Reduction from CIRCUIT SAT to 3-SAT NAESAT

Let an arbitrary instance of CIRCUIT SAT be given by a Boolean circuit
C. We construct the following instance ¢(C) of SAT (¢ is in CNF with
some clauses smaller than 3. The transformation into 3-CNF is obvious):

The formula ¢(C) uses all variables of C. Moreover, for each gate g of
C, ©(C) has a new variable g and the following clauses.

If g is a variable gate x: (g V —x), (g V x). g « ]
If g is a true (resp. false) gate: g (resp. —g).
If g is a NOT gate with a predecessor h:

(—g vV =h),(g Vv h). lg <+ —h]
If g is an AND gate with predecessors h, h':

(g Vh),(-g V) (gV—hv=h). [g < (hAH)]
If g is an OR gate with predecessors h, h':

(mgVhVvH) (gVv-h) (gV—h) [g < (hV )]

@ If g is also the output gate: g.

Not-all-equal SAT (NAESAT)

INSTANCE: Boolean formula ¢ in 3-CNF

QUESTION: Does there exist a truth assignment T appropriate to ¢,
such that the 3 literals in each clause do not have the same truth value?

Remark. Clearly NAESAT C 3-SAT.

Theorem
NAESAT /s NP-complete.

Reinhard Pichler 16 April, 2013 Reinhard Pichler 16 April, 2013

Complexity Theory 5. NP-Completeness Complexity Theory 5. NP-Completeness

Reinhard Pichler 16 April, 2013

Proof of NP-Hardness

Recall the Boolean formula (C) resulting from the reduction of
CIRCUIT SAT to 3-SAT. For all one- and two-literal clauses in the
resulting CNF-formula ¢(C), we add the same literal z (possibly twice)
to make them 3-literal clauses.

The resulting formula ¢,(C) fulfills the following equivalence:
¢,(C) € NAESAT < C € CIRCUIT SAT.

“=" If a truth assignment T satisfies ¢,(C) in the sense of NAESAT,
so does the complementary truth assignment T.

Thus, z is false in either T or T which implies that ¢(C) is satisfied by
either T or T. Thus C is satisfiable.

Proof of NP-Hardness (continued)

“<" If C is satisfiable, then there is a truth assignment T satisfying
©(C). Let us then extend T for ¢,(C) by assigning T(z) = false.

By assumption, T is a satisfying truth assignment of ¢(C) and, therefore,
also of ¢,(C). Hence, in no clause of ,(C) all literals are false.

It remains to show that in no clause of ,(C) all literals are true:

(i) Clauses for true/false/NOT /variable gates contain z that is false.

(i) For AND gates the clauses are: (—gV hV z), (g V h'V z),
(g V =h V =h') where in the first two z is false, and in the third all
three cannot be true as then the first two clauses would be false.
(iii) For OR gates the clauses are: (—gV hV h'),(gV —h'V z),
(g V =hV z) where in the last two z is false, and in the first all
three cannot be true as then the last two clauses would be false.

Reinhard Pichler 16 April, 2013




