Complexity Theory

Complexity Theory
VU 181.142, SS 2013

5. NP-Completeness

Reinhard Pichler

Institut fiir Informationssysteme
Arbeitsbereich DBAI
Technische Universitat Wien

16 April, 2013
I dbai

Some Variants of Satisfiability

We have already encountered several versions of satisfiability problems:

m intractable: SAT, 3-SAT
m tractable: 2-SAT, HORNSAT

Reinhard Pichler 16 April, 2013

Outline

5. NP-Completeness

5.1 Some Variants of Satisfiability
5.2 CIRCUIT SAT

5.3 NOT-ALL-EQUAL-SAT

5.4 1-IN-3-SAT

5.5 Some Graph Problems

5.6 3-COLORABILITY

5.7 HAMILTON-PATH, etc.

5.8 Summary

Reinhard Pichler 16 April, 2013

Some Variants of Satisfiability

We have already encountered several versions of satisfiability problems:

m intractable: SAT, 3-SAT
m tractable: 2-SAT, HORNSAT

We shall encounter further intractable versions of satisfiability problems:

restricted (but still intractable) versions of SAT
CIRCUIT SAT

Not-all-equal SAT (NAESAT)
(MONOTONE) 1-IN-3-SAT

strongly related problem: HITTING SET

Reinhard Pichler 16 April, 2013

Complexity Theory 5. NP-Completeness

Narrowing NP-complete languages

An NP-complete language can sometimes be narrowed down by
transformations which eliminate certain features of the language but still
preserve NP-completeness.

Restricting SAT to formulae in CNF and a further restriction to 3-SAT
are typical examples. Generally, k-SAT (i.e., formulae are restricted to

CNF with exactly k literals in each clause) is NP-complete for any k > 3.

Reinhard Pichler 16 April, 2013

Complexity Theory 5. NP-Completeness

Proof

The reduction consists in rewriting an arbitrary instance ¢ of 3-SAT in
such a way that the forbidden features are eliminated.

Consider a variable x appearing k > 3 times in ¢.
(i) Replace the first occurrence of x in ¢ by xi, the second by x», and
so on where xi,...,x, are new variables.
(ii) Add clauses (—x1 V x2), (—x2 V x3), ..., (=X V x1) to .
Let ¢’ be the result of systematically modifying ¢ in this way. Clearly, ¢’
has the desired syntactic properties.

Now ¢ is satisfiable iff ¢’ is satisfiable:
For each x appearing k > 3 times in ¢, the truth values of xg, ..., xx are
the same in each truth assignment satisfying ¢’.

Reinhard Pichler 16 April, 2013

Complexity Theory 5. NP-Completeness

Narrowing NP-complete languages

An NP-complete language can sometimes be narrowed down by
transformations which eliminate certain features of the language but still
preserve NP-completeness.

Restricting SAT to formulae in CNF and a further restriction to 3-SAT
are typical examples. Generally, k-SAT (i.e., formulae are restricted to
CNF with exactly k literals in each clause) is NP-complete for any k > 3.

Here is another example of narrowing an NP-complete language:

Proposition

3-SAT remains NP-complete even if the Boolean expressions ¢ in 3-CNF
are restricted such that

m each variable appears at most three times in ¢ and

m each literal appears at most twice in .

Reinhard Pichler 16 April, 2013
Complexity Theory 5. NP-Completeness

Boolean Circuits

Syntax of Boolean circuits

m A Boolean circuit is a directed graph C = (V, E) where
V ={1,2,...,n} is the set of gates and
C is acyclic (with i < j for all edges (i, j) € E).
m All gates i have a sort s(i) € {true, false, A\, V, =} U {xy, x2,...}.
— If s(/) € {true,false} U {x1, x2, .. .}, the indegree of i is O (inputs).
— If s(i) = — then the indegree of i is 1.
—If s(i) € {V, A} then the indegree of i is 2.

m Gate n is the output of the circuit.

Remark. {xi1, X2, ...} are variables whose value can be true or false.

Reinhard Pichler 16 April, 2013

Boolean Circuits CIRCUIT SAT

Semantics

Let C be a Boolean circuit and let X(C) denote the set of variables CIRCUIT SAT

appearing in the circuit C. A truth assignment for C is a function INSTANCE: Boolean circuit C with variables X(C)
T : X(C) — {true, false}. QUESTION: Does there exist a truth assignment

The truth value T (/) for each gate 7 is defined inductively: T: X(C) — {true, false} such that T(C) = true?

m If s(i) = true, T(/) = true and if s(/) = false, T (i) = false.
m If s(i) = x; € X(C), then T(i) = T(x;).

m If s(/) = —, then T(i) = true if T(j) = false, else T(/) = false
where (j, i) is the unique edge entering i.

Theorem
CIRCUIT SAT is NP-complete.

Proof of NP-Membership

m If s(/) = A, then T(i) = true if T(j) = T(j') = true else ' _ '
T (i) = false where (j, i) and (j/, i) are the two edges entering i. Consider the following NP-algorithm:

m If s(/) =V, then T(i) = true if T(j) = true or T(j') = true else Guess a truth assignment T : X(C) — {true, false}.
T (i) = false where (j, i) and (j/, i) are the two edges entering i. Check that T(C) = true holds.

T(C) = T(n), i.e. the value of the circuit C.

Reinhard Pichler 16 April, 2013 Reinhard Pichler 16 April, 2013

Reduction from SAT to 3-SAT

Proof of NP-Hardness

We prove the NP-hardness by a reduction from SAT: Let an arbitrary

instance of SAT be given by a Boolean formula ¢ over the variables Motivation

X = {x1,...,xc}. We construct the following Boolean circuit C(¢):

m We have already seen how an arbitrary propositional formula ¢ can
be transformed efficiently into a sat-equivalent formula v in 3-CNF.

m This transformation (first into CNF and then into 3-CNF) is intuitive
and clearly works in polynomial time. However, the log-space
complexity of this transformation is not immediate.

m The variables X(C) in C(y) are precisely the variables X.

m For every subexpression 1) of ¢, C(p) contains a gate g(¢)). The
output gate of C(y) is the gate g(v).

m The sort and the incoming arcs of each gate g(¢) in C(yp) are
defined inductively:

. . . . m We now give an alternative transformation by reducing
e If ¢ is a variable x; then g(v) is an input gate of sort s(g(v¢)) = x; i
o If ,ll} — _‘w/ then s(g(w)) — — witdh & incoming e e g(w/) CIRCUIT SAT to 3-SAT In total, we thus have:

o If) =11 Ao (resp. ¥ = 1)1 V 42), then s(g(v)) = A (resp. SAT<;, CIRCUIT SAT<;, 3-SAT
s(g(¥)) = V) with incoming arcs from g(11) and g(12).

Reinhard Pichler 16 April, 2013 Reinhard Pichler 16 April, 2013

Reduction from CIRCUIT SAT to 3-SAT NAESAT

Let an arbitrary instance of CIRCUIT SAT be given by a Boolean circuit
C. We construct the following instance ¢(C) of SAT (¢ is in CNF with
some clauses smaller than 3. The transformation into 3-CNF is obvious):

The formula ¢(C) uses all variables of C. Moreover, for each gate g of
C, ©(C) has a new variable g and the following clauses.

If g is a variable gate x: (g V —x), (g V x). g «]
If g is a true (resp. false) gate: g (resp. —g).
If g is a NOT gate with a predecessor h:

(—g vV =h),(g Vv h). lg <+ —h]
If g is an AND gate with predecessors h, h':

(g Vh),(-g V) (gV—hv=h). [g < (hAH)]
If g is an OR gate with predecessors h, h':

(mgVhVvH) (gVv-h) (gV—h) [g < (hV)]

@ If g is also the output gate: g.

Not-all-equal SAT (NAESAT)

INSTANCE: Boolean formula ¢ in 3-CNF

QUESTION: Does there exist a truth assignment T appropriate to ¢,
such that the 3 literals in each clause do not have the same truth value?

Remark. Clearly NAESAT C 3-SAT.

Theorem
NAESAT /s NP-complete.

Reinhard Pichler 16 April, 2013 Reinhard Pichler 16 April, 2013

Complexity Theory 5. NP-Completeness Complexity Theory 5. NP-Completeness

Reinhard Pichler 16 April, 2013

Proof of NP-Hardness

Recall the Boolean formula (C) resulting from the reduction of
CIRCUIT SAT to 3-SAT. For all one- and two-literal clauses in the
resulting CNF-formula ¢(C), we add the same literal z (possibly twice)
to make them 3-literal clauses.

The resulting formula ¢,(C) fulfills the following equivalence:
¢,(C) € NAESAT < C € CIRCUIT SAT.

“=" If a truth assignment T satisfies ¢,(C) in the sense of NAESAT,
so does the complementary truth assignment T.

Thus, z is false in either T or T which implies that ¢(C) is satisfied by
either T or T. Thus C is satisfiable.

Proof of NP-Hardness (continued)

“<" If C is satisfiable, then there is a truth assignment T satisfying
©(C). Let us then extend T for ¢,(C) by assigning T(z) = false.

By assumption, T is a satisfying truth assignment of ¢(C) and, therefore,
also of ¢,(C). Hence, in no clause of ,(C) all literals are false.

It remains to show that in no clause of ,(C) all literals are true:

(i) Clauses for true/false/NOT /variable gates contain z that is false.

(i) For AND gates the clauses are: (—gV hV z), (g V h'V z),
(g V =h V =h') where in the first two z is false, and in the third all
three cannot be true as then the first two clauses would be false.
(iii) For OR gates the clauses are: (—gV hV h'),(gV —h'V z),
(g V =hV z) where in the last two z is false, and in the first all
three cannot be true as then the last two clauses would be false.

Reinhard Pichler 16 April, 2013

Complexity

Theorem

The k-COLORABILITY-problem is NP-complete for any fixed k > 3.
The 2-COLORABILITY-problem is in P.

Proof

NP-Membership of k-COLORABILITY:
1. Guess an assignment f : V — {1,... k}
2. Check for every edge [i,j] € E that f(i) # f(j).

P-Membership of 2-COLORABILITY: (w.l.o.g., G is connected)

1. Start by assigning an arbitrary color to an arbitrary vertex v € V.

2. Suppose that the vertices in S C V have already been assigned a color.
Choose x € S and assign to all vertices adjacent to x the opposite color.

G is 2-colorable iff step 2 never leads to a contradiction.

Reinhard Pichler 16 April, 2013
Complexity Theory 5. NP-Completeness

The 3-CNF formula ¢ = (x1 V =x2 V x3) A (x2 V x3 V —1x4) is reduced to
the following graph:

X] — X1 X —— X2 X3 —— 7.X3 X4 —— Xy

h1 b1

ho — I3 hy ——— b3

Reinhard Pichler 16 April, 2013

Complexity Theory 5. NP-Completeness

NP-Hardness Proof of 3-COLORABILITY

By reduction from NAESAT: Let an arbitrary instance of NAESAT be
given by a Boolean formula ¢ = ¢; A ... A ¢y in 3-CNF with variables
X1, ..., Xp. We construct the following graph G(¢):

Let V = {a}U{x,-,—'x,- | 1<i < n}U{/,'l,/,'g,l,g | 1<i < m},

ie. [V|=1+2n+3m.

For each variable x; in ¢, we introduce a triangle [a, x;, —x/],

i.e. all these triangles share the node a.

For each clause ¢; in ¢, we introduce a triangle [/;1, /2, [;3]. Moreover,
each of these vertices /j; is further connected to the node corresponding
to this literal, i.e.: if the j-th literal in ¢; is of the form x, (resp. —x,)
then we introduce an edge between [;; and x, (resp. —x,)

Reinhard Pichler 16 April, 2013
Complexity Theory 5. NP-Completeness

The 3-CNF formula ¢ = (x1 V —x2 V x3) A (x2 V X3 V —1x4) is reduced to
the following graph:

X] — X1 X3 —— 7 Xp X3 —— X3 X4 —— Xy

/11 I21
/ /
I12 | — |

Let red = false and green = true. The above 3-coloring corresponds to
T(x1) = T(—x2) = T(—x3) = T(—xs) = true.

Reinhard Pichler 16 April, 2013

/13 /22 /23

Complexity Theory 5. NP-Completeness

Correctness of the Problem Reduction

Proof (continued)

“<" Suppose that G has a 3-coloring with colors {0,1,2}. W.l.o.g., the
node a has the color 2. This induces a truth assignment T via the colors
of the nodes x;: if the color is 1, then T(x;) = true else T(x;) = false.
We claim that T is a legal NAESAT-assignment. Indeed, if in some
clause, all literals had the value false (resp. true), then we could not use
the color 0 (resp. 1) for coloring the triangle [/;1, li2, /i3], a contradiction.

“=" Suppose that there exists an NAESAT-assignment T of ¢.
Then we can extract a 3-coloring for G from T as follows:
(i) Node a is colored with color 2.
(ii) If T(x;) = true, then color x; with 1 and —x; with 0 else vice versa.

(iii) From each [/, li2, I;3], color two literals having opposite truth values
with 0 (true) and 1 (false). Color the third with 2.

Complexity Theory 5. NP-Completeness

HAMILTON-PATH
INSTANCE: (directed or undirected) graph G = (V, E)

QUESTION: Does G have a Hamilton path?
i.e., a path visiting all vertices of G exactly once.

HAMILTON-CYCLE
INSTANCE: (directed or undirected) graph G = (V, E)

QUESTION: Does G have a Hamilton cycle?
i.e., a cycle visiting all vertices of G exactly once.

TSP(D)
INSTANCE: n cities 1,...,n and a nonnegative integer distance dj;
between any two cities i and j (such that djj = dj;), and an integer B.

QUESTION: Is there a tour through all cities of length at most B?
i.e., a permutation s.t. Y7 1 dr(yn(i+1) < B with w(n+1) = m(1).

Reinhard Pichler 16 April, 2013 Reinhard Pichler 16 April, 2013

Complexity HAMILTON-PATH vs. HAMILTON-CYCLE

Reinhard Pichler 16 April, 2013

Theorem

HAMILTON-PATH, HAMILTON-CYCLE, and TSP(D) are
NP-complete.

Proof

We shall show the following chain of reductions:
HAMILTON-PATH <;, HAMILTON-CYCLE <, TSP(D)

It suffices to show NP-membership for the hardest problem:

1. Guess a tour 7 through the n cities.

2. Check that 27:1 d,r(,-)ﬂ(,-_i_l) < B with w(n+ 1) = 7(1).

Likewise, it suffices to prove the NP-hardness of the easiest problem.

The NP-hardness of HAMILTON-PATH (by a reduction from 3-SAT) is
quite involved and is therefore omitted here (see Papadimitriou’s book).

HAMILTON-PATH <;, HAMILTON-CYCLE

(We only consider undirected graphs). Let an arbitrary instance of
HAMILTON-PATH be given by the graph G = (V, E). We construct
an equivalent instance G’ = (V’, E") of HAMILTON-CYCLE as follows:

Let V/:= VU {z} for some new vertex z and E' := EU{[v,z] | v € V}.
G has a Hamilton path < G’ has a Hamilton cycle

“=" Suppose that G has a Hamilton path 7 starting at vertex a and
ending at b. Then w U {z} is clearly a Hamilton cycle in G.

“<" Let C be a Hamilton cycle in G’. In particular, C goes through z.
Let a and b be the two neighboring nodes of z in this cycle. Then
C\ {z} is a Hamilton path (starting at vertex a and ending at b) in G.

Reinhard Pichler 16 April, 2013

Compiiy Theary 5 P Conpicres
HAMILTON-CYCLE vs. TSP(D) Summary of Reductions
SAT

Let an arbitrary instance of HAMILTON-CYCLE be given by the graph 4-SAT 3-SAT ¢ CIRCUIT-SAT
G = (V, E). We construct an equivalent instance of TSP(D) as follows: |

Let V ={1,...,n}. Then our instance of TSP(D) has n cities.

Moreover, for any two cities i # j, the distance is defined as 1-in-3-SAT INDEPENDENT SET NAESAT

L [1 i€k /\ \
U7 1 2 otherwise 4

MON 1-in-3-SAT VERTEX COVER CLIQUE HAM.-PATH 3-COL

Finally, we set B = n.

Clearly, there is no tour through all cities of length < B = n.

Moreover, the Hamilton cycles in G are precisely the tours of length B. HITTING SET HAM.-CYCLE

Hence, G has a Hamilton cycle < there exists a tour of length < B. J
TSP(D)

Learning Objectives

m The concept of NP-completeness and its characterizations in terms
of succinct certificates.

m You should now be familiar with the intuition of NP-completeness
(and recognize NP-complete problems)

m Basic techniques to prove problems NP-complete

m A basic repertoire of NP-complete problems (in particular, versions
of SAT and some graph problems) to be used in further
NP-completeness proofs.

m Reductions, reductions, reductions, ...

Reinhard Pichler 16 April, 2013

