5 NP-Compl

Let an arbitrary instance of **CIRCUIT SAT** be given by a Boolean circuit C. We construct the following instance $\varphi(C)$ of **SAT** (φ is in CNF with some clauses smaller than 3. The transformation into 3-CNF is obvious):

The formula $\varphi(C)$ uses all variables of *C*. Moreover, for each gate *g* of *C*, $\varphi(C)$ has a new variable *g* and the following clauses.

1 If g is a variable gate x: $(g \lor \neg x), (\neg g \lor x)$.	$[g\leftrightarrow x]$
2 If g is a true (resp. false) gate: g (resp. $\neg g$).	
3 If g is a NOT gate with a predecessor h :	
$(\neg g \lor \neg h), (g \lor h).$	$[g\leftrightarrow \neg h]$
4 If g is an AND gate with predecessors $h, h':$ $(\neg g \lor h), (\neg g \lor h'), (g \lor \neg h \lor \neg h').$	$[g \leftrightarrow (h \wedge h')]$
5 If g is an OR gate with predecessors h, h' :	
$(\neg g \lor h \lor h'), (g \lor \neg h'), (g \lor \neg h).$	$[g \leftrightarrow (h \lor h')]$
6 If g is also the output gate: g .	

	< [→ <@> < ≥> < ≥> < ≥	596
Reinhard Pichler	16 April, 2013		Page 13
Complexity Theory	5. NP-Completeness	5.3. NOT-ALL-EQUAL-SAT	

NAESAT

Proof of NP-Hardness

Recall the Boolean formula $\varphi(C)$ resulting from the reduction of **CIRCUIT SAT** to **3-SAT**. For all one- and two-literal clauses in the resulting CNF-formula $\varphi(C)$, we add the same literal z (possibly twice) to make them 3-literal clauses.

The resulting formula $\varphi_z(C)$ fulfills the following equivalence:

 $\varphi_z(C) \in \mathsf{NAESAT} \Leftrightarrow C \in \mathsf{CIRCUIT} \mathsf{SAT}.$

" \Rightarrow " If a truth assignment T satisfies $\varphi_z(C)$ in the sense of **NAESAT**, so does the complementary truth assignment \overline{T} .

Thus, z is **false** in either T or \overline{T} which implies that $\varphi(C)$ is satisfied by either T or \overline{T} . Thus C is satisfiable.

NAESAT

Not-all-equal SAT (NAESAT)

INSTANCE: Boolean formula φ in 3-CNF

QUESTION: Does there exist a truth assignment T appropriate to φ , such that the 3 literals in each clause do not have the same truth value? Remark. Clearly **NAESAT** \subset **3-SAT**.

Theorem

NAESAT is NP-complete.

Reinhard Pichler 16 April, 2013 Page 14 Complexity Theory 5. NP-Completeness 5.3. NOT-ALL-EQUAL-SAT

NAESAT

Reinhard Pichler

Proof of NP-Hardness (continued)

" \Leftarrow " If C is satisfiable, then there is a truth assignment T satisfying $\varphi(C)$. Let us then extend T for $\varphi_z(C)$ by assigning T(z) = **false**.

By assumption, T is a satisfying truth assignment of $\varphi(C)$ and, therefore, also of $\varphi_z(C)$. Hence, in no clause of $\varphi_z(C)$ all literals are **false**. It remains to show that in no clause of $\varphi_z(C)$ all literals are **true**:

- (i) Clauses for true/false/NOT/variable gates contain z that is false.
- (ii) For AND gates the clauses are: $(\neg g \lor h \lor z)$, $(\neg g \lor h' \lor z)$, $(g \lor \neg h \lor \neg h')$ where in the first two z is **false**, and in the third all three cannot be **true** as then the first two clauses would be **false**.
- (iii) For OR gates the clauses are: $(\neg g \lor h \lor h'), (g \lor \neg h' \lor z), (g \lor \neg h \lor z)$ where in the last two z is **false**, and in the first all three cannot be **true** as then the last two clauses would be **false**.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの