le k$.

In other words, assume that every number in the set $S_k = \{2, 3, ..., k\}$ is either a prime or can be expressed as a product of primes.

Proving the conjecture

Proof.

- For the basis, observe that 2 is a prime.
- **2** Assume that the conjecture holds for all $r, 2 \le r \le k$.

In other words, assume that every number in the set $S_k = \{2, 3, ..., k\}$ is either a prime or can be expressed as a product of primes.

() Now consider the number (k + 1).

Proving the conjecture

Proof.

- For the basis, observe that 2 is a prime.
- **2** Assume that the conjecture holds for all $r, 2 \le r \le k$.

In other words, assume that every number in the set $S_k = \{2, 3, ..., k\}$ is either a prime or can be expressed as a product of primes.

(a) Now consider the number (k + 1). If (k + 1) is a prime, then
Proving the conjecture

Proof.

- For the basis, observe that 2 is a prime.
- **2** Assume that the conjecture holds for all $r, 2 \le r \le k$.

In other words, assume that every number in the set $S_k = \{2, 3, ..., k\}$ is either a prime or can be expressed as a product of primes.

(a) Now consider the number (k + 1). If (k + 1) is a prime, then we are done.

Proving the conjecture

Proof.

- For the basis, observe that 2 is a prime.
- **2** Assume that the conjecture holds for all $r, 2 \le r \le k$.

- **()** Now consider the number (k + 1). If (k + 1) is a prime, then we are done.
- If (k+1) is composite, then $(k+1) = a \cdot b$, where a, b < (k+1).

Proving the conjecture

Proof.

- For the basis, observe that 2 is a prime.
- **2** Assume that the conjecture holds for all $r, 2 \le r \le k$.

- **()** Now consider the number (k + 1). If (k + 1) is a prime, then we are done.
- If (k + 1) is composite, then $(k + 1) = a \cdot b$, where a, b < (k + 1).
- As per the inductive hypothesis, both a and b are either primes themselves or can be expressed as products of primes.

Proving the conjecture

Proof.

- For the basis, observe that 2 is a prime.
- **2** Assume that the conjecture holds for all $r, 2 \le r \le k$.

- **()** Now consider the number (k + 1). If (k + 1) is a prime, then we are done.
- If (k + 1) is composite, then $(k + 1) = a \cdot b$, where a, b < (k + 1).
- As per the inductive hypothesis, both a and b are either primes themselves or can be expressed as products of primes.
- **(**) In either case, it follows that (k + 1) can be expressed as a product of primes.

Proving the conjecture

Proof.

- For the basis, observe that 2 is a prime.
- **2** Assume that the conjecture holds for all $r, 2 \le r \le k$.

- **()** Now consider the number (k + 1). If (k + 1) is a prime, then we are done.
- If (k+1) is composite, then $(k+1) = a \cdot b$, where a, b < (k+1).
- As per the inductive hypothesis, both a and b are either primes themselves or can be expressed as products of primes.
- **(**) In either case, it follows that (k + 1) can be expressed as a product of primes.
- Applying the second principle of mathematical induction, we conclude that the conjecture is true for all elements in the domain.

Logarithms

Logarithms

Definition

Subramani Mathematical Review

Logarithms

Definition

If $x = a^b$, where a > 0,

Logarithms

Definition

If $x = a^b$, where a > 0, then $b = \log_a x$.

Logarithms

Definition

If
$$x = a^b$$
, where $a > 0$, then $b = \log_a x$.

Laws

Subramani Mathematical Review

Logarithms

Definition

If
$$x = a^b$$
, where $a > 0$, then $b = \log_a x$.

Laws

Let a, b, c > 0.

Logarithms

Definition

If
$$x = a^b$$
, where $a > 0$, then $b = \log_a x$.

Laws

Let a, b, c > 0. $\log_a(x \cdot y) = \log_a x + \log_a y$.

Logarithms

Definition

If
$$x = a^b$$
, where $a > 0$, then $b = \log_a x$.

Laws

Let a, b, c > 0.

$$log_a(x \cdot y) = log_a x + log_a y.$$

$$\log_a(\frac{x}{y}) = \log_a x - \log_a y.$$

Logarithms

Definition

If
$$x = a^b$$
, where $a > 0$, then $b = \log_a x$.

Laws

Let a, b, c > 0. • $\log_a(x \cdot y) = \log_a x + \log_a y$. • $\log_a(\frac{x}{y}) = \log_a x - \log_a y$. • $\log_a 1 = 0$.

Logarithms

Definition

If
$$x = a^b$$
, where $a > 0$, then $b = \log_a x$.

Let
$$a, b, c > 0$$
.
1 $\log_a(x \cdot y) = \log_a x + \log_a y$
2 $\log_a(\frac{x}{y}) = \log_a x - \log_a y$.
3 $\log_a 1 = 0$.
4 $\log_a b = \frac{\log_c b}{\log_c a}, \ c > 1$.

Logarithms

Definition

If
$$x = a^b$$
, where $a > 0$, then $b = \log_a x$.

Let
$$a, b, c > 0$$
.
1 $\log_a(x \cdot y) = \log_a x + \log_a y$.
2 $\log_a(\frac{x}{y}) = \log_a x - \log_a y$.
3 $\log_a 1 = 0$.
4 $\log_a b = \frac{\log_c b}{\log_c a}, c > 1$.
5 $\log_a b^n = n \cdot \log_a b$.

Logarithms

Definition

If
$$x = a^b$$
, where $a > 0$, then $b = \log_a x$.

Let
$$a, b, c > 0$$
.
a) $\log_a(x \cdot y) = \log_a x + \log_a y$.
b) $\log_a(\frac{x}{y}) = \log_a x - \log_a y$.
c) $\log_a (\frac{x}{y}) = \log_a x - \log_a y$.
c) $\log_a 1 = 0$.
c) $\log_a b = \frac{\log_c b}{\log_c a}, c > 1$.
c) $\log_a b^n = n \cdot \log_a b$.
c) $a^{\log_a x} = x$.

Logarithms

Definition

If
$$x = a^b$$
, where $a > 0$, then $b = \log_a x$.

Let
$$a, b, c > 0$$
.
(a) $\log_a(x \cdot y) = \log_a x + \log_a y$.
(b) $\log_a(\frac{x}{y}) = \log_a x - \log_a y$.
(c) $\log_a 1 = 0$.
(c) $\log_a b = \frac{\log_c b}{\log_c a}, c > 1$.
(c) $\log_a b^n = n \cdot \log_a b$.
(c) $a^{\log_a x} = x$.
(c) $\log_a n = O(\log_b n)$.

Logarithms

Definition

If
$$x = a^b$$
, where $a > 0$, then $b = \log_a x$.

Let
$$a, b, c > 0$$
.
(a) $\log_a(x \cdot y) = \log_a x + \log_a y$.
(b) $\log_a(\frac{x}{y}) = \log_a x - \log_a y$.
(c) $\log_a 1 = 0$.
(c) $\log_a b = \frac{\log_c b}{\log_c a}, c > 1$.
(c) $\log_a b^n = n \cdot \log_a b$.
(c) $a^{\log_a x} = x$.
(c) $\log_a n = O(\log_b n)$.
(c) $a^{\log_b c} = c^{\log_b a}$.

Logarithms

Definition

If
$$x = a^b$$
, where $a > 0$, then $b = \log_a x$.

Let
$$a, b, c > 0$$
.
(a) $\log_a(x \cdot y) = \log_a x + \log_a y$
(b) $\log_a(\frac{x}{y}) = \log_a x - \log_a y$.
(c) $\log_a 1 = 0$.
(c) $\log_a b = \frac{\log_c b}{\log_c a}, c > 1$.
(c) $\log_a b^n = n \cdot \log_a b$.
(c) $a^{\log_a x} = x$.
(c) $\log_a n = O(\log_b n)$.
(c) $a^{\log_b c} = c^{\log_b a}$.
(c) $\log^b n = o(n^a)$.

Motivating Examples

Motivating Examples

Example

Subramani Mathematical Review

Motivating Examples

Example

How many 4 digit numbers can you create using the digits 1, 2, 3, and 4, assuming no digit repeats?

Motivating Examples

Example

How many 4 digit numbers can you create using the digits 1, 2, 3, and 4, assuming no digit repeats?

Example

Motivating Examples

Example

How many 4 digit numbers can you create using the digits 1, 2, 3, and 4, assuming no digit repeats?

Example

How many 2 digit numbers can you create using the digits 1, 2, 3, and 4, assuming no digit repeats?

Motivating Examples

Example

How many 4 digit numbers can you create using the digits 1, 2, 3, and 4, assuming no digit repeats?

Example

How many 2 digit numbers can you create using the digits 1, 2, 3, and 4, assuming no digit repeats?

Example

In how many ways can 6 people be seated in a row?

Motivating Examples

Example

How many 4 digit numbers can you create using the digits 1, 2, 3, and 4, assuming no digit repeats?

Example

How many 2 digit numbers can you create using the digits 1, 2, 3, and 4, assuming no digit repeats?

Example

In how many ways can 6 people be seated in a row?

Example

Motivating Examples

Example

How many 4 digit numbers can you create using the digits 1, 2, 3, and 4, assuming no digit repeats?

Example

How many 2 digit numbers can you create using the digits 1, 2, 3, and 4, assuming no digit repeats?

Example

In how many ways can 6 people be seated in a row?

Example

In how many ways can 6 people be seated around a circular table with 6 chairs?

Motivating Examples

Example

How many 4 digit numbers can you create using the digits 1, 2, 3, and 4, assuming no digit repeats?

Example

How many 2 digit numbers can you create using the digits 1, 2, 3, and 4, assuming no digit repeats?

Example

In how many ways can 6 people be seated in a row?

Example

In how many ways can 6 people be seated around a circular table with 6 chairs? (Only relative positions can be distinguished.)

Permutations

Permutations

Definition

Subramani Mathematical Review

Permutations

Definition

A permutation is an ordered arrangement of objects.

Permutations

Definition

A permutation is an ordered arrangement of objects.

The number of distinct permutations of r distinct objects chosen from n distinct objects is denoted by P(n, r).

Permutations

Definition

A permutation is an ordered arrangement of objects.

The number of distinct permutations of r distinct objects chosen from n distinct objects is denoted by P(n, r).

Definition

Permutations

Definition

A permutation is an ordered arrangement of objects.

The number of distinct permutations of r distinct objects chosen from n distinct objects is denoted by P(n, r).

Definition

$$n! =$$

Permutations

Definition

A permutation is an ordered arrangement of objects.

The number of distinct permutations of r distinct objects chosen from n distinct objects is denoted by P(n, r).

Definition

$$n! = \begin{cases} 1, & \text{if } n = 0 \end{cases}$$
Permutations

Definition

A permutation is an ordered arrangement of objects.

The number of distinct permutations of r distinct objects chosen from n distinct objects is denoted by P(n, r).

Definition

$$n! = \begin{cases} 1, & \text{if } n = 0\\ n \cdot (n-1)!, & \text{otherwise} \end{cases}$$

Computing the number of permutations

Computing the number of permutations

Computing P(n, r)

Subramani Mathematical Review

Computing the number of permutations

Computing P(n, r)

Computing the number of permutations

Computing P(n, r)

Using the multiplication principle,

P(n,r) =

Subramani Mathematical Review

Computing the number of permutations

Computing P(n, r)

$$P(n,r) = r$$

Computing the number of permutations

Computing P(n, r)

$$P(n,r) = n \cdot (n-1)$$

Computing the number of permutations

Computing P(n, r)

$$P(n,r) = n \cdot (n-1) \cdot \ldots (n-r+1)$$

Computing the number of permutations

Computing P(n, r)

Using the multiplication principle,

=

$$P(n,r) = n \cdot (n-1) \cdot \ldots (n-r+1)$$

Computing the number of permutations

Computing P(n, r)

$$P(n,r) = n \cdot (n-1) \cdot \dots (n-r+1) \\ = n \cdot (n-1) \cdot \dots (n-r+1) \cdot \frac{(n-r) \cdot (n-r-1) \cdot \dots 1}{(n-r) \cdot (n-r-1) \cdot \dots 1}$$

Computing the number of permutations

Computing P(n, r)

Using the multiplication principle,

=

$$P(n,r) = n \cdot (n-1) \cdot \dots \cdot (n-r+1) \\ = n \cdot (n-1) \cdot \dots \cdot (n-r+1) \cdot \frac{(n-r) \cdot (n-r-1) \cdot \dots \cdot 1}{(n-r) \cdot (n-r-1) \cdot \dots \cdot 1}$$

Computing the number of permutations

Computing P(n, r)

$$P(n,r) = n \cdot (n-1) \cdot \dots (n-r+1)$$

= $n \cdot (n-1) \cdot \dots (n-r+1) \cdot \frac{(n-r) \cdot (n-r-1) \cdot \dots 1}{(n-r) \cdot (n-r-1) \cdot \dots 1}$
= $\frac{n!}{(n-r)!}, \ 0 \le r \le n$

Permutations (contd.)

Permutations (contd.)

Example

Subramani Mathematical Review

Permutations (contd.)

Example

Compute P(7,3), P(n,0), P(n,1), and P(n,n).

Permutations (contd.)

Example

Compute P(7,3), P(n,0), P(n,1), and P(n,n).

Solution:

Permutations (contd.)

Example

Compute P(7,3), P(n,0), P(n,1), and P(n,n). Solution: 210,

Permutations (contd.)

Example

Compute P(7,3), P(n,0), P(n,1), and P(n,n). Solution: 210, 1,

Permutations (contd.)

Example

Compute P(7,3), P(n,0), P(n,1), and P(n,n). Solution: 210, 1, n,

Permutations (contd.)

Example

Compute P(7,3), P(n,0), P(n,1), and P(n,n).

Solution: 210, 1, *n*, and *n*!.

Permutations (contd.)

Example

Compute P(7,3), P(n,0), P(n,1), and P(n,n).

Solution: 210, 1, *n*, and *n*!.

Example

Permutations (contd.)

Example

Compute P(7,3), P(n,0), P(n,1), and P(n,n).

Solution: 210, 1, *n*, and *n*!.

Example

How many 3 letter words can be formed using the letters in the word "compiler"?

Permutations (contd.)

Example

Compute P(7,3), P(n,0), P(n,1), and P(n,n).

Solution: 210, 1, *n*, and *n*!.

Example

How many 3 letter words can be formed using the letters in the word "compiler"? **Solution:**

Permutations (contd.)

Example

Compute P(7,3), P(n,0), P(n,1), and P(n,n).

Solution: 210, 1, *n*, and *n*!.

Example

How many 3 letter words can be formed using the letters in the word "compiler"? **Solution:** P(8, 3).

Permutations (contd.)

Example

Compute P(7,3), P(n,0), P(n,1), and P(n,n).

Solution: 210, 1, *n*, and *n*!.

Example

How many 3 letter words can be formed using the letters in the word "compiler"? **Solution:** P(8, 3).

Example

Permutations (contd.)

Example

Compute P(7,3), P(n,0), P(n,1), and P(n,n).

Solution: 210, 1, *n*, and *n*!.

Example

How many 3 letter words can be formed using the letters in the word "compiler"? **Solution:** P(8, 3).

Example

In how many ways can a president and vice-president be chosen from a group of 20 people?

Permutations (contd.)

Example

Compute P(7,3), P(n,0), P(n,1), and P(n,n).

Solution: 210, 1, *n*, and *n*!.

Example

How many 3 letter words can be formed using the letters in the word "compiler"? **Solution:** P(8, 3).

Example

In how many ways can a president and vice-president be chosen from a group of 20 people?

Solution:

Permutations (contd.)

Example

Compute P(7,3), P(n,0), P(n,1), and P(n,n).

Solution: 210, 1, *n*, and *n*!.

Example

How many 3 letter words can be formed using the letters in the word "compiler"? **Solution:** P(8, 3).

Example

In how many ways can a president and vice-president be chosen from a group of 20 people?

Solution: P(20, 2).

One more example

One more example

Example

Subramani Mathematical Review

One more example

Example

A library has 4 books on programming, 7 on algorithms and 3 on complexity.

One more example

Example

A library has 4 books on programming, 7 on algorithms and 3 on complexity.

In how many ways can the books be ordered on a shelf?

One more example

Example

A library has 4 books on programming, 7 on algorithms and 3 on complexity.

In how many ways can the books be ordered on a shelf?

Provided that the books of a subject are required to be together?

One more example

Example

A library has 4 books on programming, 7 on algorithms and 3 on complexity.

In how many ways can the books be ordered on a shelf?

Provided that the books of a subject are required to be together?

One more example

Example

A library has 4 books on programming, 7 on algorithms and 3 on complexity.

In how many ways can the books be ordered on a shelf?

Provided that the books of a subject are required to be together?

Solution

One more example

Example

A library has 4 books on programming, 7 on algorithms and 3 on complexity.

In how many ways can the books be ordered on a shelf?

Provided that the books of a subject are required to be together?

Solution

If there is no restriction, the number of arrangements is
One more example

Example

A library has 4 books on programming, 7 on algorithms and 3 on complexity.

In how many ways can the books be ordered on a shelf?

Provided that the books of a subject are required to be together?

Solution

If there is no restriction, the number of arrangements is P(14, 14) = 14!.

One more example

Example

A library has 4 books on programming, 7 on algorithms and 3 on complexity.

In how many ways can the books be ordered on a shelf?

Provided that the books of a subject are required to be together?

Solution

If there is no restriction, the number of arrangements is P(14, 14) = 14!.

Now consider the case in which the books of a given subject are required to be together.

One more example

Example

A library has 4 books on programming, 7 on algorithms and 3 on complexity.

In how many ways can the books be ordered on a shelf?

Provided that the books of a subject are required to be together?

Solution

If there is no restriction, the number of arrangements is P(14, 14) = 14!.

Now consider the case in which the books of a given subject are required to be together.

First arrange the three subjects.

One more example

Example

A library has 4 books on programming, 7 on algorithms and 3 on complexity.

In how many ways can the books be ordered on a shelf?

Provided that the books of a subject are required to be together?

Solution

If there is no restriction, the number of arrangements is P(14, 14) = 14!.

Now consider the case in which the books of a given subject are required to be together.

First arrange the three subjects. This can be done in P(3,3) = 3! ways.

One more example

Example

A library has 4 books on programming, 7 on algorithms and 3 on complexity.

In how many ways can the books be ordered on a shelf?

Provided that the books of a subject are required to be together?

Solution

If there is no restriction, the number of arrangements is P(14, 14) = 14!.

Now consider the case in which the books of a given subject are required to be together.

First arrange the three subjects. This can be done in P(3,3) = 3! ways.

Corresponding to each such arrangement,

One more example

Example

A library has 4 books on programming, 7 on algorithms and 3 on complexity.

In how many ways can the books be ordered on a shelf?

Provided that the books of a subject are required to be together?

Solution

If there is no restriction, the number of arrangements is P(14, 14) = 14!.

Now consider the case in which the books of a given subject are required to be together.

First arrange the three subjects. This can be done in P(3,3) = 3! ways.

Corresponding to each such arrangement,

the programming books can be permuted in

One more example

Example

A library has 4 books on programming, 7 on algorithms and 3 on complexity.

In how many ways can the books be ordered on a shelf?

Provided that the books of a subject are required to be together?

Solution

If there is no restriction, the number of arrangements is P(14, 14) = 14!.

Now consider the case in which the books of a given subject are required to be together.

First arrange the three subjects. This can be done in P(3,3) = 3! ways.

Corresponding to each such arrangement,

the programming books can be permuted in P(4, 4) = 4! ways,

One more example

Example

A library has 4 books on programming, 7 on algorithms and 3 on complexity.

In how many ways can the books be ordered on a shelf?

Provided that the books of a subject are required to be together?

Solution

If there is no restriction, the number of arrangements is P(14, 14) = 14!.

Now consider the case in which the books of a given subject are required to be together.

First arrange the three subjects. This can be done in P(3,3) = 3! ways.

Corresponding to each such arrangement,

the programming books can be permuted in P(4, 4) = 4! ways,

the algorithms books can be permuted in

One more example

Example

A library has 4 books on programming, 7 on algorithms and 3 on complexity.

In how many ways can the books be ordered on a shelf?

Provided that the books of a subject are required to be together?

Solution

If there is no restriction, the number of arrangements is P(14, 14) = 14!.

Now consider the case in which the books of a given subject are required to be together.

First arrange the three subjects. This can be done in P(3,3) = 3! ways.

Corresponding to each such arrangement,

the programming books can be permuted in P(4, 4) = 4! ways,

the algorithms books can be permuted in P(7,7) = 7! ways,

One more example

Example

A library has 4 books on programming, 7 on algorithms and 3 on complexity.

In how many ways can the books be ordered on a shelf?

Provided that the books of a subject are required to be together?

Solution

If there is no restriction, the number of arrangements is P(14, 14) = 14!.

Now consider the case in which the books of a given subject are required to be together.

First arrange the three subjects. This can be done in P(3,3) = 3! ways.

Corresponding to each such arrangement,

the programming books can be permuted in P(4, 4) = 4! ways,

the algorithms books can be permuted in P(7,7) = 7! ways,

and the complexity books can be permuted in

One more example

Example

A library has 4 books on programming, 7 on algorithms and 3 on complexity.

In how many ways can the books be ordered on a shelf?

Provided that the books of a subject are required to be together?

Solution

If there is no restriction, the number of arrangements is P(14, 14) = 14!.

Now consider the case in which the books of a given subject are required to be together.

First arrange the three subjects. This can be done in P(3,3) = 3! ways.

Corresponding to each such arrangement,

the programming books can be permuted in P(4, 4) = 4! ways,

the algorithms books can be permuted in P(7,7) = 7! ways,

and the complexity books can be permuted in P(3,3) = 3! ways.

One more example

Example

A library has 4 books on programming, 7 on algorithms and 3 on complexity.

In how many ways can the books be ordered on a shelf?

Provided that the books of a subject are required to be together?

Solution

If there is no restriction, the number of arrangements is P(14, 14) = 14!.

Now consider the case in which the books of a given subject are required to be together.

First arrange the three subjects. This can be done in P(3,3) = 3! ways.

Corresponding to each such arrangement,

the programming books can be permuted in P(4, 4) = 4! ways,

the algorithms books can be permuted in P(7,7) = 7! ways,

and the complexity books can be permuted in P(3,3) = 3! ways.

Using the multiplication principle, the total number of arrangements is $3! \cdot 4! \cdot 7! \cdot 3!$.

More Examples

More Examples

Example

Subramani Mathematical Review

More Examples

Example

Solve the motivating examples.

Subramani Mathematical Review

Motivating Examples

Motivating Examples

Example

Subramani Mathematical Review

Motivating Examples

Example

How many 5-card hands are possible with a 52 card deck?

Motivating Examples

Example

How many 5-card hands are possible with a 52 card deck?

Example

Motivating Examples

Example

How many 5-card hands are possible with a 52 card deck?

Example

Ten athletes compete in an Olympic event.

Motivating Examples

Example

How many 5-card hands are possible with a 52 card deck?

Example

Ten athletes compete in an Olympic event. Three will be declared winners.

Motivating Examples

Example

How many 5-card hands are possible with a 52 card deck?

Example

Ten athletes compete in an Olympic event. Three will be declared winners.

In how many ways can the winners be selected?

Motivating Examples

Example

How many 5-card hands are possible with a 52 card deck?

Example

Ten athletes compete in an Olympic event. Three will be declared winners.

In how many ways can the winners be selected?

Example

Motivating Examples

Example

How many 5-card hands are possible with a 52 card deck?

Example

Ten athletes compete in an Olympic event. Three will be declared winners.

In how many ways can the winners be selected?

Example

A committee of 3 is to be formed from 5 men and 2 women.

Motivating Examples

Example

How many 5-card hands are possible with a 52 card deck?

Example

Ten athletes compete in an Olympic event. Three will be declared winners.

In how many ways can the winners be selected?

Example

A committee of 3 is to be formed from 5 men and 2 women.

In how many ways can the committee be formed, if

Motivating Examples

Example

How many 5-card hands are possible with a 52 card deck?

Example

Ten athletes compete in an Olympic event. Three will be declared winners.

In how many ways can the winners be selected?

Example

A committee of 3 is to be formed from 5 men and 2 women.

In how many ways can the committee be formed, if

Motivating Examples

Example

How many 5-card hands are possible with a 52 card deck?

Example

Ten athletes compete in an Olympic event. Three will be declared winners.

In how many ways can the winners be selected?

Example

A committee of 3 is to be formed from 5 men and 2 women.

In how many ways can the committee be formed, if

• The committee must include at least one woman.

Motivating Examples

Example

How many 5-card hands are possible with a 52 card deck?

Example

Ten athletes compete in an Olympic event. Three will be declared winners.

In how many ways can the winners be selected?

Example

A committee of 3 is to be formed from 5 men and 2 women.

In how many ways can the committee be formed, if

- The committee must include at least one woman.
- **②** There cannot be more than two men on the committee.

Combinations

Definition

Subramani Mathematical Review

Combinations

Definition

A combination is an (unordered) selection of objects.

Combinations

Definition

A combination is an (unordered) selection of objects.

The number of distinct combinations of r distinct objects chosen from n distinct objects is denoted by C(n, r).

Combinations

Definition

A combination is an (unordered) selection of objects.

The number of distinct combinations of r distinct objects chosen from n distinct objects is denoted by C(n, r).

Computing C(n, r)

Combinations

Definition

A combination is an (unordered) selection of objects.

The number of distinct combinations of r distinct objects chosen from n distinct objects is denoted by C(n, r).

Computing C(n, r)

Focus on a given combination of r objects chosen from n objects.

Combinations

Definition

A combination is an (unordered) selection of objects.

The number of distinct combinations of r distinct objects chosen from n distinct objects is denoted by C(n, r).

Computing C(n, r)

Focus on a given combination of r objects chosen from n objects.

The objects in this combination can be permuted in r! different ways to get r! distinct permutations.

Combinations

Definition

A combination is an (unordered) selection of objects.

The number of distinct combinations of r distinct objects chosen from n distinct objects is denoted by C(n, r).

Computing C(n, r)

Focus on a given combination of r objects chosen from n objects.

The objects in this combination can be permuted in r! different ways to get r! distinct permutations.

It follows that $C(n, r) \cdot r! = P(n, r)$,

Combinations

Definition

A combination is an (unordered) selection of objects.

The number of distinct combinations of r distinct objects chosen from n distinct objects is denoted by C(n, r).

Computing C(n, r)

Focus on a given combination of r objects chosen from n objects.

The objects in this combination can be permuted in r! different ways to get r! distinct permutations.

It follows that
$$C(n,r) \cdot r! = P(n,r)$$
, i.e., $C(n,r) = \frac{P(n,r)}{r!} = \frac{n!}{r! \cdot (n-r)!}, \ 0 \le r \le n$.
Combinations

Definition

A combination is an (unordered) selection of objects.

The number of distinct combinations of r distinct objects chosen from n distinct objects is denoted by C(n, r).

Computing C(n, r)

Focus on a given combination of r objects chosen from n objects.

The objects in this combination can be permuted in r! different ways to get r! distinct permutations.

It follows that
$$C(n,r) \cdot r! = P(n,r)$$
, i.e., $C(n,r) = \frac{P(n,r)}{r!} = \frac{n!}{r! \cdot (n-r)!}, \ 0 \le r \le n$.

Example

Combinations

Definition

A combination is an (unordered) selection of objects.

The number of distinct combinations of r distinct objects chosen from n distinct objects is denoted by C(n, r).

Computing C(n, r)

Focus on a given combination of r objects chosen from n objects.

The objects in this combination can be permuted in r! different ways to get r! distinct permutations.

It follows that
$$C(n,r) \cdot r! = P(n,r)$$
, i.e., $C(n,r) = \frac{P(n,r)}{r!} = \frac{n!}{r! \cdot (n-r)!}, \ 0 \le r \le n$.

Example

Compute C(7,3), C(n,0), C(n,1) and C(n,n).

Combinations

Definition

A combination is an (unordered) selection of objects.

The number of distinct combinations of r distinct objects chosen from n distinct objects is denoted by C(n, r).

Computing C(n, r)

Focus on a given combination of r objects chosen from n objects.

The objects in this combination can be permuted in r! different ways to get r! distinct permutations.

It follows that
$$C(n,r) \cdot r! = P(n,r)$$
, i.e., $C(n,r) = \frac{P(n,r)}{r!} = \frac{n!}{r! \cdot (n-r)!}$, $0 \le r \le n$.

Example

Compute C(7,3), C(n,0), C(n,1) and C(n,n).

Solution:

Combinations

Definition

A combination is an (unordered) selection of objects.

The number of distinct combinations of r distinct objects chosen from n distinct objects is denoted by C(n, r).

Computing C(n, r)

Focus on a given combination of r objects chosen from n objects.

The objects in this combination can be permuted in r! different ways to get r! distinct permutations.

It follows that
$$C(n,r) \cdot r! = P(n,r)$$
, i.e., $C(n,r) = \frac{P(n,r)}{r!} = \frac{n!}{r! \cdot (n-r)!}$, $0 \le r \le n$.

Example

Compute C(7,3), C(n,0), C(n,1) and C(n,n).

Solution: 35,

Combinations

Definition

A combination is an (unordered) selection of objects.

The number of distinct combinations of r distinct objects chosen from n distinct objects is denoted by C(n, r).

Computing C(n, r)

Focus on a given combination of r objects chosen from n objects.

The objects in this combination can be permuted in r! different ways to get r! distinct permutations.

It follows that
$$C(n,r) \cdot r! = P(n,r)$$
, i.e., $C(n,r) = \frac{P(n,r)}{r!} = \frac{n!}{r! \cdot (n-r)!}$, $0 \le r \le n$.

Example

Compute C(7,3), C(n,0), C(n,1) and C(n,n).

Solution: 35, 1,

Combinations

Definition

A combination is an (unordered) selection of objects.

The number of distinct combinations of r distinct objects chosen from n distinct objects is denoted by C(n, r).

Computing C(n, r)

Focus on a given combination of r objects chosen from n objects.

The objects in this combination can be permuted in r! different ways to get r! distinct permutations.

It follows that
$$C(n,r) \cdot r! = P(n,r)$$
, i.e., $C(n,r) = \frac{P(n,r)}{r!} = \frac{n!}{r! \cdot (n-r)!}$, $0 \le r \le n$.

Example

Compute C(7,3), C(n,0), C(n,1) and C(n,n).

Solution: 35, 1, *n*,

Combinations

Definition

A combination is an (unordered) selection of objects.

The number of distinct combinations of r distinct objects chosen from n distinct objects is denoted by C(n, r).

Computing C(n, r)

Focus on a given combination of r objects chosen from n objects.

The objects in this combination can be permuted in r! different ways to get r! distinct permutations.

It follows that
$$C(n,r) \cdot r! = P(n,r)$$
, i.e., $C(n,r) = \frac{P(n,r)}{r!} = \frac{n!}{r! \cdot (n-r)!}$, $0 \le r \le n$.

Example

Compute C(7,3), C(n,0), C(n,1) and C(n,n).

Solution: 35, 1, *n*, 1.

Combinations (examples)

Combinations (examples)

Example

Subramani Mathematical Review

Combinations (examples)

Example

A committee of 8 students is to be selected from 19 freshmen and 34 sophomores.

Combinations (examples)

Example

Combinations (examples)

Example

A committee of 8 students is to be selected from 19 freshmen and 34 sophomores.

In how many ways, can this committee be formed, if

• it must contain 3 freshmen and 5 sophomores.

Combinations (examples)

Example

A committee of 8 students is to be selected from 19 freshmen and 34 sophomores.

In how many ways, can this committee be formed, if

() it must contain 3 freshmen and 5 sophomores. **Solution**:

Combinations (examples)

Example

A committee of 8 students is to be selected from 19 freshmen and 34 sophomores. In how many ways, can this committee be formed, if

Q it must contain 3 freshmen and 5 sophomores. Solution: $C(19,3) \cdot C(34,5)$.

Combinations (examples)

Example

- it must contain 3 freshmen and 5 sophomores. Solution: $C(19,3) \cdot C(34,5)$.
- 2 it must contain exactly one freshman.

Combinations (examples)

Example

- it must contain 3 freshmen and 5 sophomores. Solution: $C(19,3) \cdot C(34,5)$.
- ② it must contain exactly one freshman. Solution:

Combinations (examples)

Example

- **Q** it must contain 3 freshmen and 5 sophomores. Solution: $C(19,3) \cdot C(34,5)$.
- **Q** it must contain exactly one freshman. Solution: $C(19,1) \cdot C(34,7)$.

Combinations (examples)

Example

A committee of 8 students is to be selected from 19 freshmen and 34 sophomores.

- **Q** it must contain 3 freshmen and 5 sophomores. Solution: $C(19,3) \cdot C(34,5)$.
- **2** it must contain exactly one freshman. **Solution**: $C(19, 1) \cdot C(34, 7)$.
- it can contain at most one freshman.

Combinations (examples)

Example

A committee of 8 students is to be selected from 19 freshmen and 34 sophomores.

- **Q** it must contain 3 freshmen and 5 sophomores. **Solution:** $C(19,3) \cdot C(34,5)$.
- **2** it must contain exactly one freshman. **Solution**: $C(19, 1) \cdot C(34, 7)$.
- () it can contain at most one freshman. Solution:

Combinations (examples)

Example

A committee of 8 students is to be selected from 19 freshmen and 34 sophomores.

- **Q** it must contain 3 freshmen and 5 sophomores. Solution: $C(19,3) \cdot C(34,5)$.
- **2** it must contain exactly one freshman. **Solution**: $C(19, 1) \cdot C(34, 7)$.
- (a) it can contain at most one freshman. Solution: C(34,8)

Combinations (examples)

Example

A committee of 8 students is to be selected from 19 freshmen and 34 sophomores.

- it must contain 3 freshmen and 5 sophomores. Solution: $C(19,3) \cdot C(34,5)$.
- **Q** it must contain exactly one freshman. Solution: $C(19, 1) \cdot C(34, 7)$.
- it can contain at most one freshman. Solution: $C(34,8) + C(19,1) \cdot C(34,7)$.

Combinations (examples)

Example

A committee of 8 students is to be selected from 19 freshmen and 34 sophomores.

- **Q** it must contain 3 freshmen and 5 sophomores. Solution: $C(19,3) \cdot C(34,5)$.
- **2** it must contain exactly one freshman. Solution: $C(19,1) \cdot C(34,7)$.
- it can contain at most one freshman. Solution: $C(34, 8) + C(19, 1) \cdot C(34, 7)$.
- it contains at least one freshman.

Combinations (examples)

Example

A committee of 8 students is to be selected from 19 freshmen and 34 sophomores.

- **Q** it must contain 3 freshmen and 5 sophomores. Solution: $C(19,3) \cdot C(34,5)$.
- **2** it must contain exactly one freshman. Solution: $C(19,1) \cdot C(34,7)$.
- it can contain at most one freshman. Solution: $C(34, 8) + C(19, 1) \cdot C(34, 7)$.
- it contains at least one freshman. Solution: C(53, 8) C(34, 8).

More examples

More examples

Example

Subramani Mathematical Review

More examples

Example

Solve the motivating examples.

Subramani Mathematical Review

Exercises

Exercises

Identities

Subramani Mathematical Review

Exercises

Identities

• Argue that $P(n,1) + P(n,2) = n^2$, $\forall n \ge 2$.

Exercises

Identities

- Argue that $P(n, 1) + P(n, 2) = n^2$, $\forall n \ge 2$.
- 3 Show that for all $n \ge 1$, P(n, n) = P(n, n-1).

Exercises

Identities

- Argue that $P(n, 1) + P(n, 2) = n^2$, $\forall n \ge 2$.
- 3 Show that for all $n \ge 1$, P(n, n) = P(n, n-1).
- **③** Prove that for any $0 \le r \le n$, C(n, r) = C(n, n r).

Exercises

Identities

- Argue that $P(n, 1) + P(n, 2) = n^2$, $\forall n \ge 2$.
- 3 Show that for all $n \ge 1$, P(n, n) = P(n, n-1).
- **③** Prove that for any $0 \le r \le n$, C(n, r) = C(n, n r).

Word Problems

Exercises

Identities

- Argue that $P(n, 1) + P(n, 2) = n^2$, $\forall n \ge 2$.
- 3 Show that for all $n \ge 1$, P(n, n) = P(n, n-1).
- **③** Prove that for any $0 \le r \le n$, C(n, r) = C(n, n r).

Word Problems

In how many ways, can you seat 11 men and 8 women in a row, so that no two women sit together?

Exercises

Identities

- Argue that $P(n, 1) + P(n, 2) = n^2$, $\forall n \ge 2$.
- 3 Show that for all $n \ge 1$, P(n, n) = P(n, n-1).
- **③** Prove that for any $0 \le r \le n$, C(n, r) = C(n, n r).

Word Problems

- In how many ways, can you seat 11 men and 8 women in a row, so that no two women sit together?
- A committee of three has to be chosen from five Democrats, three Republicans and four independents.

Exercises

Identities

- Argue that $P(n, 1) + P(n, 2) = n^2$, $\forall n \ge 2$.
- 3 Show that for all $n \ge 1$, P(n, n) = P(n, n-1).
- **③** Prove that for any $0 \le r \le n$, C(n, r) = C(n, n r).

Word Problems

- In how many ways, can you seat 11 men and 8 women in a row, so that no two women sit together?
- A committee of three has to be chosen from five Democrats, three Republicans and four independents.

In how many ways can the committee be chosen, if it cannot include both Democrats and Republicans?

Motivation
Motivation

Expansions

Subramani Mathematical Review

Motivation

(i)
$$(a+b)^1 =$$

Motivation

(i)
$$(a+b)^1 = a+b$$
.

Motivation

(i)
$$(a+b)^1 = a+b$$
.
(ii) $(a+b)^2 =$

Motivation

(i)
$$(a+b)^1 = a+b$$
.
(ii) $(a+b)^2 = a^2 + 2 \cdot a \cdot b + b^2$

Motivation

(i)
$$(a + b)^1 = a + b$$
.
(ii) $(a + b)^2 = a^2 + 2 \cdot a \cdot b + b^2$.
(iii) $(a + b)^3 =$

Motivation

(i)
$$(a + b)^1 = a + b$$
.
(ii) $(a + b)^2 = a^2 + 2 \cdot a \cdot b + b^2$.
(iii) $(a + b)^3 = a^3 + 3 \cdot a^2 \cdot b + 3 \cdot a \cdot b^2 + b^3$

Motivation

(i)
$$(a + b)^1 = a + b$$
.
(ii) $(a + b)^2 = a^2 + 2 \cdot a \cdot b + b^2$.
(iii) $(a + b)^3 = a^3 + 3 \cdot a^2 \cdot b + 3 \cdot a \cdot b^2 + b^3$
(iv) $(a + b)^4 = ???$

Motivation

Expansions

(i)
$$(a + b)^1 = a + b$$
.
(ii) $(a + b)^2 = a^2 + 2 \cdot a \cdot b + b^2$.
(iii) $(a + b)^3 = a^3 + 3 \cdot a^2 \cdot b + 3 \cdot a \cdot b^2 + b^3$
(iv) $(a + b)^4 = ???$

We want a general formula that permits us to write down the terms of $(a + b)^n$ without actual multiplication.

Pascal's Triangle

The coefficient table

Subramani Mathematical Review

The coefficient table

Consider the following table:

Subramani Mathematical Review

The coefficient table

Consider the following table:

Row 0:

C(0, 0)

Pascal's Triangle

The coefficient table							
Consider the following ta	able:						
Row 0:	C(0, 0	C(0, 0)					
Row 1:	C(1, 0)	C(1, 1)					

Pascal's Triangle

The coefficient table

Consider the following table:

Row 0:		C(0, 0)		
Row 1:	С(1, 0)	C(1, 1)	
Row 2:	C(2, 0)	C(2, 1)		C(2, 2)

Pascal's Triangle

The coefficient table

Consider the following table:

Row 0:				C(0, 0)			
Row 1:			C(1, 0)		C(1, 1)		
Row 2:		C(2, 0)		C(2, 1)		C(2, 2)	
Row 3:	C(3, 0)		C(3, 1)		C(3, 2)		C(3, 3)

Pascal's Triangle

The coefficient table

Consider the following table:

Row 0:				C(0, 0)			
Row 1:			C(1, 0)		C(1, 1)		
Row 2:		C(2, 0)		C(2, 1)		C(2, 2)	
Row 3:	C(3, 0)		C(3, 1)		C(3, 2)		C(3, 3)

Pascal's Triangle

The coefficient table							
Consider the following tak	ole:						
Row 0:			C(0, 0)				
Row 1:		C(1, 0)		C(1, 1)			
Row 2:	C(2, 0)		C(2, 1)		C(2, 2)		
Row 3: C(3, 0)		C(3, 1)		C(3, 2)		C(3, 3)	
:							
Row n: C(n, 0)	C(n, 1)				C(n, n - 1)		C(n, n)

Pascal's triangle (contd.)

The Value Table

Subramani Mathematical Review

Pascal's triangle (contd.)

The Value Table

Writing down the values of the terms gives the following table:

The Value Table									
Writing down the values of the terms gives the following table:									
Row 0: 1									

he Value Table											
Writing down the values of the terms gives the following table:											
Row 0:	1										
Row 1:	1	1									

The Value Table											
Writing down the values of the terms gives the following table:											
Row 0:			1								
Row 1:		1		1							
Row 2:	1		2		1						

Pascal's triangle (contd.)

The Value Table

Writing down the values of the terms gives the following table:

Row 0:				1			
Row 1:			1		1		
Row 2:		1		2		1	
Row 3:	1		3		3		

The Value Table										
Writing down the values of the terms gives the following table:										
	Row 0:			1						
	Row 1:		1		1					
	Row 2:		1	2		1				
	Row 3:	1	3		3		1			

The Value Table												
Writing down the values of the terms gives the following table:												
Row 0:					1							
Row 1:				1		1						
Row 2:			1		2		1					
Row 3:		1		3		3		1				
:												
Row n:	1		п				п		1			

Pascal's formula

Pascal's formula

Theorem

Subramani Mathematical Review

Pascal's formula

Theorem

 $C(n,k) = C(n-1,k-1) + C(n-1,k), 1 \le k \le n-1.$

Proving Pascal's formula

Proving Pascal's formula

Proof.

Subramani Mathematical Review

Proving Pascal's formula

Proof.

Observe that,

Proving Pascal's formula

Proof.

Observe that,

C(n-1, k-1) + C(n-1, k) =

Proving Pascal's formula

Proof.

Observe that,

$$C(n-1, k-1) + C(n-1, k) = \frac{(n-1)!}{(k-1)! \cdot [(n-1-(k-1))]!} + \frac{(n-1)!}{k! \cdot (n-1-k)}$$

Proving Pascal's formula

Proof.

Observe that,

$$C(n-1, k-1) + C(n-1, k) = \frac{(n-1)!}{(k-1)! \cdot [(n-1-(k-1))!]} + \frac{(n-1)!}{k! \cdot (n-1-k)!}$$
$$= \frac{(n-1)!}{(k-1)! \cdot (n-k)!} + \frac{(n-1)!}{k! \cdot (n-1-k)!}$$
Proving Pascal's formula

Proof.

$$C(n-1, k-1) + C(n-1, k) = \frac{(n-1)!}{(k-1)! \cdot [(n-1-(k-1))!]} + \frac{(n-1)!}{k! \cdot (n-1-k)!}$$
$$= \frac{(n-1)!}{(k-1)! \cdot (n-k)!} + \frac{(n-1)!}{k! \cdot (n-1-k)!}$$
$$= \frac{k \cdot (n-1)!}{k! \cdot (n-k)!} + \frac{(n-k) \cdot (n-1)!}{k! \cdot (n-k)!}$$

Proving Pascal's formula

Proof.

$$C(n-1, k-1) + C(n-1, k) = \frac{(n-1)!}{(k-1)! \cdot [(n-1-(k-1))!]} + \frac{(n-1)!}{k! \cdot (n-1-k)!}$$

$$= \frac{(n-1)!}{(k-1)! \cdot (n-k)!} + \frac{(n-1)!}{k! \cdot (n-1-k)!}$$

$$= \frac{k \cdot (n-1)!}{k! \cdot (n-k)!} + \frac{(n-k) \cdot (n-1)!}{k! \cdot (n-k)!}$$

$$= \frac{(n-1)!}{k! \cdot (n-k)!} [k + (n-k)]$$

Proving Pascal's formula

Proof.

$$C(n-1, k-1) + C(n-1, k) = \frac{(n-1)!}{(k-1)! \cdot [(n-1-(k-1))!]} + \frac{(n-1)!}{k! \cdot (n-1-k)!}$$

$$= \frac{(n-1)!}{(k-1)! \cdot (n-k)!} + \frac{(n-1)!}{k! \cdot (n-1-k)!}$$

$$= \frac{k \cdot (n-1)!}{k! \cdot (n-k)!} + \frac{(n-k) \cdot (n-1)!}{k! \cdot (n-k)!}$$

$$= \frac{(n-1)!}{k! \cdot (n-k)!} [k + (n-k)]$$

$$= \frac{n \cdot (n-1)!}{k! \cdot (n-k)!}$$

Proving Pascal's formula

Proof.

$$C(n-1, k-1) + C(n-1, k) = \frac{(n-1)!}{(k-1)! \cdot [(n-1-(k-1))!]} + \frac{(n-1)!}{k! \cdot (n-1-k)!}$$

$$= \frac{(n-1)!}{(k-1)! \cdot (n-k)!} + \frac{(n-1)!}{k! \cdot (n-1-k)!}$$

$$= \frac{k \cdot (n-1)!}{k! \cdot (n-k)!} + \frac{(n-k) \cdot (n-1)!}{k! \cdot (n-k)!}$$

$$= \frac{(n-1)!}{k! \cdot (n-k)!} [k + (n-k)]$$

$$= \frac{n \cdot (n-1)!}{k! \cdot (n-k)!}$$

$$= \frac{n!}{k! \cdot (n-k)!}$$

Proving Pascal's formula

Proof.

$$C(n-1, k-1) + C(n-1, k) = \frac{(n-1)!}{(k-1)! \cdot [(n-1-(k-1))!]} + \frac{(n-1)!}{k! \cdot (n-1-k)!}$$

$$= \frac{(n-1)!}{(k-1)! \cdot (n-k)!} + \frac{(n-1)!}{k! \cdot (n-1-k)!}$$

$$= \frac{k \cdot (n-1)!}{k! \cdot (n-k)!} + \frac{(n-k) \cdot (n-1)!}{k! \cdot (n-k)!}$$

$$= \frac{(n-1)!}{k! \cdot (n-k)!} [k + (n-k)]$$

$$= \frac{n!}{k! \cdot (n-k)!}$$

$$= \frac{n!}{k! \cdot (n-k)!}$$

Alternative Proof

Alternative Proof

A second Proof

Subramani Mathematical Review

Alternative Proof

A second Proof

Subramani Mathematical Review

Alternative Proof

A second Proof

(i) Observe that C(n, k) represents the number of ways in which k objects can be selected from n objects.

Alternative Proof

- (i) Observe that C(n, k) represents the number of ways in which k objects can be selected from n objects.
- (ii) Focus on a particular object, say o.

Alternative Proof

- (i) Observe that C(n, k) represents the number of ways in which k objects can be selected from n objects.
- (ii) Focus on a particular object, say o.
- (iii) Note that each selection of k objects from the n objects, either includes o or it does not.

Alternative Proof

- (i) Observe that C(n, k) represents the number of ways in which k objects can be selected from n objects.
- (ii) Focus on a particular object, say o.
- (iii) Note that each selection of k objects from the n objects, either includes o or it does not.
- (iv) Let T_1 denote the number of ways in which k objects are selected from the n objects, with o definitely included.

Alternative Proof

- (i) Observe that C(n, k) represents the number of ways in which k objects can be selected from n objects.
- (ii) Focus on a particular object, say o.
- (iii) Note that each selection of k objects from the n objects, either includes o or it does not.
- (iv) Let T_1 denote the number of ways in which k objects are selected from the n objects, with o definitely included.
- (v) Since o is definitely included, this means that we have to choose the remaining (k-1) objects from the remaining (n-1) objects.

Alternative Proof

- (i) Observe that C(n, k) represents the number of ways in which k objects can be selected from n objects.
- (ii) Focus on a particular object, say o.
- (iii) Note that each selection of k objects from the n objects, either includes o or it does not.
- (iv) Let T_1 denote the number of ways in which k objects are selected from the n objects, with o definitely included.
- (v) Since o is definitely included, this means that we have to choose the remaining (k-1) objects from the remaining (n-1) objects. It follows that $T_1 =$

Alternative Proof

- (i) Observe that C(n, k) represents the number of ways in which k objects can be selected from n objects.
- (ii) Focus on a particular object, say o.
- (iii) Note that each selection of k objects from the n objects, either includes o or it does not.
- (iv) Let T_1 denote the number of ways in which k objects are selected from the n objects, with o definitely included.
- (v) Since o is definitely included, this means that we have to choose the remaining (k-1) objects from the remaining (n-1) objects. It follows that T₁ = C(n-1, k-1).

Alternative Proof

- (i) Observe that C(n, k) represents the number of ways in which k objects can be selected from n objects.
- (ii) Focus on a particular object, say o.
- (iii) Note that each selection of k objects from the n objects, either includes o or it does not.
- (iv) Let T_1 denote the number of ways in which k objects are selected from the n objects, with o definitely included.
- (v) Since o is definitely included, this means that we have to choose the remaining (k-1) objects from the remaining (n-1) objects. It follows that T₁ = C(n-1, k-1).
- (vi) Let T_2 denote the number of ways in which k objects are selected from the n objects, with o definitely excluded.

Alternative Proof

- (i) Observe that C(n, k) represents the number of ways in which k objects can be selected from n objects.
- (ii) Focus on a particular object, say o.
- (iii) Note that each selection of k objects from the n objects, either includes o or it does not.
- (iv) Let T_1 denote the number of ways in which k objects are selected from the n objects, with o definitely included.
- (v) Since o is definitely included, this means that we have to choose the remaining (k-1) objects from the remaining (n-1) objects. It follows that T₁ = C(n-1, k-1).
- (vi) Let T_2 denote the number of ways in which k objects are selected from the n objects, with o definitely excluded.
- (vii) Since *o* is definitely excluded, all *k* objects must be selected from the remaining (n-1) objects. It follows that $T_2 =$

Alternative Proof

- (i) Observe that C(n, k) represents the number of ways in which k objects can be selected from n objects.
- (ii) Focus on a particular object, say o.
- (iii) Note that each selection of k objects from the n objects, either includes o or it does not.
- (iv) Let T_1 denote the number of ways in which k objects are selected from the n objects, with o definitely included.
- (v) Since o is definitely included, this means that we have to choose the remaining (k-1) objects from the remaining (n-1) objects. It follows that T₁ = C(n-1, k-1).
- (vi) Let T_2 denote the number of ways in which k objects are selected from the n objects, with o definitely excluded.
- (vii) Since *o* is definitely excluded, all *k* objects must be selected from the remaining (n-1) objects. It follows that $T_2 = C(n-1,k)$.

Alternative Proof

- (i) Observe that C(n, k) represents the number of ways in which k objects can be selected from n objects.
- (ii) Focus on a particular object, say o.
- (iii) Note that each selection of k objects from the n objects, either includes o or it does not.
- (iv) Let T_1 denote the number of ways in which k objects are selected from the n objects, with o definitely included.
- (v) Since o is definitely included, this means that we have to choose the remaining (k-1) objects from the remaining (n-1) objects. It follows that T₁ = C(n-1, k-1).
- (vi) Let T_2 denote the number of ways in which k objects are selected from the n objects, with o definitely excluded.
- (vii) Since *o* is definitely excluded, all *k* objects must be selected from the remaining (n-1) objects. It follows that $T_2 = C(n-1, k)$.
- (viii) Using the addition principle, $C(n,k) = T_1 + T_2 = C(n-1,k-1) + C(n-1,k)$.

Note on Proof Techniques

Note on Proof Techniques

Note

Subramani Mathematical Review

Note on Proof Techniques

Note

The above proof is called a combinatorial proof and is always preferred on account of its elegance.

Note on Proof Techniques

Note

The above proof is called a combinatorial proof and is always preferred on account of its elegance.

Recall the combinatorial proof for proving that C(n, r) = C(n, n - r).

The Theorem

Theorem

Subramani Mathematical Review

The Theorem

Theorem

$$(a + b)^{n} =$$

Subramani Mathematical Review

The Theorem

Theorem

$$(a+b)^n = \sum_{i=0}^n C(n,i) \cdot a^{n-i} \cdot b^i, \ \forall n \ge 0.$$

The Theorem

Theorem

$$(a+b)^n = \sum_{i=0}^n C(n,i) \cdot a^{n-i} \cdot b^i, \ \forall n \ge 0.$$

Integration and Summation

Integration and Summation

Increasing Function

Subramani Mathematical Review

Integration and Summation

Increasing Function

Assume that f() is a monotonically increasing function.

Integration and Summation

Increasing Function

Assume that f() is a monotonically increasing function. Then,

$$\int_{m-1}^n f(x) \cdot dx \leq \sum_{k=m}^n f(k) \leq \int_m^{n+1} f(x) \cdot dx.$$

Integration and Summation

Increasing Function

Assume that f() is a monotonically increasing function. Then,

$$\int_{m-1}^n f(x) \cdot dx \leq \sum_{k=m}^n f(k) \leq \int_m^{n+1} f(x) \cdot dx.$$

Decreasing Function

Integration and Summation

Increasing Function

Assume that f() is a monotonically increasing function. Then,

$$\int_{m-1}^n f(x) \cdot dx \leq \sum_{k=m}^n f(k) \leq \int_m^{n+1} f(x) \cdot dx.$$

Decreasing Function

Assume that f() is a monotonically decreasing function.

Integration and Summation

Increasing Function

Assume that f() is a monotonically increasing function. Then,

$$\int_{m-1}^n f(x) \cdot dx \leq \sum_{k=m}^n f(k) \leq \int_m^{n+1} f(x) \cdot dx.$$

Decreasing Function

Assume that f() is a monotonically decreasing function. Then,

$$\int_{m-1}^n f(x) \cdot dx \ge \sum_{k=m}^n f(k) \ge \int_m^{n+1} f(x) \cdot dx.$$

Integration and Summation

Increasing Function

Assume that f() is a monotonically increasing function. Then,

$$\int_{m-1}^n f(x) \cdot dx \leq \sum_{k=m}^n f(k) \leq \int_m^{n+1} f(x) \cdot dx.$$

Decreasing Function

Assume that f() is a monotonically decreasing function. Then,

$$\int_{m-1}^n f(x) \cdot dx \ge \sum_{k=m}^n f(k) \ge \int_m^{n+1} f(x) \cdot dx.$$

Exercise

Find bounds on H_n , the n^{th} Harmonic number.