Complexity Theory

leteness

.6. 3-COLORABILITY

nplexity Theory

Complexity

Theorem

The **k-COLORABILITY**-problem is NP-complete for any fixed $k \ge 3$. The **2-COLORABILITY**-problem is in P.

Proof

NP-Membership of **k-COLORABILITY**:

- 1. Guess an assignment $f: V \to \{1, \ldots, k\}$
- 2. Check for every edge $[i,j] \in E$ that $f(i) \neq f(j)$.

P-Membership of 2-COLORABILITY: (w.l.o.g., G is connected)

1. Start by assigning an arbitrary color to an arbitrary vertex $v \in V$.

2. Suppose that the vertices in $S \subset V$ have already been assigned a color.

Choose $x \in S$ and assign to all vertices adjacent to x the opposite color.

G is 2-colorable iff step 2 never leads to a contradiction.

	< □	596
Reinhard Pichler	16 April, 2013	Page 25
Complexity Theory	5. NP-Completeness	

Example

The 3-CNF formula $arphi =$ ($(x_1 \lor \neg x_2 \lor x_3)$	$) \land (x_2 \lor x_3 \lor$	$\neg x_4$) is	reduced t	:0
the following graph:					

NP-Hardness Proof of 3-COLORABILITY

By reduction from **NAESAT**: Let an arbitrary instance of **NAESAT** be given by a Boolean formula $\varphi = c_1 \land \ldots \land c_m$ in 3-CNF with variables x_1, \ldots, x_n . We construct the following graph $G(\varphi)$:

Let $V = \{a\} \cup \{x_i, \neg x_i \mid 1 \le i \le n\} \cup \{l_{i1}, l_{i2}, l_{i3} \mid 1 \le i \le m\}$, i.e. |V| = 1 + 2n + 3m.

For each variable x_i in φ , we introduce a triangle $[a, x_i, \neg x_i]$, i.e. all these triangles share the node a.

For each clause c_i in φ , we introduce a triangle $[I_{i1}, I_{i2}, I_{i3}]$. Moreover, each of these vertices I_{ij} is further connected to the node corresponding to this literal, i.e.: if the *j*-th literal in c_i is of the form x_α (resp. $\neg x_\alpha$) then we introduce an edge between I_{ij} and x_α (resp. $\neg x_\alpha$)

Example

The 3-CNF formula $\varphi = (x_1 \lor \neg x_2 \lor x_3) \land (x_2 \lor x_3 \lor \neg x_4)$ is reduced to the following graph:

Let red = false and green = true. The above 3-coloring corresponds to $T(x_1) = T(\neg x_2) = T(\neg x_3) = T(\neg x_4) =$ true.

- ◆ ロ ▶ → 個 ▶ → 臣 ▶ → 臣 → の � @

◆□▶ ◆舂▶ ◆差▶ ◆差▶

■ ■ つへで Page 27

Reinhard Pichler

Correctness of the Problem Reduction

5 NP-Com

Proof (continued)

" \Leftarrow " Suppose that *G* has a 3-coloring with colors {0, 1, 2}. W.l.o.g., the node *a* has the color 2. This induces a truth assignment *T* via the colors of the nodes x_i : if the color is 1, then $T(x_i) =$ **true** else $T(x_i) =$ **false**. We claim that *T* is a legal **NAESAT**-assignment. Indeed, if in some clause, all literals had the value **false** (resp. **true**), then we could not use the color 0 (resp. 1) for coloring the triangle $[I_{i1}, I_{i2}, I_{i3}]$, a contradiction.

" \Rightarrow " Suppose that there exists an **NAESAT**-assignment *T* of φ . Then we can extract a 3-coloring for *G* from *T* as follows:

- (i) Node *a* is colored with color 2.
- (ii) If $T(x_i) =$ true, then color x_i with 1 and $\neg x_i$ with 0 else vice versa.
- (iii) From each $[l_{i1}, l_{i2}, l_{i3}]$, color two literals having opposite truth values with 0 (**true**) and 1 (**false**). Color the third with 2.

	< □	500
Reinhard Pichler	16 April, 2013	
Complexity Theory	5. NP-Completeness	

Complexity

Theorem

HAMILTON-PATH, **HAMILTON-CYCLE**, and **TSP(D)** are NP-complete.

Proof

We shall show the following chain of reductions:

HAMILTON-PATH \leq_{L} **HAMILTON-CYCLE** \leq_{L} **TSP(D)**

It suffices to show NP-membership for the *hardest* problem:

1. Guess a tour π through the *n* cities.

2. Check that $\sum_{i=1}^{n} d_{\pi(i)\pi(i+1)} \leq B$ with $\pi(n+1) = \pi(1)$.

Likewise, it suffices to prove the NP-hardness of the *easiest* problem. The NP-hardness of **HAMILTON-PATH** (by a reduction from **3-SAT**) is quite involved and is therefore omitted here (see Papadimitriou's book).

HAMILTON-PATH

INSTANCE: (directed or undirected) graph G = (V, E)QUESTION: Does G have a Hamilton path? i.e., a path visiting all vertices of G exactly once.

HAMILTON-CYCLE

INSTANCE: (directed or undirected) graph G = (V, E)QUESTION: Does G have a Hamilton cycle? i.e., a cycle visiting all vertices of G exactly once.

TSP(D)

Complexity Theory

INSTANCE: *n* cities 1,..., *n* and a nonnegative integer distance d_{ij} between any two cities *i* and *j* (such that $d_{ij} = d_{ji}$), and an integer *B*. QUESTION: Is there a tour through all cities of length at most *B*? i.e., a permutation π s.t. $\sum_{i=1}^{n} d_{\pi(i)\pi(i+1)} \leq B$ with $\pi(n+1) = \pi(1)$.

< □ ≻ < □ ≻ < □ ≻ < ≥ ≻ < ≥ ≻ ≥ ∽ Q Reinhard Pichler 16 April, 2013 Page 30

HAMILTON-PATH vs. HAMILTON-CYCLE

HAMILTON-PATH $\leq_{\rm L}$ **HAMILTON-CYCLE**

(We only consider undirected graphs). Let an arbitrary instance of **HAMILTON-PATH** be given by the graph G = (V, E). We construct an equivalent instance G' = (V', E') of **HAMILTON-CYCLE** as follows:

Let $V' := V \cup \{z\}$ for some new vertex z and $E' := E \cup \{[v, z] \mid v \in V\}$. *G* has a Hamilton path $\Leftrightarrow G'$ has a Hamilton cycle

" \Rightarrow " Suppose that *G* has a Hamilton path π starting at vertex *a* and ending at *b*. Then $\pi \cup \{z\}$ is clearly a Hamilton cycle in *G*'.

" \Leftarrow " Let *C* be a Hamilton cycle in *G*'. In particular, *C* goes through *z*. Let *a* and *b* be the two neighboring nodes of *z* in this cycle. Then $C \setminus \{z\}$ is a Hamilton path (starting at vertex *a* and ending at *b*) in *G*.

Page 31

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

Reinhard Pichler