Complexity TheoryUt 181.142, SS 2013**6. N-Completeness6. N-Completeness**Reinhard PichlerMitter für Informationssysteme
Arbeitsbereich DBA
Technische Universität Wien16 April, 2013De GeneereereereMetereereereereMatereereM

Some Variants of Satisfiability

We have already encountered several versions of satisfiability problems:

- intractable: SAT, 3-SAT
- tractable: 2-SAT, HORNSAT

Complexity Theory

Outline

5. NP-Completeness

- 5.1 Some Variants of Satisfiability
- 5.2 CIRCUIT SAT
- 5.3 NOT-ALL-EQUAL-SAT
- 5.4 1-IN-3-SAT
- 5.5 Some Graph Problems
- 5.6 3-COLORABILITY
- 5.7 HAMILTON-PATH, etc.
- 5.8 Summary

	< □	→ ◆@→ ◆ 문→ ◆ 문→ ○ 문·	৩৫৫
Reinhard Pichler	16 April, 2013		Page 2
Complexity Theory	5. NP-Completeness		

Some Variants of Satisfiability

We have already encountered several versions of satisfiability problems:

- intractable: SAT, 3-SAT
- tractable: 2-SAT, HORNSAT

We shall encounter further intractable versions of satisfiability problems:

- restricted (but still intractable) versions of SAT
- CIRCUIT SAT

Reinhard Pichler

- Not-all-equal SAT (NAESAT)
- (MONOTONE) 1-IN-3-SAT
- strongly related problem: **HITTING SET**

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト つんの

Complexity Theory

5.1. Some Variants

Narrowing NP-complete languages

An NP-complete language can sometimes be narrowed down by transformations which eliminate certain features of the language but still preserve NP-completeness.

Restricting **SAT** to formulae in CNF and a further restriction to **3-SAT** are typical examples. Generally, **k-SAT** (i.e., formulae are restricted to CNF with exactly k literals in each clause) is NP-complete for any $k \ge 3$.

	< .	→ <@> < ≥> < ≥> < ≥	৩৫৫
Reinhard Pichler	16 April, 2013		
Complexity Theory	5. NP-Completeness	5.1. Some Variants of Satisfiability	

Proof

The reduction consists in rewriting an arbitrary instance φ of **3-SAT** in such a way that the forbidden features are eliminated.

Consider a variable x appearing k > 3 times in φ .

- (i) Replace the first occurrence of x in φ by x₁, the second by x₂, and so on where x₁,..., x_k are new variables.
- (ii) Add clauses $(\neg x_1 \lor x_2), (\neg x_2 \lor x_3), \dots, (\neg x_k \lor x_1)$ to φ .

Let φ' be the result of systematically modifying φ in this way. Clearly, φ' has the desired syntactic properties.

Now φ is satisfiable iff φ' is satisfiable:

For each x appearing k > 3 times in φ , the truth values of x_1, \ldots, x_k are the same in each truth assignment satisfying φ' .

Narrowing NP-complete languages

An NP-complete language can sometimes be narrowed down by transformations which eliminate certain features of the language but still preserve NP-completeness.

Restricting **SAT** to formulae in CNF and a further restriction to **3-SAT** are typical examples. Generally, **k-SAT** (i.e., formulae are restricted to CNF with exactly k literals in each clause) is NP-complete for any $k \ge 3$.

Here is another example of narrowing an NP-complete language:

Proposition

3-SAT remains NP-complete even if the Boolean expressions φ in 3-CNF are restricted such that

- each variable appears at most three times in φ and
- each literal appears at most twice in φ .

	< □	গ ৭ (
Reinhard Pichler	16 April, 2013	
Complexity Theory	5. NP-Completeness	

Boolean Circuits

Syntax of Boolean circuits

- A Boolean circuit is a directed graph C = (V, E) where $V = \{1, 2, ..., n\}$ is the set of gates and
 - $V = \{1, 2, \dots, n\}$ is the set of gates and C is solved (with i < i for all address (i, i) $\subset E$
 - C is acyclic (with i < j for all edges $(i, j) \in E$).
- All gates *i* have a sort $s(i) \in \{$ **true**, **false**, \land , \lor , \neg $\} \cup \{x_1, x_2, \ldots\}$.
 - If $s(i) \in {\text{true, false}} \cup {x_1, x_2, \ldots}$, the indegree of i is 0 (inputs).
 - If $s(i) = \neg$ then the indegree of *i* is 1.
 - If $s(i) \in \{\lor, \land\}$ then the indegree of *i* is 2.
- Gate *n* is the output of the circuit.

Remark. $\{x_1, x_2, \ldots\}$ are variables whose value can be **true** or **false**.

Reinhard Pichler

Boolean Circuits

Semantics

Let *C* be a Boolean circuit and let X(C) denote the set of variables appearing in the circuit *C*. A truth assignment for *C* is a function $T : X(C) \rightarrow \{$ **true**, **false** $\}$.

The truth value T(i) for each gate *i* is defined inductively:

5. NP-Completen

- If s(i) =true, T(i) =true and if s(i) =false, T(i) =false.
- If $s(i) = x_j \in X(C)$, then $T(i) = T(x_j)$.
- If s(i) = ¬, then T(i) = true if T(j) = false, else T(i) = false where (j, i) is the unique edge entering i.
- If $s(i) = \wedge$, then T(i) =true if T(j) = T(j') =true else T(i) =false where (j, i) and (j', i) are the two edges entering *i*.
- If $s(i) = \lor$, then T(i) =true if T(j) =true or T(j') =true else T(i) =false where (j, i) and (j', i) are the two edges entering *i*.
- T(C) = T(n), i.e. the value of the circuit C.

	< □	୬୯୯
Reinhard Pichler	16 April, 2013	Page 9
Complexity Theory	5. NP-Completeness	

Proof of NP-Hardness

We prove the NP-hardness by a reduction from **SAT**: Let an arbitrary instance of **SAT** be given by a Boolean formula φ over the variables $X = \{x_1, \dots, x_k\}$. We construct the following Boolean circuit $C(\varphi)$:

- The variables X(C) in $C(\varphi)$ are precisely the variables X.
- For every subexpression ψ of φ, C(φ) contains a gate g(ψ). The output gate of C(φ) is the gate g(φ).
- The sort and the incoming arcs of each gate g(ψ) in C(φ) are defined inductively:
 - If ψ is a variable x_i then $g(\psi)$ is an input gate of sort $s(g(\psi)) = x_i$
 - If $\psi = \neg \psi'$ then $s(g(\psi)) = \neg$ with an incoming arc from $g(\psi')$.
 - If $\psi = \psi_1 \land \psi_2$ (resp. $\psi = \psi_1 \lor \psi_2$), then $s(g(\psi)) = \land$ (resp. $s(g(\psi)) = \lor$) with incoming arcs from $g(\psi_1)$ and $g(\psi_2)$.

CIRCUIT SAT

CIRCUIT SAT

INSTANCE: Boolean circuit *C* with variables X(C)QUESTION: Does there exist a truth assignment $T: X(C) \rightarrow \{$ **true**, **false** $\}$ such that T(C) = **true**?

Theorem

CIRCUIT SAT is NP-complete.

Proof of NP-Membership

Consider the following NP-algorithm:

- **1** Guess a truth assignment $T : X(C) \rightarrow \{$ **true**, **false** $\}$.
- **2** Check that T(C) =true holds.

	5 ND 6 1	
Reinhard Pichler	16 April, 2013	Page 10
	< ⊏	5 DQC

Reduction from SAT to 3-SAT

- We have already seen how an arbitrary propositional formula φ can be transformed efficiently into a sat-equivalent formula ψ in 3-CNF.
- This transformation (first into CNF and then into 3-CNF) is intuitive and clearly works in polynomial time. However, the log-space complexity of this transformation is not immediate.
- We now give an alternative transformation by reducing CIRCUIT SAT to 3-SAT. In total, we thus have:

SAT $\leq_{\rm L}$ CIRCUIT SAT $\leq_{\rm L}$ 3-SAT

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

5 NP-Compl

Let an arbitrary instance of **CIRCUIT SAT** be given by a Boolean circuit *C*. We construct the following instance $\varphi(C)$ of **SAT** (φ is in CNF with some clauses smaller than 3. The transformation into 3-CNF is obvious):

The formula $\varphi(C)$ uses all variables of *C*. Moreover, for each gate *g* of *C*, $\varphi(C)$ has a new variable *g* and the following clauses.

1 If g is a variable gate x: $(g \lor \neg x), (\neg g \lor x)$.	$[g\leftrightarrow x]$
2 If g is a true (resp. false) gate: g (resp. $\neg g$).	
3 If g is a NOT gate with a predecessor h:	
$(\neg g \lor \neg h), (g \lor h).$	$[g\leftrightarrow \neg h]$
4 If g is an AND gate with predecessors $h, h':$ $(\neg g \lor h), (\neg g \lor h'), (g \lor \neg h \lor \neg h').$	$[g \leftrightarrow (h \wedge h')]$
5 If g is an OR gate with predecessors h, h' :	
$(\neg g \lor h \lor h'), (g \lor \neg h'), (g \lor \neg h).$	$[g \leftrightarrow (h \lor h')]$
6 If g is also the output gate: g.	

	< □	→ <@> < E> < E> < E	\mathfrak{I}
Reinhard Pichler	16 April, 2013		Page 13
Complexity Theory	5. NP-Completeness		

NAESAT

Proof of NP-Hardness

Recall the Boolean formula $\varphi(C)$ resulting from the reduction of **CIRCUIT SAT** to **3-SAT**. For all one- and two-literal clauses in the resulting CNF-formula $\varphi(C)$, we add the same literal z (possibly twice) to make them 3-literal clauses.

The resulting formula $\varphi_z(C)$ fulfills the following equivalence:

 $\varphi_z(C) \in \mathsf{NAESAT} \Leftrightarrow C \in \mathsf{CIRCUIT} \mathsf{SAT}.$

" \Rightarrow " If a truth assignment T satisfies $\varphi_z(C)$ in the sense of **NAESAT**, so does the complementary truth assignment \overline{T} .

Thus, z is **false** in either T or \overline{T} which implies that $\varphi(C)$ is satisfied by either T or \overline{T} . Thus C is satisfiable.

NAESAT

Not-all-equal SAT (NAESAT)

INSTANCE: Boolean formula φ in 3-CNF

QUESTION: Does there exist a truth assignment T appropriate to φ , such that the 3 literals in each clause do not have the same truth value? Remark. Clearly **NAESAT** \subset **3-SAT**.

Theorem

NAESAT is NP-complete.

Reinhard Pichler 16 April, 2013 Page 14 Complexity Theory 5. NP-Completeness 5.3. NOT-ALL-EQUAL-SAT

NAESAT

Reinhard Pichler

Proof of NP-Hardness (continued)

" \Leftarrow " If C is satisfiable, then there is a truth assignment T satisfying $\varphi(C)$. Let us then extend T for $\varphi_z(C)$ by assigning T(z) = **false**.

By assumption, T is a satisfying truth assignment of $\varphi(C)$ and, therefore, also of $\varphi_z(C)$. Hence, in no clause of $\varphi_z(C)$ all literals are **false**. It remains to show that in no clause of $\varphi_z(C)$ all literals are **true**:

- (i) Clauses for true/false/NOT/variable gates contain z that is false.
- (ii) For AND gates the clauses are: $(\neg g \lor h \lor z)$, $(\neg g \lor h' \lor z)$, $(g \lor \neg h \lor \neg h')$ where in the first two z is **false**, and in the third all three cannot be **true** as then the first two clauses would be **false**.
- (iii) For OR gates the clauses are: $(\neg g \lor h \lor h'), (g \lor \neg h' \lor z), (g \lor \neg h \lor z)$ where in the last two z is **false**, and in the first all three cannot be **true** as then the last two clauses would be **false**.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

Complexity Theory

leteness

.6. 3-COLORABILITY

nplexity Theory

Complexity

Theorem

The **k-COLORABILITY**-problem is NP-complete for any fixed $k \ge 3$. The **2-COLORABILITY**-problem is in P.

Proof

NP-Membership of **k-COLORABILITY**:

- 1. Guess an assignment $f: V \to \{1, \ldots, k\}$
- 2. Check for every edge $[i,j] \in E$ that $f(i) \neq f(j)$.

P-Membership of 2-COLORABILITY: (w.l.o.g., G is connected)

1. Start by assigning an arbitrary color to an arbitrary vertex $v \in V$.

2. Suppose that the vertices in $S \subset V$ have already been assigned a color.

Choose $x \in S$ and assign to all vertices adjacent to x the opposite color.

G is 2-colorable iff step 2 never leads to a contradiction.

	< □	596
Reinhard Pichler	16 April, 2013	Page 25
Complexity Theory	5. NP-Completeness	

Example

The 3-CNF formula $arphi =$ ($(x_1 \lor \neg x_2 \lor x_3)$	$) \land (x_2 \lor x_3 \lor$	$\neg x_4$) is	reduced t	:0
the following graph:					

NP-Hardness Proof of 3-COLORABILITY

By reduction from **NAESAT**: Let an arbitrary instance of **NAESAT** be given by a Boolean formula $\varphi = c_1 \land \ldots \land c_m$ in 3-CNF with variables x_1, \ldots, x_n . We construct the following graph $G(\varphi)$:

Let $V = \{a\} \cup \{x_i, \neg x_i \mid 1 \le i \le n\} \cup \{l_{i1}, l_{i2}, l_{i3} \mid 1 \le i \le m\}$, i.e. |V| = 1 + 2n + 3m.

For each variable x_i in φ , we introduce a triangle $[a, x_i, \neg x_i]$, i.e. all these triangles share the node a.

For each clause c_i in φ , we introduce a triangle $[I_{i1}, I_{i2}, I_{i3}]$. Moreover, each of these vertices I_{ij} is further connected to the node corresponding to this literal, i.e.: if the *j*-th literal in c_i is of the form x_α (resp. $\neg x_\alpha$) then we introduce an edge between I_{ij} and x_α (resp. $\neg x_\alpha$)

Example

The 3-CNF formula $\varphi = (x_1 \lor \neg x_2 \lor x_3) \land (x_2 \lor x_3 \lor \neg x_4)$ is reduced to the following graph:

Let red = false and green = true. The above 3-coloring corresponds to $T(x_1) = T(\neg x_2) = T(\neg x_3) = T(\neg x_4) =$ true.

- ◆ ロ ▶ → 個 ▶ → 臣 ▶ → 臣 → の � @

◆□▶ ◆舂▶ ◆差▶ ◆差▶

■ ■ つへで Page 27

Reinhard Pichler

Correctness of the Problem Reduction

5 NP-Com

Proof (continued)

" \Leftarrow " Suppose that *G* has a 3-coloring with colors {0, 1, 2}. W.l.o.g., the node *a* has the color 2. This induces a truth assignment *T* via the colors of the nodes x_i : if the color is 1, then $T(x_i) =$ **true** else $T(x_i) =$ **false**. We claim that *T* is a legal **NAESAT**-assignment. Indeed, if in some clause, all literals had the value **false** (resp. **true**), then we could not use the color 0 (resp. 1) for coloring the triangle $[I_{i1}, I_{i2}, I_{i3}]$, a contradiction.

" \Rightarrow " Suppose that there exists an **NAESAT**-assignment *T* of φ . Then we can extract a 3-coloring for *G* from *T* as follows:

- (i) Node *a* is colored with color 2.
- (ii) If $T(x_i) =$ true, then color x_i with 1 and $\neg x_i$ with 0 else vice versa.
- (iii) From each $[l_{i1}, l_{i2}, l_{i3}]$, color two literals having opposite truth values with 0 (**true**) and 1 (**false**). Color the third with 2.

	< □	596
Reinhard Pichler	16 April, 2013	
Complexity Theory	5. NP-Completeness	

Complexity

Theorem

HAMILTON-PATH, **HAMILTON-CYCLE**, and **TSP(D)** are NP-complete.

Proof

We shall show the following chain of reductions:

HAMILTON-PATH \leq_{L} **HAMILTON-CYCLE** \leq_{L} **TSP(D)**

It suffices to show NP-membership for the *hardest* problem:

1. Guess a tour π through the *n* cities.

2. Check that $\sum_{i=1}^{n} d_{\pi(i)\pi(i+1)} \leq B$ with $\pi(n+1) = \pi(1)$.

Likewise, it suffices to prove the NP-hardness of the *easiest* problem. The NP-hardness of **HAMILTON-PATH** (by a reduction from **3-SAT**) is quite involved and is therefore omitted here (see Papadimitriou's book).

HAMILTON-PATH

INSTANCE: (directed or undirected) graph G = (V, E)QUESTION: Does G have a Hamilton path? i.e., a path visiting all vertices of G exactly once.

HAMILTON-CYCLE

INSTANCE: (directed or undirected) graph G = (V, E)QUESTION: Does G have a Hamilton cycle? i.e., a cycle visiting all vertices of G exactly once.

TSP(D)

Complexity Theory

INSTANCE: *n* cities 1,..., *n* and a nonnegative integer distance d_{ij} between any two cities *i* and *j* (such that $d_{ij} = d_{ji}$), and an integer *B*. QUESTION: Is there a tour through all cities of length at most *B*? i.e., a permutation π s.t. $\sum_{i=1}^{n} d_{\pi(i)\pi(i+1)} \leq B$ with $\pi(n+1) = \pi(1)$.

< □ ≻ < □ ≻ < □ ≻ < ≥ ≻ < ≥ ≻ ≥ ∽ Q Reinhard Pichler 16 April, 2013 Page 30

HAMILTON-PATH vs. HAMILTON-CYCLE

HAMILTON-PATH $\leq_{\rm L}$ **HAMILTON-CYCLE**

(We only consider undirected graphs). Let an arbitrary instance of **HAMILTON-PATH** be given by the graph G = (V, E). We construct an equivalent instance G' = (V', E') of **HAMILTON-CYCLE** as follows:

Let $V' := V \cup \{z\}$ for some new vertex z and $E' := E \cup \{[v, z] \mid v \in V\}$. *G* has a Hamilton path $\Leftrightarrow G'$ has a Hamilton cycle

" \Rightarrow " Suppose that *G* has a Hamilton path π starting at vertex *a* and ending at *b*. Then $\pi \cup \{z\}$ is clearly a Hamilton cycle in *G*'.

" \Leftarrow " Let *C* be a Hamilton cycle in *G*'. In particular, *C* goes through *z*. Let *a* and *b* be the two neighboring nodes of *z* in this cycle. Then $C \setminus \{z\}$ is a Hamilton path (starting at vertex *a* and ending at *b*) in *G*.

Page 31

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

Reinhard Pichler

Complexity Theory

HAMILTON-CYCLE vs. TSP(D)

HAMILTON-CYCLE \leq_{L} **TSP(D)**

Let an arbitrary instance of **HAMILTON-CYCLE** be given by the graph G = (V, E). We construct an equivalent instance of **TSP(D)** as follows:

Let $V = \{1, ..., n\}$. Then our instance of **TSP(D)** has *n* cities. Moreover, for any two cities $i \neq j$, the distance is defined as

$$d_{ij} = \left\{ egin{array}{cc} 1 & ext{if } [i,j] \in E \ 2 & ext{otherwise} \end{array}
ight.$$

Finally, we set B = n.

Clearly, there is no tour through all cities of length $\langle B = n$. Moreover, the Hamilton cycles in *G* are precisely the tours of length *B*. Hence, *G* has a Hamilton cycle \Leftrightarrow there exists a tour of length $\leq B$.

	< ⊏	다 《圖》 《콜》 《콜》	≣
Reinhard Pichler	16 April, 2013		
Complexity Theory	5. NP-Completeness		

Learning Objectives

- The concept of NP-completeness and its characterizations in terms of succinct certificates.
- You should now be familiar with the intuition of NP-completeness (and recognize NP-complete problems)
- Basic techniques to prove problems NP-complete
- A basic repertoire of NP-complete problems (in particular, versions of SAT and some graph problems) to be used in further NP-completeness proofs.
- Reductions, reductions, reductions,

Summary of Reductions

omplexity Theor

