
Complexity Theory 5. NP-Completeness 5.6. 3-COLORABILITY

Complexity

Theorem

The k-COLORABILITY-problem is NP-complete for any fixed k ≥ 3.
The 2-COLORABILITY-problem is in P.

Proof

NP-Membership of k-COLORABILITY:
1. Guess an assignment f : V → {1, . . . , k}
2. Check for every edge [i , j ] ∈ E that f (i) 6= f (j).

P-Membership of 2-COLORABILITY: (w.l.o.g., G is connected)
1. Start by assigning an arbitrary color to an arbitrary vertex v ∈ V .
2. Suppose that the vertices in S ⊂ V have already been assigned a color.
Choose x ∈ S and assign to all vertices adjacent to x the opposite color.

G is 2-colorable iff step 2 never leads to a contradiction.
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NP-Hardness Proof of 3-COLORABILITY

By reduction from NAESAT: Let an arbitrary instance of NAESAT be
given by a Boolean formula ϕ = c1 ∧ . . . ∧ cm in 3-CNF with variables
x1, . . . , xn. We construct the following graph G (ϕ):

Let V = {a} ∪ {xi ,¬xi | 1 ≤ i ≤ n} ∪ {li1, li2, li3 | 1 ≤ i ≤ m},
i.e. |V | = 1 + 2n + 3m.

For each variable xi in ϕ, we introduce a triangle [a, xi ,¬xi ],
i.e. all these triangles share the node a.

For each clause ci in ϕ, we introduce a triangle [li1, li2, li3]. Moreover,
each of these vertices lij is further connected to the node corresponding
to this literal, i.e.: if the j-th literal in ci is of the form xα (resp. ¬xα)
then we introduce an edge between lij and xα (resp. ¬xα)
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Example

The 3-CNF formula ϕ = (x1 ∨ ¬x2 ∨ x3) ∧ (x2 ∨ x3 ∨ ¬x4) is reduced to
the following graph:

a

x1 ¬x1 x2 ¬x2 x3 ¬x3 x4 ¬x4

l12 l13

l11

l22 l23

l21
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Example

The 3-CNF formula ϕ = (x1 ∨ ¬x2 ∨ x3) ∧ (x2 ∨ x3 ∨ ¬x4) is reduced to
the following graph:

a

x1 ¬x1 x2 ¬x2 x3 ¬x3 x4 ¬x4

l12 l13

l11

l22 l23

l21

Let red = false and green = true. The above 3-coloring corresponds to
T (x1) = T (¬x2) = T (¬x3) = T (¬x4) = true.
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Correctness of the Problem Reduction

Proof (continued)

“⇐” Suppose that G has a 3-coloring with colors {0, 1, 2}. W.l.o.g., the
node a has the color 2. This induces a truth assignment T via the colors
of the nodes xi : if the color is 1, then T (xi ) = true else T (xi ) = false.
We claim that T is a legal NAESAT-assignment. Indeed, if in some
clause, all literals had the value false (resp. true), then we could not use
the color 0 (resp. 1) for coloring the triangle [li1, li2, li3], a contradiction.

“⇒” Suppose that there exists an NAESAT-assignment T of ϕ.
Then we can extract a 3-coloring for G from T as follows:

(i) Node a is colored with color 2.

(ii) If T (xi ) = true, then color xi with 1 and ¬xi with 0 else vice versa.

(iii) From each [li1, li2, li3], color two literals having opposite truth values
with 0 (true) and 1 (false). Color the third with 2.
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HAMILTON-PATH

INSTANCE: (directed or undirected) graph G = (V ,E )

QUESTION: Does G have a Hamilton path?
i.e., a path visiting all vertices of G exactly once.

HAMILTON-CYCLE

INSTANCE: (directed or undirected) graph G = (V ,E )

QUESTION: Does G have a Hamilton cycle?
i.e., a cycle visiting all vertices of G exactly once.

TSP(D)

INSTANCE: n cities 1, . . . , n and a nonnegative integer distance dij

between any two cities i and j (such that dij = dji ), and an integer B.

QUESTION: Is there a tour through all cities of length at most B?
i.e., a permutation π s.t.

∑n
i=1 dπ(i)π(i+1) ≤ B with π(n + 1) = π(1).
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Complexity

Theorem

HAMILTON-PATH, HAMILTON-CYCLE, and TSP(D) are
NP-complete.

Proof

We shall show the following chain of reductions:

HAMILTON-PATH ≤L HAMILTON-CYCLE ≤L TSP(D)

It suffices to show NP-membership for the hardest problem:
1. Guess a tour π through the n cities.
2. Check that

∑n
i=1 dπ(i)π(i+1) ≤ B with π(n + 1) = π(1).

Likewise, it suffices to prove the NP-hardness of the easiest problem.
The NP-hardness of HAMILTON-PATH (by a reduction from 3-SAT) is
quite involved and is therefore omitted here (see Papadimitriou’s book).
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HAMILTON-PATH vs. HAMILTON-CYCLE

HAMILTON-PATH ≤L HAMILTON-CYCLE

(We only consider undirected graphs). Let an arbitrary instance of
HAMILTON-PATH be given by the graph G = (V ,E ). We construct
an equivalent instance G ′ = (V ′,E ′) of HAMILTON-CYCLE as follows:

Let V ′ := V ∪ {z} for some new vertex z and E ′ := E ∪ {[v , z ] | v ∈ V }.
G has a Hamilton path ⇔ G ′ has a Hamilton cycle

“⇒” Suppose that G has a Hamilton path π starting at vertex a and
ending at b. Then π ∪ {z} is clearly a Hamilton cycle in G ′.

“⇐” Let C be a Hamilton cycle in G ′. In particular, C goes through z .
Let a and b be the two neighboring nodes of z in this cycle. Then
C \ {z} is a Hamilton path (starting at vertex a and ending at b) in G .
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