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Complexity Theory 5. NP-Completeness 5.1. Some Variants of Satisfiability

Some Variants of Satisfiability

We have already encountered several versions of satisfiability problems:

intractable: SAT, 3-SAT

tractable: 2-SAT, HORNSAT

We shall encounter further intractable versions of satisfiability problems:

restricted (but still intractable) versions of SAT

CIRCUIT SAT

Not-all-equal SAT (NAESAT)

(MONOTONE) 1-IN-3-SAT

strongly related problem: HITTING SET

Reinhard Pichler 16 April, 2013 Page 3

Complexity Theory 5. NP-Completeness 5.1. Some Variants of Satisfiability

Some Variants of Satisfiability

We have already encountered several versions of satisfiability problems:

intractable: SAT, 3-SAT

tractable: 2-SAT, HORNSAT

We shall encounter further intractable versions of satisfiability problems:

restricted (but still intractable) versions of SAT

CIRCUIT SAT

Not-all-equal SAT (NAESAT)

(MONOTONE) 1-IN-3-SAT

strongly related problem: HITTING SET

Reinhard Pichler 16 April, 2013 Page 4



Complexity Theory 5. NP-Completeness 5.1. Some Variants of Satisfiability

Narrowing NP-complete languages

An NP-complete language can sometimes be narrowed down by
transformations which eliminate certain features of the language but still
preserve NP-completeness.

Restricting SAT to formulae in CNF and a further restriction to 3-SAT
are typical examples. Generally, k-SAT (i.e., formulae are restricted to
CNF with exactly k literals in each clause) is NP-complete for any k ≥ 3.

Here is another example of narrowing an NP-complete language:

Proposition

3-SAT remains NP-complete even if the Boolean expressions ϕ in 3-CNF
are restricted such that

each variable appears at most three times in ϕ and

each literal appears at most twice in ϕ.
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Proof

The reduction consists in rewriting an arbitrary instance ϕ of 3-SAT in
such a way that the forbidden features are eliminated.

Consider a variable x appearing k > 3 times in ϕ.

(i) Replace the first occurrence of x in ϕ by x1, the second by x2, and
so on where x1, . . . , xk are new variables.

(ii) Add clauses (¬x1 ∨ x2), (¬x2 ∨ x3), . . . , (¬xk ∨ x1) to ϕ.

Let ϕ′ be the result of systematically modifying ϕ in this way. Clearly, ϕ′

has the desired syntactic properties.

Now ϕ is satisfiable iff ϕ′ is satisfiable:
For each x appearing k > 3 times in ϕ, the truth values of x1, . . . , xk are
the same in each truth assignment satisfying ϕ′.
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Boolean Circuits

Syntax of Boolean circuits

A Boolean circuit is a directed graph C = (V ,E ) where
V = {1, 2, . . . , n} is the set of gates and
C is acyclic (with i < j for all edges (i , j) ∈ E ).

All gates i have a sort s(i) ∈ {true, false,∧,∨,¬} ∪ {x1, x2, . . .}.
– If s(i) ∈ {true, false}∪ {x1, x2, . . .}, the indegree of i is 0 (inputs).
– If s(i) = ¬ then the indegree of i is 1.
– If s(i) ∈ {∨,∧} then the indegree of i is 2.

Gate n is the output of the circuit.

Remark. {x1, x2, . . .} are variables whose value can be true or false.
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Boolean Circuits

Semantics

Let C be a Boolean circuit and let X (C ) denote the set of variables
appearing in the circuit C . A truth assignment for C is a function
T : X (C )→ {true, false}.
The truth value T (i) for each gate i is defined inductively:

If s(i) = true, T (i) = true and if s(i) = false, T (i) = false.

If s(i) = xj ∈ X (C ), then T (i) = T (xj).

If s(i) = ¬, then T (i) = true if T (j) = false, else T (i) = false
where (j , i) is the unique edge entering i .

If s(i) = ∧, then T (i) = true if T (j) = T (j ′) = true else
T (i) = false where (j , i) and (j ′, i) are the two edges entering i .

If s(i) = ∨, then T (i) = true if T (j) = true or T (j ′) = true else
T (i) = false where (j , i) and (j ′, i) are the two edges entering i .

T (C ) = T (n), i.e. the value of the circuit C .
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CIRCUIT SAT

CIRCUIT SAT

INSTANCE: Boolean circuit C with variables X (C )

QUESTION: Does there exist a truth assignment
T : X (C )→ {true, false} such that T (C ) = true?

Theorem

CIRCUIT SAT is NP-complete.

Proof of NP-Membership

Consider the following NP-algorithm:

1 Guess a truth assignment T : X (C )→ {true, false}.
2 Check that T (C ) = true holds.
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Proof of NP-Hardness

We prove the NP-hardness by a reduction from SAT: Let an arbitrary
instance of SAT be given by a Boolean formula ϕ over the variables
X = {x1, . . . , xk}. We construct the following Boolean circuit C (ϕ):

The variables X (C ) in C (ϕ) are precisely the variables X .

For every subexpression ψ of ϕ, C (ϕ) contains a gate g(ψ). The
output gate of C (ϕ) is the gate g(ϕ).

The sort and the incoming arcs of each gate g(ψ) in C (ϕ) are
defined inductively:

• If ψ is a variable xi then g(ψ) is an input gate of sort s(g(ψ)) = xi
• If ψ = ¬ψ′ then s(g(ψ)) = ¬ with an incoming arc from g(ψ′).
• If ψ = ψ1 ∧ ψ2 (resp. ψ = ψ1 ∨ ψ2), then s(g(ψ)) = ∧ (resp.

s(g(ψ)) = ∨) with incoming arcs from g(ψ1) and g(ψ2).
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Reduction from SAT to 3-SAT

Motivation

We have already seen how an arbitrary propositional formula ϕ can
be transformed efficiently into a sat-equivalent formula ψ in 3-CNF.

This transformation (first into CNF and then into 3-CNF) is intuitive
and clearly works in polynomial time. However, the log-space
complexity of this transformation is not immediate.

We now give an alternative transformation by reducing
CIRCUIT SAT to 3-SAT. In total, we thus have:

SAT≤L CIRCUIT SAT≤L 3-SAT
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Reduction from CIRCUIT SAT to 3-SAT

Let an arbitrary instance of CIRCUIT SAT be given by a Boolean circuit
C . We construct the following instance ϕ(C ) of SAT (ϕ is in CNF with
some clauses smaller than 3. The transformation into 3-CNF is obvious):

The formula ϕ(C ) uses all variables of C . Moreover, for each gate g of
C , ϕ(C ) has a new variable g and the following clauses.

1 If g is a variable gate x : (g ∨ ¬x), (¬g ∨ x). [g ↔ x ]

2 If g is a true (resp. false) gate: g (resp. ¬g).

3 If g is a NOT gate with a predecessor h:
(¬g ∨ ¬h), (g ∨ h). [g ↔ ¬h]

4 If g is an AND gate with predecessors h, h′:
(¬g ∨ h), (¬g ∨ h′), (g ∨ ¬h ∨ ¬h′). [g ↔ (h ∧ h′)]

5 If g is an OR gate with predecessors h, h′:
(¬g ∨ h ∨ h′), (g ∨ ¬h′), (g ∨ ¬h). [g ↔ (h ∨ h′)]

6 If g is also the output gate: g .
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NAESAT

Not-all-equal SAT (NAESAT)

INSTANCE: Boolean formula ϕ in 3-CNF

QUESTION: Does there exist a truth assignment T appropriate to ϕ,
such that the 3 literals in each clause do not have the same truth value?

Remark. Clearly NAESAT ⊂ 3-SAT.

Theorem

NAESAT is NP-complete.
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NAESAT

Proof of NP-Hardness

Recall the Boolean formula ϕ(C ) resulting from the reduction of
CIRCUIT SAT to 3-SAT. For all one- and two-literal clauses in the
resulting CNF-formula ϕ(C ), we add the same literal z (possibly twice)
to make them 3-literal clauses.

The resulting formula ϕz(C ) fulfills the following equivalence:

ϕz(C ) ∈ NAESAT ⇔ C ∈ CIRCUIT SAT.

“⇒” If a truth assignment T satisfies ϕz(C ) in the sense of NAESAT,
so does the complementary truth assignment T .
Thus, z is false in either T or T which implies that ϕ(C ) is satisfied by
either T or T . Thus C is satisfiable.
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NAESAT

Proof of NP-Hardness (continued)

“⇐” If C is satisfiable, then there is a truth assignment T satisfying
ϕ(C ). Let us then extend T for ϕz(C ) by assigning T (z) = false.

By assumption, T is a satisfying truth assignment of ϕ(C ) and, therefore,
also of ϕz(C ). Hence, in no clause of ϕz(C ) all literals are false.
It remains to show that in no clause of ϕz(C ) all literals are true:

(i) Clauses for true/false/NOT/variable gates contain z that is false.

(ii) For AND gates the clauses are: (¬g ∨ h ∨ z), (¬g ∨ h′ ∨ z),
(g ∨ ¬h ∨ ¬h′) where in the first two z is false, and in the third all
three cannot be true as then the first two clauses would be false.

(iii) For OR gates the clauses are: (¬g ∨ h ∨ h′), (g ∨ ¬h′ ∨ z),
(g ∨ ¬h ∨ z) where in the last two z is false, and in the first all
three cannot be true as then the last two clauses would be false.
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Complexity

Theorem

The k-COLORABILITY-problem is NP-complete for any fixed k ≥ 3.
The 2-COLORABILITY-problem is in P.

Proof

NP-Membership of k-COLORABILITY:
1. Guess an assignment f : V → {1, . . . , k}
2. Check for every edge [i , j ] ∈ E that f (i) 6= f (j).

P-Membership of 2-COLORABILITY: (w.l.o.g., G is connected)
1. Start by assigning an arbitrary color to an arbitrary vertex v ∈ V .
2. Suppose that the vertices in S ⊂ V have already been assigned a color.
Choose x ∈ S and assign to all vertices adjacent to x the opposite color.

G is 2-colorable iff step 2 never leads to a contradiction.
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NP-Hardness Proof of 3-COLORABILITY

By reduction from NAESAT: Let an arbitrary instance of NAESAT be
given by a Boolean formula ϕ = c1 ∧ . . . ∧ cm in 3-CNF with variables
x1, . . . , xn. We construct the following graph G (ϕ):

Let V = {a} ∪ {xi ,¬xi | 1 ≤ i ≤ n} ∪ {li1, li2, li3 | 1 ≤ i ≤ m},
i.e. |V | = 1 + 2n + 3m.

For each variable xi in ϕ, we introduce a triangle [a, xi ,¬xi ],
i.e. all these triangles share the node a.

For each clause ci in ϕ, we introduce a triangle [li1, li2, li3]. Moreover,
each of these vertices lij is further connected to the node corresponding
to this literal, i.e.: if the j-th literal in ci is of the form xα (resp. ¬xα)
then we introduce an edge between lij and xα (resp. ¬xα)

Reinhard Pichler 16 April, 2013 Page 26

Complexity Theory 5. NP-Completeness 5.6. 3-COLORABILITY

Example

The 3-CNF formula ϕ = (x1 ∨ ¬x2 ∨ x3) ∧ (x2 ∨ x3 ∨ ¬x4) is reduced to
the following graph:

a

x1 ¬x1 x2 ¬x2 x3 ¬x3 x4 ¬x4

l12 l13

l11

l22 l23

l21
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Example
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Let red = false and green = true. The above 3-coloring corresponds to
T (x1) = T (¬x2) = T (¬x3) = T (¬x4) = true.
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Correctness of the Problem Reduction

Proof (continued)

“⇐” Suppose that G has a 3-coloring with colors {0, 1, 2}. W.l.o.g., the
node a has the color 2. This induces a truth assignment T via the colors
of the nodes xi : if the color is 1, then T (xi ) = true else T (xi ) = false.
We claim that T is a legal NAESAT-assignment. Indeed, if in some
clause, all literals had the value false (resp. true), then we could not use
the color 0 (resp. 1) for coloring the triangle [li1, li2, li3], a contradiction.

“⇒” Suppose that there exists an NAESAT-assignment T of ϕ.
Then we can extract a 3-coloring for G from T as follows:

(i) Node a is colored with color 2.

(ii) If T (xi ) = true, then color xi with 1 and ¬xi with 0 else vice versa.

(iii) From each [li1, li2, li3], color two literals having opposite truth values
with 0 (true) and 1 (false). Color the third with 2.
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HAMILTON-PATH

INSTANCE: (directed or undirected) graph G = (V ,E )

QUESTION: Does G have a Hamilton path?
i.e., a path visiting all vertices of G exactly once.

HAMILTON-CYCLE

INSTANCE: (directed or undirected) graph G = (V ,E )

QUESTION: Does G have a Hamilton cycle?
i.e., a cycle visiting all vertices of G exactly once.

TSP(D)

INSTANCE: n cities 1, . . . , n and a nonnegative integer distance dij

between any two cities i and j (such that dij = dji ), and an integer B.

QUESTION: Is there a tour through all cities of length at most B?
i.e., a permutation π s.t.

∑n
i=1 dπ(i)π(i+1) ≤ B with π(n + 1) = π(1).
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Complexity

Theorem

HAMILTON-PATH, HAMILTON-CYCLE, and TSP(D) are
NP-complete.

Proof

We shall show the following chain of reductions:

HAMILTON-PATH ≤L HAMILTON-CYCLE ≤L TSP(D)

It suffices to show NP-membership for the hardest problem:
1. Guess a tour π through the n cities.
2. Check that

∑n
i=1 dπ(i)π(i+1) ≤ B with π(n + 1) = π(1).

Likewise, it suffices to prove the NP-hardness of the easiest problem.
The NP-hardness of HAMILTON-PATH (by a reduction from 3-SAT) is
quite involved and is therefore omitted here (see Papadimitriou’s book).
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HAMILTON-PATH vs. HAMILTON-CYCLE

HAMILTON-PATH ≤L HAMILTON-CYCLE

(We only consider undirected graphs). Let an arbitrary instance of
HAMILTON-PATH be given by the graph G = (V ,E ). We construct
an equivalent instance G ′ = (V ′,E ′) of HAMILTON-CYCLE as follows:

Let V ′ := V ∪ {z} for some new vertex z and E ′ := E ∪ {[v , z ] | v ∈ V }.
G has a Hamilton path ⇔ G ′ has a Hamilton cycle

“⇒” Suppose that G has a Hamilton path π starting at vertex a and
ending at b. Then π ∪ {z} is clearly a Hamilton cycle in G ′.

“⇐” Let C be a Hamilton cycle in G ′. In particular, C goes through z .
Let a and b be the two neighboring nodes of z in this cycle. Then
C \ {z} is a Hamilton path (starting at vertex a and ending at b) in G .
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HAMILTON-CYCLE vs. TSP(D)

HAMILTON-CYCLE ≤L TSP(D)

Let an arbitrary instance of HAMILTON-CYCLE be given by the graph
G = (V ,E ). We construct an equivalent instance of TSP(D) as follows:

Let V = {1, . . . , n}. Then our instance of TSP(D) has n cities.
Moreover, for any two cities i 6= j , the distance is defined as

dij =

{
1 if [i , j ] ∈ E
2 otherwise

Finally, we set B = n.

Clearly, there is no tour through all cities of length < B = n.
Moreover, the Hamilton cycles in G are precisely the tours of length B.
Hence, G has a Hamilton cycle ⇔ there exists a tour of length ≤ B.
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Summary of Reductions
SAT

4-SAT

1-in-3-SAT

MON 1-in-3-SAT

HITTING SET

3-SAT

INDEPENDENT SET

VERTEX COVER CLIQUE

CIRCUIT-SAT

NAESAT

HAM.-PATH

HAM.-CYCLE

TSP(D)

3-COL

Reinhard Pichler 16 April, 2013 Page 34

Complexity Theory 5. NP-Completeness 5.8. Summary

Learning Objectives

The concept of NP-completeness and its characterizations in terms
of succinct certificates.

You should now be familiar with the intuition of NP-completeness
(and recognize NP-complete problems)

Basic techniques to prove problems NP-complete

A basic repertoire of NP-complete problems (in particular, versions
of SAT and some graph problems) to be used in further
NP-completeness proofs.

Reductions, reductions, reductions, . . .
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