
Advanced Analysis of Algorithms

K. Subramani, LCSEE, West Virginia University

November 17, 30 2013

1. Theory of NP-completeness.

2. What is a problem? A question to be answered over several parameters with unspecified values and a
constraint on the type of solution that is desired.

3. Instance of a problem - Instantiating the parameters of the problem.

4. Size of input. Length of input string.

5. An algorithm - Step by step decision procedure that takes as input an instance and returns the correct
answer.

6. TSP problem example.

7. Time complexity function.

8. Efficient algorithms and intractable problems. Exponential time worst-case algorithms may actually work
well in practice. Simplex.

9. Problem classification I: Decision, function, search, optimization.

10. Every decision problem Π consists of a set of instances DΠ, YΠ and NΠ.

11. The motive behind this class. The Garey-Johnson story.

12. Problem classification II: Tractable, Intractable, evidence of intractability.

13. Reasons for intractability → definitional, undecidable, Presburger.

14. Problem as a formal language. Alphabet, Strings, language, problem and encodings. Binary encodings.
Everything can be transformed based on encoding. Give graph shortest paths, example.

15. Problem is membership question. Use even numbers and prime numbers as languages. Membership question
is interesting when language is infinite.

16. Associated with each decision problem Π is the language LΠ, which is the set of strings in the encoding,
such that x ∈ YΠ.

17. Algorithm as decider. What does it mean for an algorithm to decide L? Associated with an algorithm A is
its language LA.

18. Deterministic algorithms and the class P.

19. Non-deterministic algorithms and the class NP. Guess and check algorithm. Easy verifiability. The tree
of computations method to illustrate non-determinism. You count the depth of the tree and not the total
number of computations.

20. Time complexity functions associated with both types of algorithms.

1



21. Without loss of generality, assume that degree of non-determinism is 2.

22. Main idea is from logic and theorem proving.

23. Simple problems. SAT, Circuit SAT, Vertex cover, clique, independent set, Independent set, hamilton path,
hamilton circuit, TSP, Max cut, 2-Partitioning, scheduling on identical parallel machines, subset-sum, 0/1
knapsack.

24. Non-deterministic algorithms for simple problems.

25. Relationship between P and NP.

26. Notion of transformations. L1 ⊆ Σ∗1, L2 ⊆ Σ∗2 A function f : Σ∗1 → Σ∗2, such that ∀x ∈ Σ∗1, x ∈ L1 ↔
f(x) ∈ L2. Also called reductions. f is called a transducer. Denoted by L1 ≤ L2.

27. HC to TSP example.

28. Limits on f . Why needed? Polynomial time transformations. Mention log-space. Mention many-to-one.

29. If L1 ≤p L2 and L2 is in P, then L1 is in P.

30. Transitivity of reductions.

31. Definition of NP complete. NP-hard. Optimization problems. TSP example.

32. If L1 ≤p L2 and L1 is NPC, then L2 is in NPC.

33. NP-complete and P refer to sets of languages. Languages are sets.

34. Another way of thinking: How can I use an algorithm for problem L2 to solve problem L1?

35. Reductions order problems just like ≤ orders numbers.

36. Relation between P and NP.

37. NP-completeness is for decision problems only. For optimization problems, use a target.

38. Some common reductions. Graph-coloring to SAT. HP to SAT.

39. We need the first NPC problem. Cook’s theorem.

40. Steps to show a problem is NPC:

(a) Show that it is in NP.

(b) Start with a good, NP-complete problem, say P1,

(c) Find a suitable, polynomial-time transducer function f .

(d) Reduce P1 to our problem, using f .

41. 3SAT, 0/1 Integer Programming, Circuit-SAT.

2


