Complexity

Theorem

The k-COLORABILITY-problem is NP-complete for any fixed k > 3.
The 2-COLORABILITY-problem is in P.

Proof

NP-Membership of k-COLORABILITY:
1. Guess an assignment f : V — {1,... k}
2. Check for every edge [i,j] € E that f(i) # f(j).

P-Membership of 2-COLORABILITY: (w.l.o.g., G is connected)

1. Start by assigning an arbitrary color to an arbitrary vertex v € V.

2. Suppose that the vertices in S C V have already been assigned a color.
Choose x € S and assign to all vertices adjacent to x the opposite color.

G is 2-colorable iff step 2 never leads to a contradiction.
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The 3-CNF formula ¢ = (x1 V =x2 V x3) A (x2 V x3 V —1x4) is reduced to
the following graph:

X] — X1 X —— X2 X3 —— 7.X3 X4 —— Xy

h1 b1

ho — I3 hy ——— b3
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NP-Hardness Proof of 3-COLORABILITY

By reduction from NAESAT: Let an arbitrary instance of NAESAT be
given by a Boolean formula ¢ = ¢; A ... A ¢y in 3-CNF with variables
X1, ..., Xp. We construct the following graph G(¢):

Let V = {a}U{x,-,—'x,- | 1<i < n}U{/,'l,/,'g,l,g | 1<i < m},

ie. [V|=1+2n+3m.

For each variable x; in ¢, we introduce a triangle [a, x;, —x/],

i.e. all these triangles share the node a.

For each clause ¢; in ¢, we introduce a triangle [/;1, /2, [;3]. Moreover,
each of these vertices /j; is further connected to the node corresponding
to this literal, i.e.: if the j-th literal in ¢; is of the form x, (resp. —x,)
then we introduce an edge between [;; and x, (resp. —x,)

Reinhard Pichler 16 April, 2013
Complexity Theory 5. NP-Completeness

The 3-CNF formula ¢ = (x1 V —x2 V x3) A (x2 V X3 V —1x4) is reduced to
the following graph:

X] — X1 X3 —— 7 Xp X3 —— X3 X4 —— Xy

/11 I21
/ /
I12 | — |

Let red = false and green = true. The above 3-coloring corresponds to
T(x1) = T(—x2) = T(—x3) = T(—xs) = true.
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Correctness of the Problem Reduction

Proof (continued)

“<" Suppose that G has a 3-coloring with colors {0,1,2}. W.l.o.g., the
node a has the color 2. This induces a truth assignment T via the colors
of the nodes x;: if the color is 1, then T(x;) = true else T(x;) = false.
We claim that T is a legal NAESAT-assignment. Indeed, if in some
clause, all literals had the value false (resp. true), then we could not use
the color 0 (resp. 1) for coloring the triangle [/;1, li2, /i3], a contradiction.

“=" Suppose that there exists an NAESAT-assignment T of ¢.
Then we can extract a 3-coloring for G from T as follows:
(i) Node a is colored with color 2.
(ii) If T(x;) = true, then color x; with 1 and —x; with 0 else vice versa.

(iii) From each [/, li2, I;3], color two literals having opposite truth values
with 0 (true) and 1 (false). Color the third with 2.
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HAMILTON-PATH
INSTANCE: (directed or undirected) graph G = (V, E)

QUESTION: Does G have a Hamilton path?
i.e., a path visiting all vertices of G exactly once.

HAMILTON-CYCLE
INSTANCE: (directed or undirected) graph G = (V, E)

QUESTION: Does G have a Hamilton cycle?
i.e., a cycle visiting all vertices of G exactly once.

TSP(D)
INSTANCE: n cities 1,...,n and a nonnegative integer distance dj;
between any two cities i and j (such that djj = dj;), and an integer B.

QUESTION: Is there a tour through all cities of length at most B?
i.e., a permutation  s.t. Y7 1 dr(yn(i+1) < B with w(n+1) = m(1).
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Complexity HAMILTON-PATH vs. HAMILTON-CYCLE

Reinhard Pichler 16 April, 2013

Theorem

HAMILTON-PATH, HAMILTON-CYCLE, and TSP(D) are
NP-complete.

Proof

We shall show the following chain of reductions:
HAMILTON-PATH <;, HAMILTON-CYCLE <, TSP(D)

It suffices to show NP-membership for the hardest problem:

1. Guess a tour 7 through the n cities.

2. Check that 27:1 d,r(,-)ﬂ(,-_i_l) < B with w(n+ 1) = 7(1).

Likewise, it suffices to prove the NP-hardness of the easiest problem.

The NP-hardness of HAMILTON-PATH (by a reduction from 3-SAT) is
quite involved and is therefore omitted here (see Papadimitriou’s book).

HAMILTON-PATH <;, HAMILTON-CYCLE

(We only consider undirected graphs). Let an arbitrary instance of
HAMILTON-PATH be given by the graph G = (V, E). We construct
an equivalent instance G’ = (V’, E") of HAMILTON-CYCLE as follows:

Let V/:= VU {z} for some new vertex z and E' := EU{[v,z] | v € V}.
G has a Hamilton path < G’ has a Hamilton cycle

“=" Suppose that G has a Hamilton path 7 starting at vertex a and
ending at b. Then w U {z} is clearly a Hamilton cycle in G.

“<" Let C be a Hamilton cycle in G’. In particular, C goes through z.
Let a and b be the two neighboring nodes of z in this cycle. Then
C\ {z} is a Hamilton path (starting at vertex a and ending at b) in G.
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