Claim

HAMILTONIAN : Given a directed graph G = (V, E), does G have a Hamiltonian path? The Hamiltonian path problem (HAMILTONIAN) is **NP** complete.

Claim

HAMILTONIAN : Given a directed graph G = (V, E), does G have a Hamiltonian path? The Hamiltonian path problem (HAMILTONIAN) is **NP** complete.

• Review: Hamiltonian path visits each vertex in G exactly once

Claim

HAMILTONIAN : Given a directed graph G = (V, E), does G have a Hamiltonian path? The Hamiltonian path problem (HAMILTONIAN) is **NP** complete.

- Review: Hamiltonian path visits each vertex in G exactly once
- Computationally very different from Eulerian paths

Claim

HAMILTONIAN : Given a directed graph G = (V, E), does G have a Hamiltonian path? The Hamiltonian path problem (HAMILTONIAN) is **NP** complete.

- Review: Hamiltonian path visits each vertex in G exactly once
- Computationally very different from Eulerian paths
- Note that HAMILTONIAN is in NP

Claim

HAMILTONIAN : Given a directed graph G = (V, E), does G have a Hamiltonian path? The Hamiltonian path problem (HAMILTONIAN) is **NP** complete.

- Review: Hamiltonian path visits each vertex in G exactly once
- Computationally very different from Eulerian paths
- Note that HAMILTONIAN is in NP
- We reduce 3-CNF SAT to HAMILTONIAN
 - ► For a fixed 3-CNF SAT formula, show that it can be transformed into a graph whose Hamiltonian path will give us the assignments for SAT.

$$\phi = \mathcal{C}_1 \wedge \mathcal{C}_2 \wedge \ldots \wedge \mathcal{C}_m$$
, *n* variables, $\mathcal{C}_i = (x_1^i \lor x_2^i \lor x_3^i)$

$$\phi = C_1 \wedge C_2 \wedge \ldots \wedge C_m$$
, *n* variables, $C_i = (x_1^i \lor x_2^i \lor x_3^i)$

• Given ϕ , have to construct a graph G such that G has a Hamiltonian path iff ϕ is satisfiable.

- Given ϕ , have to construct a graph G such that G has a Hamiltonian path iff ϕ is satisfiable.
- We first define the mapping of variables, and then the clauses.

- Given ϕ , have to construct a graph G such that G has a Hamiltonian path iff ϕ is satisfiable.
- We first define the mapping of variables, and then the clauses.
- Each x_i will correspond to a path (chain) of 6m vertices

- Given ϕ , have to construct a graph G such that G has a Hamiltonian path iff ϕ is satisfiable.
- We first define the mapping of variables, and then the clauses.
- Each x_i will correspond to a path (chain) of 6m vertices



- Given ϕ , have to construct a graph G such that G has a Hamiltonian path iff ϕ is satisfiable.
- We first define the mapping of variables, and then the clauses.
- Each x_i will correspond to a path (chain) of 6m vertices
- If we are at the first (or end) vertex, only one path to follow



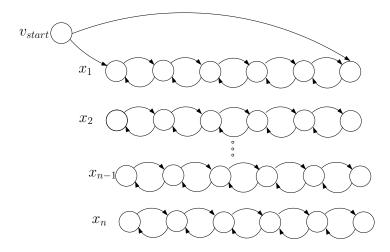
• Add a start vertex v_{start} which has

- Add a start vertex v_{start} which has
 - ▶ no incoming edges.

- Add a start vertex *v_{start}* which has
 - ▶ no incoming edges.
 - an outgoing edge to the first vertex of x_1 chain.

- Add a start vertex *v*_{start} which has
 - no incoming edges.
 - an outgoing edge to the first vertex of x_1 chain.
 - an outgoing edge to the last vertex of x_1 chain.

- Add a start vertex v_{start} which has
 - no incoming edges.
 - an outgoing edge to the first vertex of x_1 chain.
 - ▶ an outgoing edge to the last vertex of *x*₁ chain.



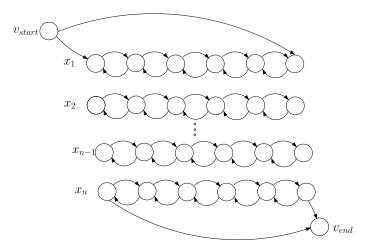
• Add an end vertex v_{end} which has

- Add an end vertex v_{end} which has
 - no outgoing edges.

- Add an end vertex vend which has
 - no outgoing edges.
 - an incoming edge from the first vertex of x_n chain.

- Add an end vertex *v_{end}* which has
 - no outgoing edges.
 - an incoming edge from the first vertex of x_n chain.
 - an incoming edge from the last vertex of x_n chain.

- Add an end vertex *v_{end}* which has
 - no outgoing edges.
 - an incoming edge from the first vertex of x_n chain.
 - an incoming edge from the last vertex of x_n chain.

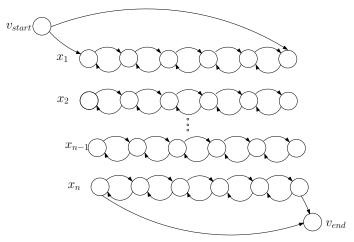


• From the first and last vertex of each chain x_i, add

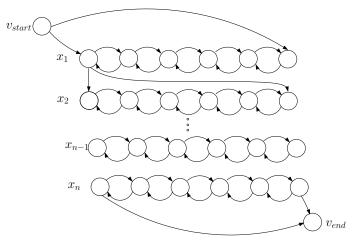
- From the first and last vertex of each chain x_i, add
 - an outgoing edge to the first vertex of chain x_{i+1}

- From the first and last vertex of each chain x_i, add
 - ▶ an outgoing edge to the first vertex of chain x_{i+1}
 - an outgoing edge to the last vertex of chain x_{i+1}

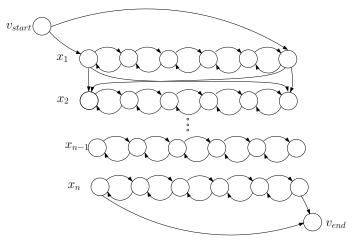
- From the first and last vertex of each chain x_i , add
 - an outgoing edge to the first vertex of chain x_{i+1}
 - an outgoing edge to the last vertex of chain x_{i+1}



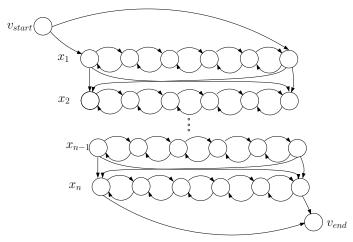
- From the first and last vertex of each chain x_i , add
 - an outgoing edge to the first vertex of chain x_{i+1}
 - an outgoing edge to the last vertex of chain x_{i+1}

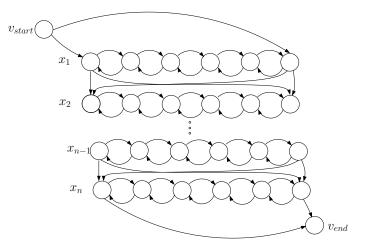


- From the first and last vertex of each chain x_i , add
 - an outgoing edge to the first vertex of chain x_{i+1}
 - an outgoing edge to the last vertex of chain x_{i+1}

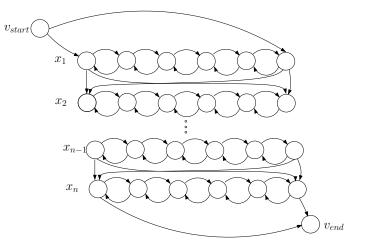


- From the first and last vertex of each chain x_i , add
 - an outgoing edge to the first vertex of chain x_{i+1}
 - an outgoing edge to the last vertex of chain x_{i+1}

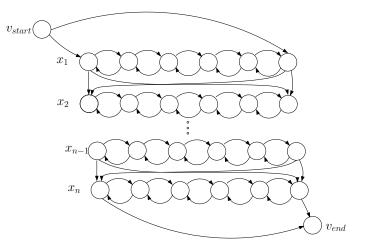




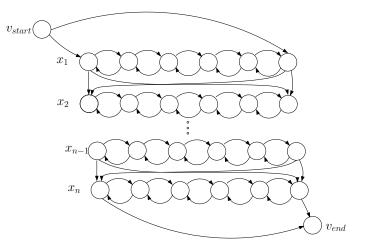
• Any Hamiltonian path has to start at v_{start}



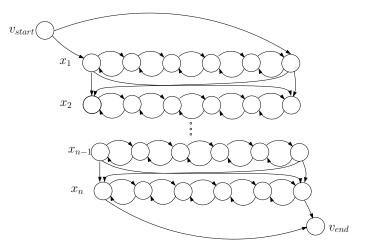
Any Hamiltonian path has to end at v_{end}



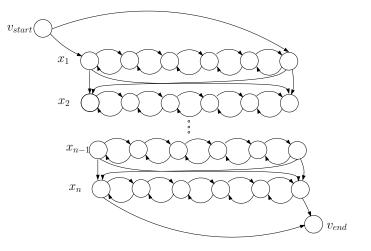
• Any Hamiltonian path first traverses chain x_1 , then x_2 etc.



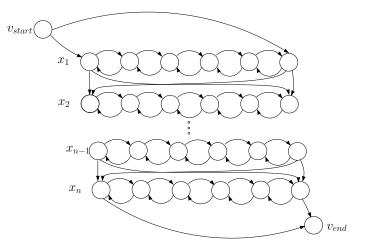
- For each chain, only two ways of traversing it.
 - Left-to-right means $x_i = 1$, right-to-left means $x_i = 0$



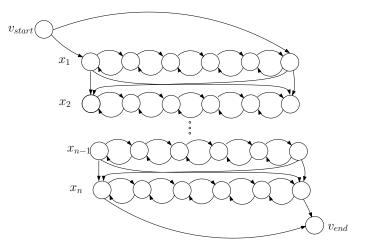
• Each assignment of variables corresponds to a unique Hamiltonian path.



• Each Hamiltonian path corresponds to a unique variable assignment.



• So far, no constraints – they will come from the clauses now.



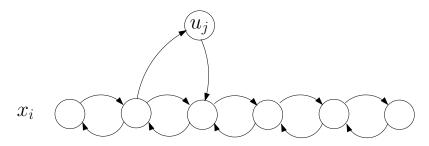
• Each clause C_j corresponds to a new vertex u_j .

- Each clause C_j corresponds to a new vertex u_j .
- If C_j contains a non-negated literal x_i , add edges to u_j :

- Each clause C_j corresponds to a new vertex u_j .
- If C_j contains a non-negated literal x_i , add edges to u_j :
 - Add an incoming edge from a vertex, say v_k , in the x_i chain

- Each clause C_j corresponds to a new vertex u_j .
- If C_j contains a non-negated literal x_i , add edges to u_j :
 - Add an incoming edge from a vertex, say v_k , in the x_i chain
 - Add an outgoing edge to v_{k+1} in the x_i chain

- Each clause C_j corresponds to a new vertex u_j .
- If C_i contains a non-negated literal x_i , add edges to u_i :
 - Add an incoming edge from a vertex, say v_k , in the x_i chain
 - Add an outgoing edge to v_{k+1} in the x_i chain

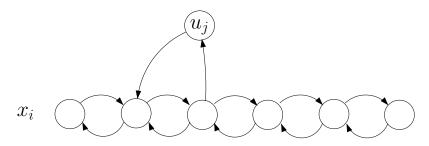


• If C_j contains a negated literal, reverse the edge directions

- If C_j contains a negated literal, reverse the edge directions
- If C_i contains a negated literal \overline{x}_i , add edges to u_i :
 - Add an incoming edge from a vertex, say v_k , in the x_i chain

- If C_j contains a negated literal, reverse the edge directions
- If C_i contains a negated literal \overline{x}_i , add edges to u_i :
 - Add an incoming edge from a vertex, say v_k , in the x_i chain
 - Add an outgoing edge to v_{k-1} in the x_i chain

- If C_j contains a negated literal, reverse the edge directions
- If C_i contains a negated literal \overline{x}_i , add edges to u_i :
 - Add an incoming edge from a vertex, say v_k , in the x_i chain
 - Add an outgoing edge to v_{k-1} in the x_i chain



An Example

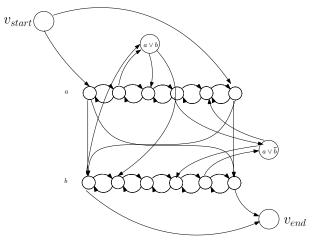
Construction of Hamiltonian path for

 $(a \lor b) \land (a \lor \overline{b})$

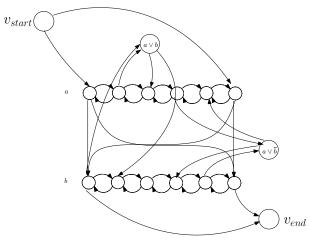
Here:

• $C_1 = (a \lor b)$ • $C_2 = (a \lor \overline{b})$

The Graph Construction

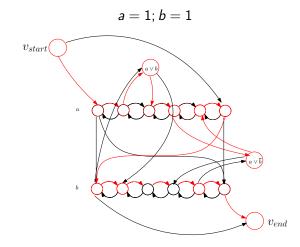


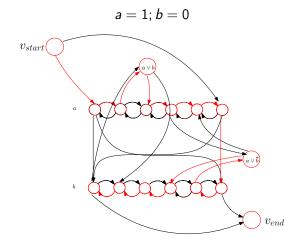
The Graph Construction

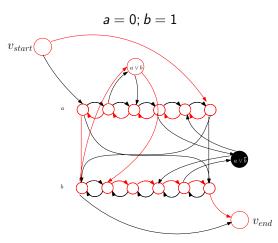


Claim

Hamiltonian path exists ONLY if you go from left to right in a and chose any one of the two directions for b.

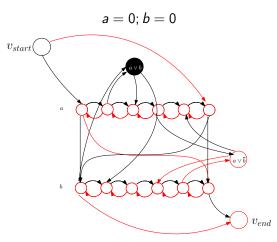






Error in finding HAMILTONIAN

No HAMILTONIAN PATH as $(a \lor \overline{b})$ is not accessible



Error in finding HAMILTONIAN

No HAMILTONIAN PATH as $(a \lor b)$ is not accessible

Claim

The constructed graph G has a Hamiltonian path iff ϕ satisfiable.

Claim

The constructed graph G has a Hamiltonian path iff ϕ satisfiable.

Claim

The constructed graph G has a Hamiltonian path iff ϕ satisfiable.

Things to note about the final construction:

• Any Hamiltonian path has to start at v_{start}

Claim

The constructed graph G has a Hamiltonian path iff ϕ satisfiable.

- Any Hamiltonian path has to start at v_{start}
- Any Hamiltonian path has to end at v_{end}

Claim

The constructed graph G has a Hamiltonian path iff ϕ satisfiable.

- Any Hamiltonian path has to start at v_{start}
- Any Hamiltonian path has to end at vend
- Any Hamiltonian path first traverses chain x_1 , then x_2 etc.

Claim

The constructed graph G has a Hamiltonian path iff ϕ satisfiable.

- Any Hamiltonian path has to start at v_{start}
- Any Hamiltonian path has to end at v_{end}
- Any Hamiltonian path first traverses chain x_1 , then x_2 etc.
- For each chain, only two ways of traversing it.

Claim

The constructed graph G has a Hamiltonian path iff ϕ satisfiable.

- Any Hamiltonian path has to start at v_{start}
- Any Hamiltonian path has to end at v_{end}
- Any Hamiltonian path first traverses chain x_1 , then x_2 etc.
- For each chain, only two ways of traversing it.
- Each assignment of variables corresponds to a path.

Claim

The constructed graph G has a Hamiltonian path iff ϕ satisfiable.

- Any Hamiltonian path has to start at v_{start}
- Any Hamiltonian path has to end at v_{end}
- Any Hamiltonian path first traverses chain x_1 , then x_2 etc.
- For each chain, only two ways of traversing it.
- Each assignment of variables corresponds to a path.
- Each path corresponds to a unique variable assignment.

Claim

The constructed graph G has a Hamiltonian path iff ϕ satisfiable.

- Any Hamiltonian path has to start at v_{start}
- Any Hamiltonian path has to end at v_{end}
- Any Hamiltonian path first traverses chain x_1 , then x_2 etc.
- For each chain, only two ways of traversing it.
- Each assignment of variables corresponds to a path.
- Each path corresponds to a unique variable assignment.
- If $x_i \in C_j$ and $x_i = 1$, can visit u_j along the way.

Claim

The constructed graph G has a Hamiltonian path iff ϕ satisfiable.

- Any Hamiltonian path has to start at v_{start}
- Any Hamiltonian path has to end at v_{end}
- Any Hamiltonian path first traverses chain x_1 , then x_2 etc.
- For each chain, only two ways of traversing it.
- Each assignment of variables corresponds to a path.
- Each path corresponds to a unique variable assignment.
- If $x_i \in \mathcal{C}_j$ and $x_i = 1$, can visit u_j along the way.
- If $\overline{x}_i \in C_j$ and $x_i = 0$, can visit u_j along the way.

Claim

The constructed graph G has a Hamiltonian path iff ϕ satisfiable.

- Any Hamiltonian path has to start at v_{start}
- Any Hamiltonian path has to end at v_{end}
- Any Hamiltonian path first traverses chain x_1 , then x_2 etc.
- For each chain, only two ways of traversing it.
- Each assignment of variables corresponds to a path.
- Each path corresponds to a unique variable assignment.
- If $x_i \in \mathcal{C}_j$ and $x_i = 1$, can visit u_j along the way.
- If $\overline{x}_i \in C_j$ and $x_i = 0$, can visit u_j along the way.
- The above two *only* ways to visit u_j without getting stuck.