Recursion and Recurrence Relations

K. Subramani¹

¹Lane Department of Computer Science and Electrical Engineering West Virginia University

30 August, September 1 2016

Recursive Definitions

- Recursive Definitions
- Solving Recurrences

- Recursive Definitions
- Solving Recurrences

- Recursive Definitions
- Solving Recurrences
- Formula (including Master Theorem)
 - The Master Method

- Recursive Definitions
- Solving Recurrences
- Expand-Guess-Verify
- Formula (including Master Theorem)The Master Method
- 5 The Recurrence Tree Method

Definition

Definition

A recursive definition (or inductive definition) is one, in which the object being defined is part of the definition.

Definition

A recursive definition (or inductive definition) is one, in which the object being defined is part of the definition.

Parts of a recursive definition

Definition

A recursive definition (or inductive definition) is one, in which the object being defined is part of the definition.

Parts of a recursive definition

Definition

A recursive definition (or inductive definition) is one, in which the object being defined is part of the definition.

Parts of a recursive definition

 (i) A basis, where some simple cases of the object being defined are explicitly provided,

Definition

A recursive definition (or inductive definition) is one, in which the object being defined is part of the definition.

Parts of a recursive definition

- (i) A basis, where some simple cases of the object being defined are explicitly provided,
- (ii) An inductive or recursive step, where new cases of the item being defined are given in terms of previous cases.

Definition

A recursive definition (or inductive definition) is one, in which the object being defined is part of the definition.

Parts of a recursive definition

- (i) A basis, where some simple cases of the object being defined are explicitly provided,
- (ii) An inductive or recursive step, where new cases of the item being defined are given in terms of previous cases.

Note

Definition

A recursive definition (or inductive definition) is one, in which the object being defined is part of the definition.

Parts of a recursive definition

- A basis, where some simple cases of the object being defined are explicitly provided,
- (ii) An inductive or recursive step, where new cases of the item being defined are given in terms of previous cases.

Note

Strong connection between induction and recursion.

Recursive Objects

(i) Sequences.

- (i) Sequences.
- (ii) Sets.

- (i) Sequences.
- (ii) Sets.
- (iii) Operations.

- (i) Sequences.
- (ii) Sets.
- (iii) Operations.
- (iv) Algorithms.

Sequences

Definition

Definition

A sequence is a list of objects that is enumerated in some order.

Definition

A sequence is a list of objects that is enumerated in some order.

Example

Definition

A sequence is a list of objects that is enumerated in some order.

Example

Definition

A sequence is a list of objects that is enumerated in some order.

Example

$$S(1) = 2$$

Definition

A sequence is a list of objects that is enumerated in some order.

Example

$$S(1) = 2$$

 $S(n) = 2 \cdot S(n-1), n \ge 2.$

Definition

A sequence is a list of objects that is enumerated in some order.

Example

Write down the first 5 elements of the following recursively defined sequence:

$$S(1) = 2$$

 $S(n) = 2 \cdot S(n-1), n \ge 2.$

The second part of the definition is called a recurrence relation.

Definition

A sequence is a list of objects that is enumerated in some order.

Example

Write down the first 5 elements of the following recursively defined sequence:

$$S(1) = 2$$

 $S(n) = 2 \cdot S(n-1), n \ge 2.$

The second part of the definition is called a recurrence relation.

Example

Definition

A sequence is a list of objects that is enumerated in some order.

Example

Write down the first 5 elements of the following recursively defined sequence:

$$S(1) = 2$$

 $S(n) = 2 \cdot S(n-1), n \ge 2.$

The second part of the definition is called a recurrence relation.

Example

Definition

A sequence is a list of objects that is enumerated in some order.

Example

Write down the first 5 elements of the following recursively defined sequence:

$$S(1) = 2$$

 $S(n) = 2 \cdot S(n-1), n \ge 2.$

The second part of the definition is called a recurrence relation.

Example

$$T(1) = 1$$

Definition

A sequence is a list of objects that is enumerated in some order.

Example

Write down the first 5 elements of the following recursively defined sequence:

$$S(1) = 2$$

 $S(n) = 2 \cdot S(n-1), n \ge 2.$

The second part of the definition is called a recurrence relation.

Example

$$T(1) = 1$$

 $T(n) = T(n-1) + 3, n \ge 2.$

Sequences (contd.)

Sequences (contd.)

Fibonacci Sequence

$$F(1) = 1$$

$$F(1) = 1$$

$$F(1) = 1$$

 $F(2) = 1$

$$F(1) = 1$$

 $F(2) = 1$
 $F(n) = F(n-1) + F(n-2), n \ge 3$

Fibonacci Sequence

$$F(1) = 1$$

 $F(2) = 1$
 $F(n) = F(n-1) + F(n-2), n \ge 3$

Example

Fibonacci Sequence

$$F(1) = 1$$

 $F(2) = 1$
 $F(n) = F(n-1) + F(n-2), n \ge 3$

Example

Enumerate the first 5 elements of the Fibonacci sequence.

Fibonacci Sequence

$$F(1) = 1$$

 $F(2) = 1$
 $F(n) = F(n-1) + F(n-2), n \ge 3$

Example

Enumerate the first 5 elements of the Fibonacci sequence. Show that

Fibonacci Sequence

$$F(1) = 1$$

 $F(2) = 1$
 $F(n) = F(n-1) + F(n-2), n \ge 3$

Example

Enumerate the first 5 elements of the Fibonacci sequence. Show that

$$F(n+4) = 3 \cdot F(n+2) - F(n)$$
, for all $n \ge 1$

oof.	

Proof.

We provide an inductive proof.

Proof.

We provide an inductive proof. For the basis, show that the conjecture is true at n = 1 and n = 2.

Proof.

We provide an inductive proof. For the basis, show that the conjecture is true at n = 1 and n = 2.

Assume that the conjecture is true for all $r, 2 \le r \le k$, i.e.,

Proof.

We provide an inductive proof. For the basis, show that the conjecture is true at n=1 and n=2.

Assume that the conjecture is true for all $r, 2 \le r \le k$, i.e.,

$$F(r + 4) = 3 \cdot F(r + 2) - F(r)$$

Proof.

We provide an inductive proof. For the basis, show that the conjecture is true at n = 1 and n = 2.

Assume that the conjecture is true for all $r, 2 \le r \le k$, i.e.,

$$F(r + 4) = 3 \cdot F(r + 2) - F(r)$$

We now need to show that

Proof.

We provide an inductive proof. For the basis, show that the conjecture is true at n = 1 and n = 2.

Assume that the conjecture is true for all $r, 2 \le r \le k$, i.e.,

$$F(r + 4) = 3 \cdot F(r + 2) - F(r)$$

We now need to show that

$$F(k + 1 + 4) =$$

Proof.

We provide an inductive proof. For the basis, show that the conjecture is true at n = 1 and n = 2.

Assume that the conjecture is true for all $r, 2 \le r \le k$, i.e.,

$$F(r + 4) = 3 \cdot F(r + 2) - F(r)$$

We now need to show that

$$F(k+1+4) = 3 \cdot F(k+1+2) - F(k+1)$$

Proof.

We provide an inductive proof. For the basis, show that the conjecture is true at n = 1 and n = 2.

Assume that the conjecture is true for all $r, 2 \le r \le k$, i.e.,

$$F(r + 4) = 3 \cdot F(r + 2) - F(r)$$

We now need to show that

$$F(k+1+4) = 3 \cdot F(k+1+2) - F(k+1)$$

Proof.

We provide an inductive proof. For the basis, show that the conjecture is true at n = 1 and n = 2.

Assume that the conjecture is true for all r, $2 \le r \le k$, i.e.,

$$F(r + 4) = 3 \cdot F(r + 2) - F(r)$$

We now need to show that

$$F(k+1+4) = 3 \cdot F(k+1+2) - F(k+1)$$

$$F(k + 1 + 4) =$$

Proof.

We provide an inductive proof. For the basis, show that the conjecture is true at n = 1 and n = 2.

Assume that the conjecture is true for all $r, 2 \le r \le k$, i.e.,

$$F(r + 4) = 3 \cdot F(r + 2) - F(r)$$

We now need to show that

$$F(k+1+4) = 3 \cdot F(k+1+2) - F(k+1)$$

$$F(k+1+4) = F(k+5)$$

Proof.

We provide an inductive proof. For the basis, show that the conjecture is true at n = 1 and n = 2.

Assume that the conjecture is true for all $r, 2 \le r \le k$, i.e.,

$$F(r + 4) = 3 \cdot F(r + 2) - F(r)$$

We now need to show that

$$F(k + 1 + 4) = 3 \cdot F(k + 1 + 2) - F(k + 1)$$

$$F(k + 1 + 4)$$
 = $F(k + 5)$
= $F(k + 4) + F(k + 3)$, by definition

Proof.

We provide an inductive proof. For the basis, show that the conjecture is true at n = 1 and n = 2.

Assume that the conjecture is true for all $r, 2 \le r \le k$, i.e.,

$$F(r + 4) = 3 \cdot F(r + 2) - F(r)$$

We now need to show that

$$F(k+1+4) = 3 \cdot F(k+1+2) - F(k+1)$$

$$F(k+1+4)$$
 = $F(k+5)$
 = $F(k+4) + F(k+3)$, by definition
 = $F(k+4) + F((k-1)+4)$

Proof.

We provide an inductive proof. For the basis, show that the conjecture is true at n = 1 and n = 2.

Assume that the conjecture is true for all r, $2 \le r \le k$, i.e.,

$$F(r + 4) = 3 \cdot F(r + 2) - F(r)$$

We now need to show that

$$F(k+1+4) = 3 \cdot F(k+1+2) - F(k+1)$$

$$F(k+1+4) = F(k+5)$$

$$= F(k+4) + F(k+3), \text{ by definition}$$

$$= F(k+4) + F((k-1)+4))$$

$$= 3 \cdot F(k+2) - F(k) + 3 \cdot F((k-1)+2) - F(k-1), \text{ using the i.h.}$$

Proof.

We provide an inductive proof. For the basis, show that the conjecture is true at n = 1 and n = 2.

Assume that the conjecture is true for all r, $2 \le r \le k$, i.e.,

$$F(r + 4) = 3 \cdot F(r + 2) - F(r)$$

We now need to show that

$$F(k + 1 + 4) = 3 \cdot F(k + 1 + 2) - F(k + 1)$$

$$F(k+1+4) = F(k+5)$$
= $F(k+4) + F(k+3)$, by definition
= $F(k+4) + F((k-1)+4)$)
= $3 \cdot F(k+2) - F(k) + 3 \cdot F((k-1)+2) - F(k-1)$, using the i.h.
= $3 \cdot F(k+2) - F(k) + 3 \cdot F(k+1) - F(k-1)$

Proof.

We provide an inductive proof. For the basis, show that the conjecture is true at n = 1 and n = 2.

Assume that the conjecture is true for all r, $2 \le r \le k$, i.e.,

$$F(r + 4) = 3 \cdot F(r + 2) - F(r)$$

We now need to show that

$$F(k + 1 + 4) = 3 \cdot F(k + 1 + 2) - F(k + 1)$$

$$F(k+1+4) = F(k+5)$$
= $F(k+4) + F(k+3)$, by definition
= $F(k+4) + F((k-1)+4)$)
= $3 \cdot F(k+2) - F(k) + 3 \cdot F((k-1)+2) - F(k-1)$, using the i.h.
= $3 \cdot F(k+2) - F(k) + 3 \cdot F(k+1) - F(k-1)$
= $3 \cdot (F(k+2) + F(k+1)) - (F(k) + F(k-1))$

Proof.

We provide an inductive proof. For the basis, show that the conjecture is true at n = 1 and n = 2.

Assume that the conjecture is true for all r, $2 \le r \le k$, i.e.,

$$F(r + 4) = 3 \cdot F(r + 2) - F(r)$$

We now need to show that

$$F(k+1+4) = 3 \cdot F(k+1+2) - F(k+1)$$

$$F(k+1+4) = F(k+5)$$
= $F(k+4) + F(k+3)$, by definition
= $F(k+4) + F((k-1)+4)$)
= $3 \cdot F(k+2) - F(k) + 3 \cdot F((k-1)+2) - F(k-1)$, using the i.h.
= $3 \cdot F(k+2) - F(k) + 3 \cdot F(k+1) - F(k-1)$
= $3 \cdot (F(k+2) + F(k+1)) - (F(k) + F(k-1))$
= $3 \cdot F(k+3) - F(k+1)$

Proof.

We provide an inductive proof. For the basis, show that the conjecture is true at n = 1 and n = 2.

Assume that the conjecture is true for all r, $2 \le r \le k$, i.e.,

$$F(r + 4) = 3 \cdot F(r + 2) - F(r)$$

We now need to show that

$$F(k + 1 + 4) = 3 \cdot F(k + 1 + 2) - F(k + 1)$$

$$F(k+1+4) = F(k+5)$$
= $F(k+4) + F(k+3)$, by definition
= $F(k+4) + F((k-1)+4)$)
= $3 \cdot F(k+2) - F(k) + 3 \cdot F((k-1)+2) - F(k-1)$, using the i.h.
= $3 \cdot F(k+2) - F(k) + 3 \cdot F(k+1) - F(k-1)$
= $3 \cdot F(k+2) - F(k+1)) - (F(k) + F(k-1))$
= $3 \cdot F(k+3) - F(k+1)$
= $3 \cdot F(k+1+2) - F(k+1)$

Proof.

Recursive Definitions

We provide an inductive proof. For the basis, show that the conjecture is true at n=1 and n=2.

Assume that the conjecture is true for all r, $2 \le r \le k$, i.e.,

$$F(r + 4) = 3 \cdot F(r + 2) - F(r)$$

We now need to show that

$$F(k + 1 + 4) = 3 \cdot F(k + 1 + 2) - F(k + 1)$$

Observe that,

$$F(k+1+4) = F(k+5)$$
= $F(k+4) + F(k+3)$, by definition
= $F(k+4) + F((k-1)+4)$)
= $3 \cdot F(k+2) - F(k) + 3 \cdot F((k-1)+2) - F(k-1)$, using the i.h.
= $3 \cdot F(k+2) - F(k) + 3 \cdot F(k+1) - F(k-1)$
= $3 \cdot F(k+2) - F(k+1)) - (F(k) + F(k-1))$
= $3 \cdot F(k+3) - F(k+1)$
= $3 \cdot F(k+1+2) - F(k+1)$

Applying the second principle of mathematical induction, we conclude that the conjecture is true for all $n \geq 1$.

$$F(n+4) = F(n+3) + F(n+2)$$

$$F(n+4) = F(n+3) + F(n+2)$$

= $F(n+2) + F(n+1) + F(n+2)$

$$F(n+4) = F(n+3) + F(n+2)$$

$$= F(n+2) + F(n+1) + F(n+2)$$

$$= 2 \cdot F(n+2) + F(n+1)$$

$$F(n+4) = F(n+3) + F(n+2)$$

$$= F(n+2) + F(n+1) + F(n+2)$$

$$= 2 \cdot F(n+2) + F(n+1)$$

$$= 2 \cdot F(n+2) + (F(n+2) - F(n))$$

$$F(n+4) = F(n+3) + F(n+2)$$

$$= F(n+2) + F(n+1) + F(n+2)$$

$$= 2 \cdot F(n+2) + F(n+1)$$

$$= 2 \cdot F(n+2) + (F(n+2) - F(n))$$

$$= 3 \cdot F(n+2) - F(n)$$

Recursively Defined Sets

Recursively Defined Sets

Example

Define the set of ancestors of John.

Example

Define the set of ancestors of John.

(i) John's parents are his ancestors.

Example

Define the set of ancestors of John.

- (i) John's parents are his ancestors.
- (ii) If x is an ancestor of John and y is the parent of x, then y is an ancestor of John.

Example

Define the set of ancestors of John.

- (i) John's parents are his ancestors.
- (ii) If x is an ancestor of John and y is the parent of x, then y is an ancestor of John.

Example

Example

Define the set of ancestors of John.

- (i) John's parents are his ancestors.
- (ii) If x is an ancestor of John and y is the parent of x, then y is an ancestor of John.

Example

Define the set of all possible word combinations using small-case letters from the English alphabet.

Example

Define the set of ancestors of John.

- (i) John's parents are his ancestors.
- (ii) If x is an ancestor of John and y is the parent of x, then y is an ancestor of John.

Example

Define the set of all possible word combinations using small-case letters from the English alphabet.

(i) The empty string λ is a word.

Example

Define the set of ancestors of John.

- (i) John's parents are his ancestors.
- (ii) If x is an ancestor of John and y is the parent of x, then y is an ancestor of John.

Example

Define the set of all possible word combinations using small-case letters from the English alphabet.

- (i) The empty string λ is a word.
- (ii) {a, b, c, ..., z} are words.

Example

Define the set of ancestors of John.

- (i) John's parents are his ancestors.
- (ii) If x is an ancestor of John and y is the parent of x, then y is an ancestor of John.

Example

Define the set of all possible word combinations using small-case letters from the English alphabet.

- (i) The empty string λ is a word.
- (ii) {a, b, c, ..., z} are words.
- (iii) If x and y are words, then so is $x \cdot y$.

Example

Define the set of binary palindromes.

Example

Define the set of binary palindromes.

(i) The empty string λ is a palindrome.

Example

Define the set of binary palindromes.

- (i) The empty string λ is a palindrome.
- (ii) 0 and 1 are palindromes.

Example

Define the set of binary palindromes.

- (i) The empty string λ is a palindrome.
- (ii) 0 and 1 are palindromes.
- (iii) If x is a palindrome, then so are $0 \cdot x \cdot 0$ and $1 \cdot x \cdot 1$.

Note

Note

Certain binary operations can be defined recursively in terms of "less powerful" operations.

Note

Certain binary operations can be defined recursively in terms of "less powerful" operations.

Example

Note

Certain binary operations can be defined recursively in terms of "less powerful" operations.

Example

Define exponentiation in terms of multiplication.

Note

Certain binary operations can be defined recursively in terms of "less powerful" operations.

Example

Define exponentiation in terms of multiplication.

$$a^0 =$$

Note

Certain binary operations can be defined recursively in terms of "less powerful" operations.

Example

Define exponentiation in terms of multiplication.

$$a^0 = 1$$

 $a^m = a \cdot (a^{m-1}), m \ge 1.$

Note

Certain binary operations can be defined recursively in terms of "less powerful" operations.

Example

Define exponentiation in terms of multiplication.

$$a^0 = 1$$

 $a^m = a \cdot (a^{m-1}), m \ge 1.$

Example

Note

Certain binary operations can be defined recursively in terms of "less powerful" operations.

Example

Define exponentiation in terms of multiplication.

$$a^0 = 1$$

 $a^m = a \cdot (a^{m-1}), m \ge 1.$

Example

Define multiplication in terms of addition.

Note

Certain binary operations can be defined recursively in terms of "less powerful" operations.

Example

Define exponentiation in terms of multiplication.

$$a^0 = 1$$

 $a^m = a \cdot (a^{m-1}), m \ge 1.$

Example

Define multiplication in terms of addition.

$$x \cdot 0 = 0$$

Note

Certain binary operations can be defined recursively in terms of "less powerful" operations.

Example

Define exponentiation in terms of multiplication.

$$a^0 = 1$$

 $a^m = a \cdot (a^{m-1}), m \ge 1.$

Example

Define multiplication in terms of addition.

$$x \cdot 0 = 0$$

$$x \cdot y = x + x \cdot (y - 1), y \ge 1.$$

Function Max(a, b)

- 1: if $(a \ge b)$ then
- 2: **return**(*a*).
- 3: else
- 4: **return**(*b*).
- 5: end if

Function Max(a, b)

- 1: if $(a \ge b)$ then
- 2: **return**(*a*).
- 3: else
- 4: **return**(*b*).
- 5: end if

The Find-Max Algorithm

Function Max(a, b)

- 1: if $(a \ge b)$ then
- 2: return(a).
- 3: else
- 4: **return**(*b*).
- 5: end if

The Find-Max Algorithm

Function FIND-MAX(A, n)

- 1: **if** (n = 1) **then**
- 2: **return**(A[1]).
- 3: else
- 4: **return**(MAX(A[n], FIND-MAX(A, n 1))).
- 5: end if

Function Max(a, b)

- 1: if (a > b) then
- 2: **return**(a).
- 3: else
- 4: **return**(*b*).
- 5: end if

The Find-Max Algorithm

Function FIND-MAX(A, n)

- 1: **if** (n = 1) **then**
- 2: return(A[1]).
- 3: **else**
- 4: **return**(MAX(A[n], FIND-MAX(A, n 1))).
- 5: end if

Can you prove the correctness of the above algorithm?

Problem definition

Problem definition

Given a recurrence relation describing a function, say T(n),

Problem definition

Given a recurrence relation describing a function, say T(n), we want to find a closed form expression which exactly describes T(n),

Problem definition

Given a recurrence relation describing a function, say T(n), we want to find a closed form expression which exactly describes T(n), i.e., an expression not involving calls to the function T().

Problem definition

Given a recurrence relation describing a function, say T(n), we want to find a closed form expression which exactly describes T(n), i.e., an expression not involving calls to the function T().

Theww methods

Solving recurrences

Problem definition

Given a recurrence relation describing a function, say T(n), we want to find a closed form expression which exactly describes T(n), i.e., an expression not involving calls to the function T().

Theww methods

(i) Expand-Guess-Verify (EGV).

Solving recurrences

Problem definition

Given a recurrence relation describing a function, say T(n), we want to find a closed form expression which exactly describes T(n), i.e., an expression not involving calls to the function T().

Theww methods

- (i) Expand-Guess-Verify (EGV).
- (ii) Formula (including Master Theorem).

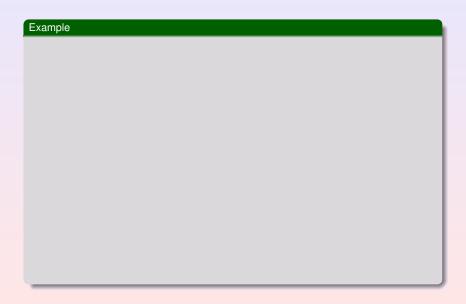
Solving recurrences

Problem definition

Given a recurrence relation describing a function, say T(n), we want to find a closed form expression which exactly describes T(n), i.e., an expression not involving calls to the function T().

Theww methods

- (i) Expand-Guess-Verify (EGV).
- (ii) Formula (including Master Theorem).
- (iii) Recursion Tree.



Example

Example

$$S(1) = 1$$

Example

$$S(1) = 1$$

 $S(n) = S(n-1) + 1, n \ge 2.$

Example

Consider the recurrence:

$$S(1) = 1$$

 $S(n) = S(n-1) + 1, n \ge 2.$

(i) Expand: S(1) = 1,

Example

$$S(1) = 1$$

 $S(n) = S(n-1) + 1, n \ge 2.$

(i) Expand:
$$S(1) = 1$$
, $S(2) =$

Example

$$S(1) = 1$$

 $S(n) = S(n-1) + 1, n \ge 2.$

(i) Expand:
$$S(1) = 1$$
, $S(2) = S(1) + 1 = 2$,

Example

$$S(1) = 1$$

 $S(n) = S(n-1) + 1, n \ge 2.$

(i) Expand:
$$S(1) = 1$$
, $S(2) = S(1) + 1 = 2$, $S(3) =$

Example

$$S(1) = 1$$

 $S(n) = S(n-1) + 1, n \ge 2.$

$$\text{(i)} \ \ \mathsf{Expand:} \ S(1) = 1, \, S(2) = S(1) + 1 = 2, \, S(3) = S(2) + 1 = 3,$$

Example

Consider the recurrence:

$$S(1) = 1$$

 $S(n) = S(n-1) + 1, n \ge 2.$

(i) Expand: S(1) = 1, S(2) = S(1) + 1 = 2, S(3) = S(2) + 1 = 3,

Example

$$S(1) = 1$$

 $S(n) = S(n-1) + 1, n \ge 2.$

- (i) Expand: S(1) = 1, S(2) = S(1) + 1 = 2, S(3) = S(2) + 1 = 3,
- (ii) Guess: S(n) =

Example

$$S(1) = 1$$

 $S(n) = S(n-1) + 1, n \ge 2.$

- (i) Expand: S(1) = 1, S(2) = S(1) + 1 = 2, S(3) = S(2) + 1 = 3,
- (ii) Guess: S(n) = n.

Example

$$S(1) = 1$$

 $S(n) = S(n-1) + 1, n \ge 2.$

- (i) Expand: S(1) = 1, S(2) = S(1) + 1 = 2, S(3) = S(2) + 1 = 3,
- (ii) Guess: S(n) = n.
- (iii) Verify:

Example

$$S(1) = 1$$

 $S(n) = S(n-1) + 1, n \ge 2.$

- (i) Expand: S(1) = 1, S(2) = S(1) + 1 = 2, S(3) = S(2) + 1 = 3,
- (ii) Guess: S(n) = n.
- (iii) Verify: Using Induction!

Example

$$S(1) = 1$$

 $S(n) = S(n-1) + 1, n \ge 2.$

- (i) Expand: S(1) = 1, S(2) = S(1) + 1 = 2, S(3) = S(2) + 1 = 3,
- (ii) Guess: S(n) = n.
- (iii) Verify: Using Induction! BASIS: n = 1

Example

$$S(1) = 1$$

 $S(n) = S(n-1) + 1, n \ge 2.$

- (i) Expand: S(1) = 1, S(2) = S(1) + 1 = 2, S(3) = S(2) + 1 = 3,
- (ii) Guess: S(n) = n.
- (iii) Verify: Using Induction!
 BASIS: n = 1

Example

$$S(1) = 1$$

 $S(n) = S(n-1) + 1, n \ge 2.$

- (i) Expand: S(1) = 1, S(2) = S(1) + 1 = 2, S(3) = S(2) + 1 = 3,
- (ii) Guess: S(n) = n.
- (iii) Verify: Using Induction! BASIS: n = 1

$$LHS = 1$$

Example

$$S(1) = 1$$

 $S(n) = S(n-1) + 1, n \ge 2.$

(i) Expand:
$$S(1) = 1$$
, $S(2) = S(1) + 1 = 2$, $S(3) = S(2) + 1 = 3$,

- (ii) Guess: S(n) = n.
- (iii) Verify: Using Induction! BASIS: n = 1

Example

$$S(1) = 1$$

 $S(n) = S(n-1) + 1, n \ge 2.$

(i) Expand:
$$S(1) = 1$$
, $S(2) = S(1) + 1 = 2$, $S(3) = S(2) + 1 = 3$,

- (ii) Guess: S(n) = n.
- (iii) Verify: Using Induction! BASIS: n = 1

$$LHS = 1$$
 $RHS = 1$

Example

Consider the recurrence:

$$S(1) = 1$$

 $S(n) = S(n-1) + 1, n \ge 2.$

(i) Expand:
$$S(1) = 1$$
, $S(2) = S(1) + 1 = 2$, $S(3) = S(2) + 1 = 3$,

- (ii) Guess: S(n) = n.
- (iii) Verify: Using Induction! BASIS: n = 1

$$LHS = 1$$

 $RHS = 1$

Since LHS=RHS, the basis is proven.

Example

Consider the recurrence:

$$S(1) = 1$$

 $S(n) = S(n-1)+1, n \ge 2.$

(i) Expand:
$$S(1) = 1$$
, $S(2) = S(1) + 1 = 2$, $S(3) = S(2) + 1 = 3$,

- (ii) Guess: S(n) = n.
- (iii) Verify: Using Induction! BASIS: n = 1

$$LHS = 1$$

 $RHS = 1$

Since LHS=RHS, the basis is proven. INDUCTIVE STEP: Assume that S(k) = k.

Example

Consider the recurrence:

$$S(1) = 1$$

 $S(n) = S(n-1)+1, n \ge 2.$

- (i) Expand: S(1) = 1, S(2) = S(1) + 1 = 2, S(3) = S(2) + 1 = 3,
- (ii) Guess: S(n) = n.
- (iii) Verify: Using Induction! BASIS: n = 1

$$LHS = 1$$

 $RHS = 1$

Since LHS=RHS, the basis is proven. INDUCTIVE STEP: Assume that S(k) = k. We need to show that S(k + 1) = (k + 1).

Example

Consider the recurrence:

$$S(1) = 1$$

 $S(n) = S(n-1)+1, n \ge 2.$

- (i) Expand: S(1) = 1, S(2) = S(1) + 1 = 2, S(3) = S(2) + 1 = 3,
- (ii) Guess: S(n) = n.
- (iii) Verify: Using Induction! BASIS: n = 1

$$LHS = 1$$

 $RHS = 1$

Since LHS=RHS, the basis is proven.

Example

Consider the recurrence:

$$S(1) = 1$$

 $S(n) = S(n-1)+1, n \ge 2.$

- (i) Expand: S(1) = 1, S(2) = S(1) + 1 = 2, S(3) = S(2) + 1 = 3,
- (ii) Guess: S(n) = n.
- (iii) Verify: Using Induction! BASIS: n = 1

$$LHS = 1$$

 $RHS = 1$

Since LHS=RHS, the basis is proven.

$$S(k + 1) =$$

Example

Consider the recurrence:

$$S(1) = 1$$

 $S(n) = S(n-1)+1, n \ge 2.$

- (i) Expand: S(1) = 1, S(2) = S(1) + 1 = 2, S(3) = S(2) + 1 = 3,
- (ii) Guess: S(n) = n.
- (iii) Verify: Using Induction! BASIS: n = 1

$$LHS = 1$$

 $RHS = 1$

Since LHS=RHS, the basis is proven.

$$S(k+1) = S(k) + 1$$
, by definition

Example

Consider the recurrence:

$$S(1) = 1$$

 $S(n) = S(n-1)+1, n \ge 2.$

- (i) Expand: S(1) = 1, S(2) = S(1) + 1 = 2, S(3) = S(2) + 1 = 3,
- (ii) Guess: S(n) = n.
- (iii) Verify: Using Induction! BASIS: n = 1

$$LHS = 1$$

 $RHS = 1$

Since LHS=RHS, the basis is proven.

$$S(k + 1)$$
 = $S(k) + 1$, by definition
 = $k + 1$, by inductive hypothesis

Example

Consider the recurrence:

$$S(1) = 1$$

 $S(n) = S(n-1)+1, n \ge 2.$

- (i) Expand: S(1) = 1, S(2) = S(1) + 1 = 2, S(3) = S(2) + 1 = 3,
- (ii) Guess: S(n) = n.
- (iii) Verify: Using Induction! BASIS: n = 1

$$LHS = 1$$

 $RHS = 1$

Since LHS=RHS, the basis is proven.

$$S(k + 1)$$
 = $S(k) + 1$, by definition
 = $k + 1$, by inductive hypothesis

Example

Expand-Guess-Verify

Consider the recurrence:

$$S(1) = 1$$

 $S(n) = S(n-1) + 1, n \ge 2.$

- (i) Expand: S(1) = 1, S(2) = S(1) + 1 = 2, S(3) = S(2) + 1 = 3,
- (ii) Guess: S(n) = n.
- (iii) Verify: Using Induction! BASIS: n = 1

$$LHS = 1$$

 $RHS = 1$

Since LHS=RHS, the basis is proven.

INDUCTIVE STEP: Assume that S(k)=k. We need to show that S(k+1)=(k+1). Observe that,

$$S(k + 1)$$
 = $S(k) + 1$, by definition
 = $k + 1$, by inductive hypothesis

Applying the first principle of mathematical induction, we conclude that S(n) = n.

Example

Example

Example

$$S(1) = 2$$

Example

$$S(n) = 2 \cdot S(n-1), n \geq 2.$$

Example

Consider the recurrence:

$$S(1) = 2$$

 $S(n) = 2 \cdot S(n-1), n \ge 2.$

(i) Expand: S(1) =

Example

$$S(1) = 2$$

 $S(n) = 2 \cdot S(n-1), n \ge 2.$

(i) Expand:
$$S(1) = 2$$
,

Example

$$S(1) = 2$$

$$S(n) = 2 \cdot S(n-1), n \geq 2.$$

(i) Expand:
$$S(1) = 2$$
, $S(2) =$

Example

$$S(1) = 2$$

 $S(n) = 2 \cdot S(n-1), n \ge 2.$

(i) Expand:
$$S(1) = 2$$
, $S(2) = 2 \cdot S(2) = 4$,

Example

$$S(1) = 2$$

 $S(n) = 2 \cdot S(n-1), n \ge 2.$

(i) Expand:
$$S(1) = 2$$
, $S(2) = 2 \cdot S(2) = 4$, $S(3) = 1$

Example

$$S(1) = 2$$

 $S(n) = 2 \cdot S(n-1), n \ge 2.$

(i) Expand:
$$S(1) = 2$$
, $S(2) = 2 \cdot S(2) = 4$, $S(3) = 2 \cdot S(2) = 8$,

Example

$$S(1) = 2$$

 $S(n) = 2 \cdot S(n-1), n \ge 2.$

(i) Expand:
$$S(1) = 2$$
, $S(2) = 2 \cdot S(2) = 4$, $S(3) = 2 \cdot S(2) = 8$,

Example

$$S(1) = 2$$

 $S(n) = 2 \cdot S(n-1), n \ge 2.$

- (i) Expand: S(1) = 2, $S(2) = 2 \cdot S(2) = 4$, $S(3) = 2 \cdot S(2) = 8$,
- (ii) Guess:

Example

$$S(1) = 2$$

 $S(n) = 2 \cdot S(n-1), n \ge 2.$

- (i) Expand: S(1) = 2, $S(2) = 2 \cdot S(2) = 4$, $S(3) = 2 \cdot S(2) = 8$,
- (ii) Guess: $S(n) = 2^n$.

Example

$$S(1) = 2$$

 $S(n) = 2 \cdot S(n-1), n \ge 2.$

- (i) Expand: S(1) = 2, $S(2) = 2 \cdot S(2) = 4$, $S(3) = 2 \cdot S(2) = 8$,
- (ii) Guess: $S(n) = 2^n$.
- (iii) Verify:

Example

$$S(1) = 2$$

 $S(n) = 2 \cdot S(n-1), n \ge 2.$

- (i) Expand: S(1) = 2, $S(2) = 2 \cdot S(2) = 4$, $S(3) = 2 \cdot S(2) = 8$,
- (ii) Guess: $S(n) = 2^n$.
- (iii) Verify: Using Induction!

Example

$$S(1) = 2$$

 $S(n) = 2 \cdot S(n-1), n \ge 2.$

- (i) Expand: S(1) = 2, $S(2) = 2 \cdot S(2) = 4$, $S(3) = 2 \cdot S(2) = 8$,
- (ii) Guess: $S(n) = 2^n$.
- (iii) Verify: Using Induction! BASIS: n = 1

Example

$$S(1) = 2$$

 $S(n) = 2 \cdot S(n-1), n > 2.$

- (i) Expand: S(1) = 2, $S(2) = 2 \cdot S(2) = 4$, $S(3) = 2 \cdot S(2) = 8$,
- (ii) Guess: $S(n) = 2^n$.
- (iii) Verify: Using Induction! BASIS: n = 1

$$LHS = 2$$

Example

$$S(1) = 2$$

 $S(n) = 2 \cdot S(n-1), n \ge 2.$

- (i) Expand: S(1) = 2, $S(2) = 2 \cdot S(2) = 4$, $S(3) = 2 \cdot S(2) = 8$,
- (ii) Guess: $S(n) = 2^n$.
- (iii) Verify: Using Induction! BASIS: n = 1

$$LHS = 2$$

$$RHS = 2^{1}$$

Example

$$S(1) = 2$$

 $S(n) = 2 \cdot S(n-1), n > 2.$

- (i) Expand: S(1) = 2, $S(2) = 2 \cdot S(2) = 4$, $S(3) = 2 \cdot S(2) = 8$,
- (ii) Guess: $S(n) = 2^n$.
- (iii) Verify: Using Induction! BASIS: n = 1

$$LHS = 2$$

$$RHS = 2^{1}$$

$$= 2$$

Example

Consider the recurrence:

$$S(1) = 2$$

 $S(n) = 2 \cdot S(n-1), n > 2.$

- (i) Expand: S(1) = 2, $S(2) = 2 \cdot S(2) = 4$, $S(3) = 2 \cdot S(2) = 8$,
- (ii) Guess: $S(n) = 2^n$.
- (iii) Verify: Using Induction! BASIS: n = 1

$$LHS = 2$$

$$RHS = 2^{1}$$

$$= 2$$

Since LHS=RHS, the basis is proven.

Example

Consider the recurrence:

$$S(1) = 2$$

 $S(n) = 2 \cdot S(n-1), n \ge 2.$

- (i) Expand: S(1) = 2, $S(2) = 2 \cdot S(2) = 4$, $S(3) = 2 \cdot S(2) = 8$,
- (ii) Guess: $S(n) = 2^n$.
- (iii) Verify: Using Induction! BASIS: n = 1

$$LHS = 2$$

$$RHS = 2^{1}$$

$$= 2$$

Since LHS=RHS, the basis is proven. INDUCTIVE STEP: Assume that $S(k) = 2^k$.

Example

Consider the recurrence:

$$S(1) = 2$$

 $S(n) = 2 \cdot S(n-1), n \ge 2.$

- (i) Expand: S(1) = 2, $S(2) = 2 \cdot S(2) = 4$, $S(3) = 2 \cdot S(2) = 8$,
- (ii) Guess: $S(n) = 2^n$.
- (iii) Verify: Using Induction!
 BASIS: n = 1

$$LHS = 2$$

$$RHS = 2^{1}$$

$$= 2$$

Since LHS=RHS, the basis is proven.

Example

Consider the recurrence:

$$S(1) = 2$$

 $S(n) = 2 \cdot S(n-1), n \ge 2.$

- (i) Expand: S(1) = 2, $S(2) = 2 \cdot S(2) = 4$, $S(3) = 2 \cdot S(2) = 8$,
- (ii) Guess: $S(n) = 2^n$.
- (iii) Verify: Using Induction!
 BASIS: n = 1

$$LHS = 2$$

$$RHS = 2^{1}$$

$$= 2$$

Since LHS=RHS, the basis is proven.

Example

Consider the recurrence:

$$S(1) = 2$$

 $S(n) = 2 \cdot S(n-1), n \ge 2.$

- (i) Expand: S(1) = 2, $S(2) = 2 \cdot S(2) = 4$, $S(3) = 2 \cdot S(2) = 8$,
- (ii) Guess: $S(n) = 2^n$.
- (iii) Verify: Using Induction!
 BASIS: n = 1

$$LHS = 2$$

$$RHS = 2^{1}$$

$$= 2$$

Since LHS=RHS, the basis is proven.

$$S(k + 1) =$$

Example

Consider the recurrence:

$$S(1) = 2$$

 $S(n) = 2 \cdot S(n-1), n \ge 2.$

- (i) Expand: S(1) = 2, $S(2) = 2 \cdot S(2) = 4$, $S(3) = 2 \cdot S(2) = 8$,
- (ii) Guess: $S(n) = 2^n$.
- (iii) Verify: Using Induction!
 BASIS: n = 1

$$LHS = 2$$

$$RHS = 2^{1}$$

$$= 2$$

Since LHS=RHS, the basis is proven.

$$S(k+1) = 2 \cdot S(k)$$
, by definition

Example

Consider the recurrence:

$$S(1) = 2$$

 $S(n) = 2 \cdot S(n-1), n \ge 2.$

- (i) Expand: S(1) = 2, $S(2) = 2 \cdot S(2) = 4$, $S(3) = 2 \cdot S(2) = 8$,
- (ii) Guess: $S(n) = 2^n$.
- (iii) Verify: Using Induction!
 BASIS: n = 1

$$LHS = 2$$

$$RHS = 2^{1}$$

$$= 2$$

Since LHS=RHS, the basis is proven.

$$S(k+1)$$
 = $2 \cdot S(k)$, by definition
 = $2 \cdot 2^k$, by inductive hypothesis

Example

Consider the recurrence:

$$S(1) = 2$$

 $S(n) = 2 \cdot S(n-1), n \ge 2.$

- (i) Expand: S(1) = 2, $S(2) = 2 \cdot S(2) = 4$, $S(3) = 2 \cdot S(2) = 8$,
- (ii) Guess: $S(n) = 2^n$.
- (iii) Verify: Using Induction! BASIS: n = 1

$$LHS = 2$$

$$RHS = 2^{1}$$

$$= 2$$

Since LHS=RHS, the basis is proven.

$$S(k+1)$$
 = $2 \cdot S(k)$, by definition
 = $2 \cdot 2^k$, by inductive hypothesis
 = 2^{k+1} .

Example

Consider the recurrence:

$$S(1) = 2$$

 $S(n) = 2 \cdot S(n-1), n \ge 2.$

- (i) Expand: S(1) = 2, $S(2) = 2 \cdot S(2) = 4$, $S(3) = 2 \cdot S(2) = 8$,
- (ii) Guess: $S(n) = 2^n$.
- (iii) Verify: Using Induction! BASIS: n = 1

$$LHS = 2$$

$$RHS = 2^{1}$$

$$= 2$$

Since LHS=RHS, the basis is proven.

INDUCTIVE STEP: Assume that $S(k) = 2^k$. We need to show that $S(k+1) = 2^{k+1}$. Observe that,

$$S(k + 1)$$
 = $2 \cdot S(k)$, by definition
= $2 \cdot 2^k$, by inductive hypothesis
= 2^{k+1} .

Applying the first principle of mathematical induction, we conclude that $S(n) = 2^n$.

Example	

Example

Example

$$T(1) = 1$$

Example

$$T(1) = 1$$

 $T(n) = T(n-1) + 3, n \ge 2.$

Example

Solve the recurrence:

$$T(1) = 1$$

 $T(n) = T(n-1) + 3, n \ge 2.$

(i) Expand: T(1) = 1,

Example

$$T(1) = 1$$

 $T(n) = T(n-1) + 3, n \ge 2.$

(i) Expand:
$$T(1) = 1$$
, $T(2) = T(1) + 3 = 4$,

Example

$$T(1) = 1$$

 $T(n) = T(n-1) + 3, n \ge 2.$

(i) Expand:
$$T(1) = 1$$
, $T(2) = T(1) + 3 = 4$, $T(3) = T(2) + 3 = 7$,

Example

$$T(1) = 1$$

 $T(n) = T(n-1) + 3, n \ge 2.$

(i) Expand:
$$T(1) = 1$$
, $T(2) = T(1) + 3 = 4$, $T(3) = T(2) + 3 = 7$, ...

Example

$$T(1) = 1$$

 $T(n) = T(n-1) + 3, n \ge 2.$

- (i) Expand: T(1) = 1, T(2) = T(1) + 3 = 4, T(3) = T(2) + 3 = 7, ...
- (ii) Guess: T(n) =

Example

$$T(1) = 1$$

 $T(n) = T(n-1) + 3, n \ge 2.$

- i) Expand: T(1) = 1, T(2) = T(1) + 3 = 4, T(3) = T(2) + 3 = 7, ...
- (ii) Guess: $T(n) = 3 \cdot n 2$.

EGV (contd.)

Example

Solve the recurrence:

$$T(1) = 1$$

 $T(n) = T(n-1) + 3, n \ge 2.$

- (i) Expand: T(1) = 1, T(2) = T(1) + 3 = 4, T(3) = T(2) + 3 = 7, ...
- (ii) Guess: $T(n) = 3 \cdot n 2$.
- (iii) Verify: Somebody from class!

Definition

Definition

A general linear recurrence has the form:

Definition

A general linear recurrence has the form:

$$S(n) = f_1(n) \cdot S(n-1) + f_2(n) \cdot S(n-2) + \dots + f_k(n) \cdot S(n-k) + g(n).$$

Definition

A general linear recurrence has the form:

$$S(n) = f_1(n) \cdot S(n-1) + f_2(n) \cdot S(n-2) + \dots + f_k(n) \cdot S(n-k) + g(n).$$

Note

Definition

A general linear recurrence has the form:

$$S(n) = f_1(n) \cdot S(n-1) + f_2(n) \cdot S(n-2) + \dots + f_k(n) \cdot S(n-k) + g(n).$$

Note

The above formula is called linear, because the S() terms occur only in the first power.

Definition

A general linear recurrence has the form:

$$S(n) = f_1(n) \cdot S(n-1) + f_2(n) \cdot S(n-2) + \dots + f_k(n) \cdot S(n-k) + g(n).$$

Note

The above formula is called linear, because the S() terms occur only in the first power. It is called first-order, if S(n) depends only on S(n-1).

Definition

A general linear recurrence has the form:

$$S(n) = f_1(n) \cdot S(n-1) + f_2(n) \cdot S(n-2) + \dots + f_k(n) \cdot S(n-k) + g(n).$$

Note

The above formula is called linear, because the S() terms occur only in the first power. It is called first-order, if S(n) depends only on S(n-1). For example, $S(n) = c \cdot S(n-1) + g(n)$.

Definition

A general linear recurrence has the form:

$$S(n) = f_1(n) \cdot S(n-1) + f_2(n) \cdot S(n-2) + \dots + f_k(n) \cdot S(n-k) + g(n).$$

Note

The above formula is called linear, because the S() terms occur only in the first power. It is called first-order, if S(n) depends only on S(n-1).

For example, $S(n) = c \cdot S(n-1) + g(n)$.

The recurrence is called homogeneous, if g(n) = 0, for all n.

$$S(1) = k_0$$

$$S(1) = k_0$$

$$S(n) = c \cdot S(n-1) + g(n)$$

$$S(1) = k_0$$

$$S(n) = c \cdot S(n-1) + g(n)$$

$$\Rightarrow S(n) =$$

$$S(1) = k_0$$

$$S(n) = c \cdot S(n-1) + g(n)$$

$$\Rightarrow S(n) = c^{n-1} \cdot k_0 +$$

$$S(1) = k_0$$

$$S(n) = c \cdot S(n-1) + g(n)$$

$$\Rightarrow S(n) = c^{n-1} \cdot k_0 + \sum_{i=2}^n c^{n-i} \cdot g(i).$$

Formula (including Master Theorem)

xample	

$$S(1) = 2$$

$$S(1) = 2$$

 $S(n) = 2 \cdot S(n-1), n \ge 2.$

Example

$$S(1) = 2$$

 $S(n) = 2 \cdot S(n-1), n \ge 2.$

As per the formula,

Example

$$S(1) = 2$$

 $S(n) = 2 \cdot S(n-1), n \ge 2.$

As per the formula, $k_0 =$

Example

$$S(1) = 2$$

 $S(n) = 2 \cdot S(n-1), n \ge 2.$

As per the formula, $k_0 = 2$,

Example

$$S(1) = 2$$

 $S(n) = 2 \cdot S(n-1), n \ge 2.$

As per the formula, $k_0 = 2$, g(n) =

Example

$$S(1) = 2$$

 $S(n) = 2 \cdot S(n-1), n \ge 2.$

As per the formula, $k_0 = 2$, g(n) = 0 and

Example

$$S(1) = 2$$

 $S(n) = 2 \cdot S(n-1), n \ge 2.$

Example

$$S(1) = 2$$

 $S(n) = 2 \cdot S(n-1), n \ge 2.$

Example

$$S(1) = 2$$

 $S(n) = 2 \cdot S(n-1), n \ge 2.$

$$S(n) =$$

Example

$$S(1) = 2$$

 $S(n) = 2 \cdot S(n-1), n \ge 2.$

$$S(n) = 2^{n-1} \cdot 2 +$$

Example

$$S(1) = 2$$

 $S(n) = 2 \cdot S(n-1), n \ge 2.$

$$S(n) = 2^{n-1} \cdot 2 + \sum_{i=2}^{n} 2^{n-i} \cdot 0$$

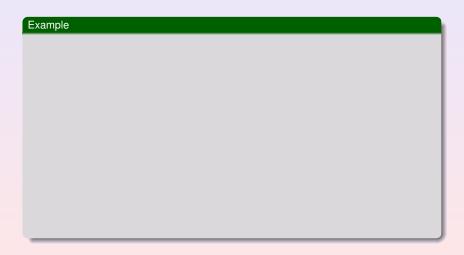
Example

$$S(1) = 2$$

 $S(n) = 2 \cdot S(n-1), n \ge 2.$

$$S(n) = 2^{n-1} \cdot 2 + \sum_{i=2}^{n} 2^{n-i} \cdot 0$$

= 2^{n} .



Example

Solve the recurrence:

Example

Solve the recurrence:

$$S(1) = 4$$

Example

Solve the recurrence:

$$S(1) = 4$$

 $S(n) = 2 \cdot S(n-1) + 3, n \ge 2.$

Example

Solve the recurrence:

$$S(1) = 4$$

 $S(n) = 2 \cdot S(n-1) + 3, n \ge 2.$

As per the formula,

Example

Solve the recurrence:

$$S(1) = 4$$

 $S(n) = 2 \cdot S(n-1) + 3, n \ge 2.$

As per the formula, $k_0 =$

Example

Solve the recurrence:

$$S(1) = 4$$

 $S(n) = 2 \cdot S(n-1) + 3, n \ge 2.$

As per the formula, $k_0 = 4$,

Example

Solve the recurrence:

$$S(1) = 4$$

 $S(n) = 2 \cdot S(n-1) + 3, n \ge 2.$

As per the formula, $k_0 = 4$, g(n) =

Example

Solve the recurrence:

$$S(1) = 4$$

 $S(n) = 2 \cdot S(n-1) + 3, n \ge 2.$

As per the formula, $k_0 = 4$, g(n) = 3 and

Example

Solve the recurrence:

$$S(1) = 4$$

 $S(n) = 2 \cdot S(n-1) + 3, n \ge 2.$

Example

Solve the recurrence:

$$S(1) = 4$$

 $S(n) = 2 \cdot S(n-1) + 3, n \ge 2.$

Example

Solve the recurrence:

$$S(1) = 4$$

 $S(n) = 2 \cdot S(n-1) + 3, n \ge 2.$

$$S(n) =$$

Example

Solve the recurrence:

$$S(1) = 4$$

 $S(n) = 2 \cdot S(n-1) + 3, n \ge 2.$

$$S(n) = 2^{n-1} \cdot 4 +$$

Example

Solve the recurrence:

$$S(1) = 4$$

 $S(n) = 2 \cdot S(n-1) + 3, n \ge 2.$

$$S(n) = 2^{n-1} \cdot 4 + \sum_{i=2}^{n} 2^{n-i} \cdot 3$$

Example

Solve the recurrence:

$$S(1) = 4$$

 $S(n) = 2 \cdot S(n-1) + 3, n \ge 2.$

$$S(n) = 2^{n-1} \cdot 4 + \sum_{i=2}^{n} 2^{n-i} \cdot 3$$
$$= 2^{n+1} + 3 \cdot \sum_{i=2}^{n} 2^{n-i}$$

Example

Solve the recurrence:

$$S(1) = 4$$

 $S(n) = 2 \cdot S(n-1) + 3, n \ge 2.$

$$S(n) = 2^{n-1} \cdot 4 + \sum_{i=2}^{n} 2^{n-i} \cdot 3$$

$$= 2^{n+1} + 3 \cdot \sum_{i=2}^{n} 2^{n-i}$$

$$= 2^{n+1} + 3 \cdot [2^{n-2} + 2^{n-3} + \dots + 2^{0}]$$

Example

Solve the recurrence:

$$S(1) = 4$$

 $S(n) = 2 \cdot S(n-1) + 3, n \ge 2.$

$$S(n) = 2^{n-1} \cdot 4 + \sum_{i=2}^{n} 2^{n-i} \cdot 3$$

$$= 2^{n+1} + 3 \cdot \sum_{i=2}^{n} 2^{n-i}$$

$$= 2^{n+1} + 3 \cdot [2^{n-2} + 2^{n-3} + \dots + 2^{0}]$$

$$= 2^{n+1} + 3 \cdot [2^{n-1} - 1].$$

Formula (including Master Theorem)

Second Order homogeneous Linear Recurrence with constant coefficients

Formula		

Formula		

Formula

(i) Form: $S(n) = c_1 \cdot S(n-1) + c_2 \cdot S(n-2)$, subject to some initial conditions

Formula

(i) Form: $S(n) = c_1 \cdot S(n-1) + c_2 \cdot S(n-2)$, subject to some initial conditions (usually S(1) and S(2)).

- (i) Form: $S(n) = c_1 \cdot S(n-1) + c_2 \cdot S(n-2)$, subject to some initial conditions (usually S(1) and S(2)).
- (ii) Solve the characteristic equation: $t^2 c_1 \cdot t c_2 = 0$.

- (i) Form: $S(n) = c_1 \cdot S(n-1) + c_2 \cdot S(n-2)$, subject to some initial conditions (usually S(1) and S(2)).
- (ii) Solve the characteristic equation: $t^2 c_1 \cdot t c_2 = 0$. Let r_1 and r_2 denote the roots.

- (i) Form: $S(n) = c_1 \cdot S(n-1) + c_2 \cdot S(n-2)$, subject to some initial conditions (usually S(1) and S(2)).
- (ii) Solve the characteristic equation: $t^2 c_1 \cdot t c_2 = 0$. Let r_1 and r_2 denote the roots.

- (i) Form: $S(n) = c_1 \cdot S(n-1) + c_2 \cdot S(n-2)$, subject to some initial conditions (usually S(1) and S(2)).
- (ii) Solve the characteristic equation: $t^2 c_1 \cdot t c_2 = 0$. Let r_1 and r_2 denote the roots.
 - (a) If $r_1 \neq r_2$, solve

$$p+q = S(1)$$

$$p \cdot r_1 + q \cdot r_2 = S(2)$$

- (i) Form: $S(n) = c_1 \cdot S(n-1) + c_2 \cdot S(n-2)$, subject to some initial conditions (usually S(1) and S(2)).
- (ii) Solve the characteristic equation: $t^2-c_1\cdot t-c_2=0$. Let r_1 and r_2 denote the roots.
 - (a) If $r_1 \neq r_2$, solve

$$p+q = S(1)$$

$$p \cdot r_1 + q \cdot r_2 = S(2)$$

Then,
$$S(n) = p \cdot r_1^{n-1} + q \cdot r_2^{n-1}$$
.

- (i) Form: $S(n) = c_1 \cdot S(n-1) + c_2 \cdot S(n-2)$, subject to some initial conditions (usually S(1) and S(2)).
- (ii) Solve the characteristic equation: $t^2 c_1 \cdot t c_2 = 0$. Let r_1 and r_2 denote the roots.
 - (a) If $r_1 \neq r_2$, solve

$$p+q = S(1)$$

$$p \cdot r_1 + q \cdot r_2 = S(2)$$

Then,
$$S(n) = p \cdot r_1^{n-1} + q \cdot r_2^{n-1}$$
.
(b) If $r_1 = r_2 = r$, solve

$$p = S(1)$$

$$(p+q)\cdot r = S(2)$$

Formula

- (i) Form: $S(n) = c_1 \cdot S(n-1) + c_2 \cdot S(n-2)$, subject to some initial conditions (usually S(1) and S(2)).
- (ii) Solve the characteristic equation: $t^2 c_1 \cdot t c_2 = 0$. Let r_1 and r_2 denote the roots.
 - (a) If $r_1 \neq r_2$, solve

$$p+q = S(1)$$

$$p \cdot r_1 + q \cdot r_2 = S(2)$$

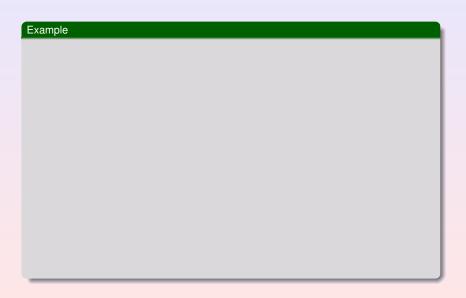
Then,
$$S(n) = p \cdot r_1^{n-1} + q \cdot r_2^{n-1}$$
.

(b) If $r_1 = r_2 = r$, solve

$$p = S(1)$$

$$(p+q)\cdot r = S(2)$$

Then,
$$S(n) = p \cdot r^{n-1} + q \cdot (n-1) \cdot r^{n-1}$$
.



Example

Example

$$T(1) = 5$$

Example

$$T(1) = 5$$

$$T(2) = 13$$

Example

Formula (including Master Theorem)

$$T(1) = 5$$

$$T(2) = 13$$

$$T(n) = 6 \cdot T(n-1) - 5 \cdot T(n-2), \ n \ge 3.$$

Example

Solve the recurrence relation

$$T(1) = 5$$

 $T(2) = 13$
 $T(n) = 6 \cdot T(n-1) - 5 \cdot T(n-2), n \ge 3.$

Example

Solve the recurrence relation

$$T(1) = 5$$

 $T(2) = 13$
 $T(n) = 6 \cdot T(n-1) - 5 \cdot T(n-2), n \ge 3.$

Example

Solve the recurrence relation

$$T(1) = 5$$

$$T(2) = 13$$

$$T(n) = 6 \cdot T(n-1) - 5 \cdot T(n-2), \ n \ge 3.$$

(i)
$$c_1 = 6$$
, $c_2 = -5$.

Example

Solve the recurrence relation

$$T(1) = 5$$

 $T(2) = 13$
 $T(n) = 6 \cdot T(n-1) - 5 \cdot T(n-2), n \ge 3.$

(i)
$$c_1 = 6$$
, $c_2 = -5$. Characteristic equation:

Example

Solve the recurrence relation

$$T(1) = 5$$

$$T(2) = 13$$

$$T(n) \quad = \quad 6 \cdot T(n-1) - 5 \cdot T(n-2), \ n \geq 3.$$

(i)
$$c_1 = 6$$
, $c_2 = -5$. Characteristic equation: $t^2 - 6 \cdot t + 5 = 0$.

Example

Solve the recurrence relation

$$T(1) = 5$$

 $T(2) = 13$
 $T(n) = 6 \cdot T(n-1) - 5 \cdot T(n-2), n \ge 3.$

Solution:

(i) $c_1 = 6$, $c_2 = -5$. Characteristic equation: $t^2 - 6 \cdot t + 5 = 0$. Solution is:

Example

Solve the recurrence relation

$$T(1) = 5$$

 $T(2) = 13$
 $T(n) = 6 \cdot T(n-1) - 5 \cdot T(n-2), n \ge 3.$

Solution:

(i) $c_1=6$, $c_2=-5$. Characteristic equation: $t^2-6\cdot t+5=0$. Solution is: $r_1=1$, $r_2=5$.

Example

Solve the recurrence relation

$$T(1) = 5$$

 $T(2) = 13$
 $T(n) = 6 \cdot T(n-1) - 5 \cdot T(n-2), n \ge 3.$

- (i) $c_1 = 6$, $c_2 = -5$. Characteristic equation: $t^2 6 \cdot t + 5 = 0$. Solution is: $r_1 = 1$, $r_2 = 5$.
- (ii) Solve the equations:

Example

Formula (including Master Theorem)

Solve the recurrence relation

$$T(1) = 5$$

 $T(2) = 13$
 $T(n) = 6 \cdot T(n-1) - 5 \cdot T(n-2), n \ge 3.$

- (i) $c_1 = 6$, $c_2 = -5$. Characteristic equation: $t^2 6 \cdot t + 5 = 0$. Solution is: $r_1 = 1$, $r_2 = 5$.
- (ii) Solve the equations:

$$p + q = T(1) = 5$$

Example

Solve the recurrence relation

$$T(1) = 5$$

 $T(2) = 13$
 $T(n) = 6 \cdot T(n-1) - 5 \cdot T(n-2), n \ge 3.$

- (i) $c_1 = 6$, $c_2 = -5$. Characteristic equation: $t^2 6 \cdot t + 5 = 0$. Solution is: $r_1 = 1$, $r_2 = 5$.
- (ii) Solve the equations:

$$p + q = T(1) = 5$$

 $p \cdot 1 + q \cdot 5 = T(2) = 13$

Example

Solve the recurrence relation

$$T(1) = 5$$

 $T(2) = 13$
 $T(n) = 6 \cdot T(n-1) - 5 \cdot T(n-2), n \ge 3.$

Solution:

- (i) $c_1 = 6$, $c_2 = -5$. Characteristic equation: $t^2 6 \cdot t + 5 = 0$. Solution is: $r_1 = 1$, $r_2 = 5$.
- (ii) Solve the equations:

$$p+q = T(1) = 5$$

 $p \cdot 1 + q \cdot 5 = T(2) = 13$

We get p = 3 and q = 2.

Example

Solve the recurrence relation

$$T(1) = 5$$

 $T(2) = 13$
 $T(n) = 6 \cdot T(n-1) - 5 \cdot T(n-2), n \ge 3.$

Solution:

- (i) $c_1=6$, $c_2=-5$. Characteristic equation: $t^2-6\cdot t+5=0$. Solution is: $r_1=1$, $r_2=5$.
- (ii) Solve the equations:

$$p + q = T(1) = 5$$

 $p \cdot 1 + q \cdot 5 = T(2) = 13$

We get p = 3 and q = 2.

(iii) Accordingly, the solution is T(n) =

Example

Solve the recurrence relation

$$T(1) = 5$$

 $T(2) = 13$
 $T(n) = 6 \cdot T(n-1) - 5 \cdot T(n-2), n \ge 3.$

Solution:

- (i) $c_1 = 6$, $c_2 = -5$. Characteristic equation: $t^2 6 \cdot t + 5 = 0$. Solution is: $r_1 = 1$, $r_2 = 5$.
- (ii) Solve the equations:

$$p + q = T(1) = 5$$

 $p \cdot 1 + q \cdot 5 = T(2) = 13$

We get p = 3 and q = 2.

(iii) Accordingly, the solution is $T(n) = 3 \cdot 1^{n-1} + 1$

Example

Solve the recurrence relation

$$T(1) = 5$$

 $T(2) = 13$
 $T(n) = 6 \cdot T(n-1) - 5 \cdot T(n-2), n \ge 3.$

Solution:

- (i) $c_1 = 6$, $c_2 = -5$. Characteristic equation: $t^2 6 \cdot t + 5 = 0$. Solution is: $r_1 = 1$, $r_2 = 5$.
- (ii) Solve the equations:

$$p+q = T(1) = 5$$

 $p \cdot 1 + q \cdot 5 = T(2) = 13$

We get p = 3 and q = 2.

(iii) Accordingly, the solution is $T(n) = 3 \cdot 1^{n-1} + 2 \cdot 5^{n-1} =$

Example

Solve the recurrence relation

$$T(1) = 5$$

 $T(2) = 13$
 $T(n) = 6 \cdot T(n-1) - 5 \cdot T(n-2), n \ge 3.$

Solution:

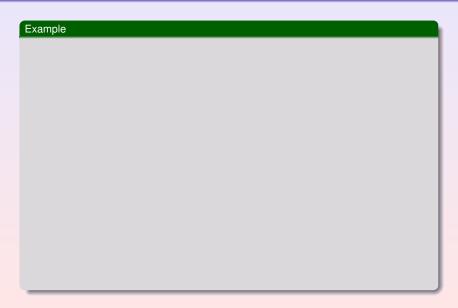
- (i) $c_1 = 6$, $c_2 = -5$. Characteristic equation: $t^2 6 \cdot t + 5 = 0$. Solution is: $r_1 = 1$, $r_2 = 5$.
- (ii) Solve the equations:

$$p + q = T(1) = 5$$

 $p \cdot 1 + q \cdot 5 = T(2) = 13$

We get p = 3 and q = 2.

(iii) Accordingly, the solution is $T(n) = 3 \cdot 1^{n-1} + 2 \cdot 5^{n-1} = 3 + 2 \cdot 5^{n-1}$.



Example

Example

$$S(1) = 1$$

Example

$$S(1) = 1$$

 $S(2) = 12$

Example

$$S(1) = 1$$

$$S(2) = 12$$

$$S(n) = 8 \cdot S(n-1) - 16 \cdot S(n-2), \ n \ge 3$$

Example

Solve the recurrence relation:

$$S(1) = 1$$

 $S(2) = 12$

$$S(n) = 8 \cdot S(n-1) - 16 \cdot S(n-2), \ n \ge 3$$

Example

Solve the recurrence relation:

$$S(1) = 1$$

 $S(2) = 12$

$$S(n) = 8 \cdot S(n-1) - 16 \cdot S(n-2), \ n \ge 3$$

Example

Solve the recurrence relation:

$$S(1) = 1$$

$$S(2) = 12$$

$$S(n) = 8 \cdot S(n-1) - 16 \cdot S(n-2), \ n \ge 3$$

(i)
$$c_1 = 8$$
, $c_2 = -16$.

Example

Solve the recurrence relation:

$$S(1) = 1$$

 $S(2) = 12$
 $S(n) = 8 \cdot S(n-1) - 16 \cdot S(n-2), n \ge 3$

(i)
$$c_1 = 8$$
, $c_2 = -16$. Characteristic equation: $t^2 - 8t + 16 = 0$.

Example

Solve the recurrence relation:

$$S(1) = 1$$

 $S(2) = 12$
 $S(n) = 8 \cdot S(n-1) - 16 \cdot S(n-2), n \ge 3$

Solution:

(i) $c_1 = 8$, $c_2 = -16$. Characteristic equation: $t^2 - 8t + 16 = 0$. Solution is $r_1 = r_2 = 4$.

Example

Solve the recurrence relation:

$$S(1) = 1$$

 $S(2) = 12$
 $S(n) = 8 \cdot S(n-1) - 16 \cdot S(n-2), n \ge 3$

- (i) $c_1 = 8$, $c_2 = -16$. Characteristic equation: $t^2 8t + 16 = 0$. Solution is $r_1 = r_2 = 4$.
- (ii) Solve the equations:

Example

Solve the recurrence relation:

$$S(1) = 1$$

 $S(2) = 12$
 $S(n) = 8 \cdot S(n-1) - 16 \cdot S(n-2), n \ge 3$

- (i) $c_1 = 8$, $c_2 = -16$. Characteristic equation: $t^2 8t + 16 = 0$. Solution is $r_1 = r_2 = 4$.
- (ii) Solve the equations:

$$p = 1$$

Example

Solve the recurrence relation:

$$S(1) = 1$$

 $S(2) = 12$
 $S(n) = 8 \cdot S(n-1) - 16 \cdot S(n-2), n \ge 3$

- (i) $c_1 = 8$, $c_2 = -16$. Characteristic equation: $t^2 8t + 16 = 0$. Solution is $r_1 = r_2 = 4$.
- (ii) Solve the equations:

$$p = 1$$

$$p \cdot 4 + q \cdot 4 = 12$$

Example

Solve the recurrence relation:

$$S(1) = 1$$

 $S(2) = 12$
 $S(n) = 8 \cdot S(n-1) - 16 \cdot S(n-2), n \ge 3$

Solution:

- (i) $c_1 = 8$, $c_2 = -16$. Characteristic equation: $t^2 8t + 16 = 0$. Solution is $r_1 = r_2 = 4$.
- (ii) Solve the equations:

$$\begin{array}{rcl} p & = & 1 \\ p \cdot 4 + q \cdot 4 & = & 12 \end{array}$$

We get p = 1 and q = 2.

Example

Solve the recurrence relation:

$$S(1) = 1$$

 $S(2) = 12$
 $S(n) = 8 \cdot S(n-1) - 16 \cdot S(n-2), n \ge 3$

Solution:

- (i) $c_1 = 8$, $c_2 = -16$. Characteristic equation: $t^2 8t + 16 = 0$. Solution is $r_1 = r_2 = 4$.
- (ii) Solve the equations:

$$p = 1$$

$$p \cdot 4 + q \cdot 4 = 12$$

We get p = 1 and q = 2.

(iii) Accordingly, the solution is S(n) =

Example

Solve the recurrence relation:

$$S(1) = 1$$

 $S(2) = 12$
 $S(n) = 8 \cdot S(n-1) - 16 \cdot S(n-2), n \ge 3$

Solution:

- (i) $c_1 = 8$, $c_2 = -16$. Characteristic equation: $t^2 8t + 16 = 0$. Solution is $r_1 = r_2 = 4$.
- (ii) Solve the equations:

$$p = 1$$

$$p \cdot 4 + q \cdot 4 = 12$$

We get p = 1 and q = 2.

(iii) Accordingly, the solution is $S(n) = 4^{n-1} +$

Example

Solve the recurrence relation:

$$S(1) = 1$$

 $S(2) = 12$
 $S(n) = 8 \cdot S(n-1) - 16 \cdot S(n-2), n \ge 3$

Solution:

- (i) $c_1 = 8$, $c_2 = -16$. Characteristic equation: $t^2 8t + 16 = 0$. Solution is $r_1 = r_2 = 4$.
- (ii) Solve the equations:

$$p = 1$$
$$p \cdot 4 + q \cdot 4 = 12$$

We get p = 1 and q = 2.

(iii) Accordingly, the solution is $S(n) = 4^{n-1} + 2 \cdot (n-1) \cdot 4^{n-1} =$

Example

Solve the recurrence relation:

$$S(1) = 1$$

 $S(2) = 12$
 $S(n) = 8 \cdot S(n-1) - 16 \cdot S(n-2), n \ge 3$

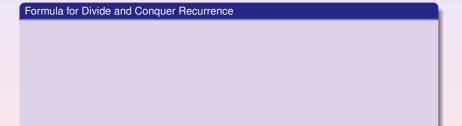
Solution:

- (i) $c_1 = 8$, $c_2 = -16$. Characteristic equation: $t^2 8t + 16 = 0$. Solution is $r_1 = r_2 = 4$.
- (ii) Solve the equations:

$$p = 1$$
$$p \cdot 4 + q \cdot 4 = 12$$

We get p = 1 and q = 2.

(iii) Accordingly, the solution is $S(n) = 4^{n-1} + 2 \cdot (n-1) \cdot 4^{n-1} = (2 \cdot n - 1) \cdot 4^{n-1}$.



$$S(1) = k_0$$

$$S(1) = k_0$$

 $S(n) = c \cdot S(\frac{n}{2}) + g(n), n \ge 2, n = 2^m.$

$$\begin{split} & \mathcal{S}(1) & = & k_0 \\ & \mathcal{S}(n) & = & c \cdot \mathcal{S}(\frac{n}{2}) + g(n), \ n \geq 2, \ n = 2^m. \end{split}$$

$$\Rightarrow S(n) =$$

$$S(1) = k_0 S(n) = c \cdot S(\frac{n}{2}) + g(n), \ n \ge 2, \ n = 2^m.$$

$$\Rightarrow S(n) = c^{\log n} \cdot k_0 +$$

Divide and Conquer Recurrences

Formula for Divide and Conquer Recurrence

$$S(1) = k_0$$

 $S(n) = c \cdot S(\frac{n}{2}) + g(n), n \ge 2, n = 2^m.$

$$\Rightarrow S(n) = c^{\log n} \cdot k_0 + \sum_{i=1}^{\log n} c^{\log n - i} \cdot g(2^i).$$

Divide and Conquer Recurrences

Formula for Divide and Conquer Recurrence

$$S(1) = k_0$$

 $S(n) = c \cdot S(\frac{n}{2}) + g(n), n \ge 2, n = 2^m.$

$$\Rightarrow$$
 $S(n) = c^{\log n} \cdot k_0 + \sum_{i=1}^{\log n} c^{\log n - i} \cdot g(2^i)$. (All logarithms are to base 2).

Divide and Conquer Recurrences

Formula for Divide and Conquer Recurrence

$$S(1) = k_0$$

 $S(n) = c \cdot S(\frac{n}{2}) + g(n), n \ge 2, n = 2^m.$

$$\Rightarrow S(n) = c^{\log n} \cdot k_0 + \sum_{i=1}^{\log n} c^{\log n - i} \cdot g(2^i)$$
. (All logarithms are to base 2).

Note that $c^{\log n - i}$ in the expression above stands for $\frac{c^{\log n}}{c^i}$.

Example	

Example

Example

$$C(1) = 1$$

Example

$$C(1) = 1$$

 $C(n) = 1 + C(\frac{n}{2}), n \ge 2, n = 2^{m}.$

Example

Solve the recurrence:

$$C(1) = 1$$

 $C(n) = 1 + C(\frac{n}{2}), n \ge 2, n = 2^{m}.$

Note that

Example

Solve the recurrence:

$$C(1) = 1$$

 $C(n) = 1 + C(\frac{n}{2}), n \ge 2, n = 2^{m}.$

Note that $k_0 =$

Example

Solve the recurrence:

$$C(1) = 1$$

$$C(1) = 1$$

 $C(n) = 1 + C(\frac{n}{2}), n \ge 2, n = 2^{m}.$

Note that $k_0 = 1$,

Example

Solve the recurrence:

$$C(1) = 1$$

 $C(n) = 1 + C(\frac{n}{2}), n \ge 2, n = 2^{m}.$

Note that $k_0 = 1$, c =

Example

Solve the recurrence:

$$C(1) = 1$$

 $C(n) = 1 + C(\frac{n}{2}), n \ge 2, n = 2^{m}.$

Note that $k_0 = 1$, c = 1 and

Example

Solve the recurrence:

$$C(1) = 1$$

 $C(n) = 1 + C(\frac{n}{2}), n \ge 2, n = 2^{m}.$

Note that $k_0 = 1$, c = 1 and g(i) =

Example

Solve the recurrence:

$$C(1) = 1$$

 $C(n) = 1 + C(\frac{n}{2}), n \ge 2, n = 2^{m}.$

Note that $k_0 = 1$, c = 1 and g(i) = 1, $\forall i$.

Example

Solve the recurrence:

$$C(1) = 1$$

 $C(n) = 1 + C(\frac{n}{2}), n \ge 2, n = 2^{m}.$

Note that $k_0=1, c=1$ and $g(i)=1, \ \forall i$. Hence, $g(2^i)=1, \ \forall i$.

Example

Solve the recurrence:

$$C(1) = 1$$

 $C(n) = 1 + C(\frac{n}{2}), n \ge 2, n = 2^{m}.$

Example

Solve the recurrence:

$$C(1) = 1$$

 $C(n) = 1 + C(\frac{n}{2}), n \ge 2, n = 2^{m}.$

$$C(n) =$$

Example

Solve the recurrence:

$$C(1) = 1$$

 $C(n) = 1 + C(\frac{n}{2}), n \ge 2, n = 2^{m}.$

$$C(n) = 1^{\log n} \cdot 1 +$$

Example

Solve the recurrence:

$$C(1) = 1$$

 $C(n) = 1 + C(\frac{n}{2}), n \ge 2, n = 2^{m}.$

$$C(n) = 1^{\log n} \cdot 1 + \sum_{i=1}^{\log n} 1^{\log n - i} \cdot (1)$$

Example

Solve the recurrence:

$$C(1) = 1$$

 $C(n) = 1 + C(\frac{n}{2}), n \ge 2, n = 2^{m}.$

$$C(n) = 1^{\log n} \cdot 1 + \sum_{i=1}^{\log n} 1^{\log n - i} \cdot (1)$$

= 1 + (\log n) \cdot 1

Example

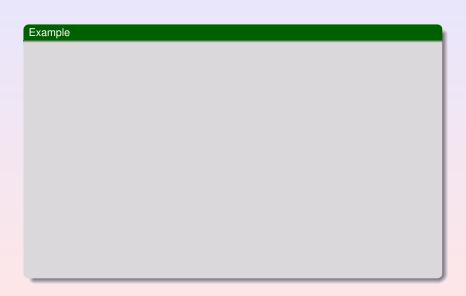
Solve the recurrence:

$$C(1) = 1$$

 $C(n) = 1 + C(\frac{n}{2}), n \ge 2, n = 2^{m}.$

$$C(n) = 1^{\log n} \cdot 1 + \sum_{i=1}^{\log n} 1^{\log n - i} \cdot (1)$$

= 1 + (\log n) \cdot 1
= 1 + \log n.



$$T(1) =$$

$$T(1) = 3$$

 $T(n) = 2 \cdot T(\frac{n}{2}) + 2 \cdot n, \ n \ge 2, \ n = 2^{m}.$

Solve the recurrence:

$$T(1) =$$

$$T(1) = 3$$

$$T(n) = 2 \cdot T(\frac{n}{2}) + 2 \cdot n, \ n \ge 2, \ n = 2^{m}.$$

Note that

Solve the recurrence:

$$T(1) =$$

$$T(1) = 3$$

$$T(n) = 2 \cdot T(\frac{n}{2}) + 2 \cdot n, \ n \ge 2, \ n = 2^{m}.$$

Note that $k_0 =$

Solve the recurrence:

$$T(1) =$$

$$T(1) = 3$$

 $T(n) = 2 \cdot T(\frac{n}{2}) + 2 \cdot n, \ n \ge 2, \ n = 2^{m}.$

Note that $k_0 = 3$,

Solve the recurrence:

$$T(1) =$$

$$T(1) = 3$$

 $T(n) = 2 \cdot T(\frac{n}{2}) + 2 \cdot n, \ n \ge 2, \ n = 2^{m}.$

Note that $k_0 = 3$, c =

Solve the recurrence:

$$T(1) =$$

$$T(1) = 3$$

 $T(n) = 2 \cdot T(\frac{n}{2}) + 2 \cdot n, \ n \ge 2, \ n = 2^{m}.$

Note that $k_0 = 3$, c = 2 and

Solve the recurrence:

$$T(1) =$$

$$T(1) = 3$$

 $T(n) = 2 \cdot T(\frac{n}{2}) + 2 \cdot n, \ n \ge 2, \ n = 2^{m}.$

Note that $k_0 = 3$, c = 2 and g(i) =

Solve the recurrence:

$$T(1) =$$

$$T(1) = 3$$

 $T(n) = 2 \cdot T(\frac{n}{2}) + 2 \cdot n, \ n \ge 2, \ n = 2^{m}.$

Note that $k_0 = 3$, c = 2 and $g(i) = 2 \cdot i$, $\forall i$.

Solve the recurrence:

$$T(1) = 3$$

 $T(n) = 2 \cdot T(\frac{n}{2}) + 2 \cdot n, n \ge 2, n = 2^{m}.$

Note that $k_0=3,\,c=2$ and $g(i)=2\cdot i,\,\,\,\,\forall i.$ It follows that $g(2^i)=$

Solve the recurrence:

$$T(1) = 3$$

 $T(n) = 2 \cdot T(\frac{n}{2}) + 2 \cdot n, \ n \ge 2, \ n = 2^{m}.$

Note that $k_0=3, c=2$ and $g(i)=2\cdot i, \ \ \forall i.$ It follows that $g(2^i)=2\cdot 2^i, \ \forall i.$

Solve the recurrence:

$$T(1) = 3$$

 $T(n) = 2 \cdot T(\frac{n}{2}) + 2 \cdot n, \ n \ge 2, \ n = 2^{m}.$

Note that $k_0=3,\,c=2$ and $g(i)=2\cdot i,\,\,\,\forall i.$ It follows that $g(2^i)=2\cdot 2^j,\,\forall i.$

As per the formula,

Solve the recurrence:

$$T(1) = 3$$

 $T(n) = 2 \cdot T(\frac{n}{2}) + 2 \cdot n, n \ge 2, n = 2^{m}.$

Note that $k_0=3,\,c=2$ and $g(i)=2\cdot i,\,\,\,\forall i.$ It follows that $g(2^i)=2\cdot 2^i,\,\forall i.$

As per the formula,

$$T(n) =$$

Solve the recurrence:

$$T(1)$$
 = 3
 $T(n)$ = $2 \cdot T(\frac{n}{2}) + 2 \cdot n, n \ge 2, n = 2^{m}.$

Note that $k_0=3,\,c=2$ and $g(i)=2\cdot i,\;\;\forall i.$ It follows that $g(2^i)=2\cdot 2^i,\,\forall i.$

As per the formula,

$$T(n) = 2^{\log n} \cdot 3 +$$

Solve the recurrence:

$$T(1) = 3$$

$$T(n) = 2 \cdot T(\frac{n}{2}) + 2 \cdot n, \ n \ge 2, \ n = 2^{m}.$$

Note that $k_0=3,\,c=2$ and $g(i)=2\cdot i,\,\,\,\forall i.$ It follows that $g(2^i)=2\cdot 2^i,\,\forall i.$

$$T(n) = 2^{\log n} \cdot 3 + \sum_{i=1}^{\log n} 2^{\log n - i}$$

Solve the recurrence:

$$T(1) = 3$$

$$T(n) = 2 \cdot T(\frac{n}{2}) + 2 \cdot n, \ n \ge 2, \ n = 2^{m}.$$

Note that $k_0=3, c=2$ and $g(i)=2\cdot i, \ \ \forall i.$ It follows that $g(2^i)=2\cdot 2^i, \ \forall i.$

$$T(n) = 2^{\log n} \cdot 3 + \sum_{i=1}^{\log n} 2^{\log n - i} \cdot 2 \cdot (2^i)$$

Solve the recurrence:

$$T(1) = 3$$

 $T(n) = 2 \cdot T(\frac{n}{2}) + 2 \cdot n, \ n \ge 2, \ n = 2^{m}.$

Note that $k_0=3,\,c=2$ and $g(i)=2\cdot i,\,\,\,\forall i.$ It follows that $g(2^i)=2\cdot 2^i,\,\forall i.$

$$T(n) = 2^{\log n} \cdot 3 + \sum_{i=1}^{\log n} 2^{\log n - i} \cdot 2 \cdot (2^{i})$$

$$= 3 \cdot 2^{\log n} + \sum_{i=1}^{\log n} 2^{\log n + 1}$$

Solve the recurrence:

$$T(1) = 3$$

 $T(n) = 2 \cdot T(\frac{n}{2}) + 2 \cdot n, \ n \ge 2, \ n = 2^{m}.$

Note that $k_0=3, c=2$ and $g(i)=2\cdot i, \ \ \forall i.$ It follows that $g(2^i)=2\cdot 2^j, \ \forall i.$

$$T(n) = 2^{\log n} \cdot 3 + \sum_{i=1}^{\log n} 2^{\log n - i} \cdot 2 \cdot (2^{i})$$

$$= 3 \cdot 2^{\log n} + \sum_{i=1}^{\log n} 2^{\log n + 1}$$

$$= 3 \cdot n + 2^{\log n + 1} \cdot (\log n),$$

Solve the recurrence:

$$T(1) = 3$$

 $T(n) = 2 \cdot T(\frac{n}{2}) + 2 \cdot n, \ n \ge 2, \ n = 2^{m}.$

Note that $k_0=3, c=2$ and $g(i)=2\cdot i, \ \ \forall i.$ It follows that $g(2^i)=2\cdot 2^i, \ \forall i.$

$$T(n) = 2^{\log n} \cdot 3 + \sum_{i=1}^{\log n} 2^{\log n - i} \cdot 2 \cdot (2^{i})$$

$$= 3 \cdot 2^{\log n} + \sum_{i=1}^{\log n} 2^{\log n + 1}$$

$$= 3 \cdot n + 2^{\log n + 1} \cdot (\log n),$$

$$= 3 \cdot n + 2^{\log n} \cdot 2 \cdot \log n$$

Solve the recurrence:

$$T(1) = 3$$

 $T(n) = 2 \cdot T(\frac{n}{2}) + 2 \cdot n, \ n \ge 2, \ n = 2^{m}.$

Note that $k_0=3, c=2$ and $g(i)=2\cdot i, \ \ \forall i.$ It follows that $g(2^i)=2\cdot 2^i, \ \forall i.$

$$\begin{split} T(n) & = & 2^{\log n} \cdot 3 + \sum_{i=1}^{\log n} 2^{\log n - i} \cdot 2 \cdot (2^i) \\ & = & 3 \cdot 2^{\log n} + \sum_{i=1}^{\log n} 2^{\log n + 1} \\ & = & 3 \cdot n + 2^{\log n + 1} \cdot (\log n), \\ & = & 3 \cdot n + 2^{\log n} \cdot 2 \cdot \log n \\ & = & 3 \cdot n + n \cdot 2 \cdot \log n, \end{split}$$

Solve the recurrence:

$$T(1) = 3$$

 $T(n) = 2 \cdot T(\frac{n}{2}) + 2 \cdot n, \ n \ge 2, \ n = 2^{m}.$

Note that $k_0=3,\,c=2$ and $g(i)=2\cdot i,\,\,\,\forall i.$ It follows that $g(2^i)=2\cdot 2^i,\,\,\forall i.$

$$T(n) = 2^{\log n} \cdot 3 + \sum_{i=1}^{\log n} 2^{\log n - i} \cdot 2 \cdot (2^i)$$

$$= 3 \cdot 2^{\log n} + \sum_{i=1}^{\log n} 2^{\log n + 1}$$

$$= 3 \cdot n + 2^{\log n + 1} \cdot (\log n),$$

$$= 3 \cdot n + 2^{\log n + 2} \cdot 2 \cdot \log n$$

$$= 3 \cdot n + n \cdot 2 \cdot \log n, \text{ since } (a^{\log a} = n, a \neq 0)$$

Solve the recurrence:

$$T(1) = 3$$

 $T(n) = 2 \cdot T(\frac{n}{2}) + 2 \cdot n, \ n \ge 2, \ n = 2^{m}.$

Note that $k_0=3, c=2$ and $g(i)=2\cdot i, \ \ \forall i.$ It follows that $g(2^i)=2\cdot 2^i, \ \forall i.$

$$T(n) = 2^{\log n} \cdot 3 + \sum_{i=1}^{\log n} 2^{\log n - i} \cdot 2 \cdot (2^i)$$

$$= 3 \cdot 2^{\log n} + \sum_{i=1}^{\log n} 2^{\log n + 1}$$

$$= 3 \cdot n + 2^{\log n + 1} \cdot (\log n),$$

$$= 3 \cdot n + 2^{\log n} \cdot 2 \cdot \log n$$

$$= 3 \cdot n + 2 \cdot \log n, \text{ since } (a^{\log a} = n, a \neq 0)$$

$$= 3 \cdot n + 2 \cdot n \cdot \log n.$$

Outline

- Recursive Definitions
- Solving Recurrences
- 3 Expand-Guess-Verify
- Formula (including Master Theorem)The Master Method
- 5 The Recurrence Tree Method

Formula (including Master Theorem)

The Master Method

The Master Method

The Master Method

The Master Method

Form

Suppose your recurrence has the following form:

Form

Suppose your recurrence has the following form:

$$T(n) = \begin{cases} c, & \text{if } n \leq d \\ a \cdot T(\frac{n}{b}) + f(n), & \text{if } n > d \end{cases}$$

Form

Suppose your recurrence has the following form:

$$T(n) = \begin{cases} c, & \text{if } n \leq d \\ a \cdot T(\frac{n}{b}) + f(n), & \text{if } n > d \end{cases}$$

where,

Form

Suppose your recurrence has the following form:

$$T(n) = \begin{cases} c, & \text{if } n \leq d \\ a \cdot T(\frac{n}{b}) + f(n), & \text{if } n > d \end{cases}$$

where, a > 0, c > 0, b > 1, d is an integer constant, and f(n) is a complexity function.

Form

Suppose your recurrence has the following form:

$$T(n) = \begin{cases} c, & \text{if } n \leq d \\ a \cdot T(\frac{n}{b}) + f(n), & \text{if } n > d \end{cases}$$

where, a > 0, c > 0, b > 1, d is an integer constant, and f(n) is a complexity function. Let $r = \log_b a$.

Form

Suppose your recurrence has the following form:

$$T(n) = \begin{cases} c, & \text{if } n \leq d \\ a \cdot T(\frac{n}{b}) + f(n), & \text{if } n > d \end{cases}$$

where, a>0, c>0, b>1, d is an integer constant, and f(n) is a complexity function. Let $r=\log_b a$. Then,

Form

Suppose your recurrence has the following form:

$$T(n) = \begin{cases} c, & \text{if } n \leq d \\ a \cdot T(\frac{n}{b}) + f(n), & \text{if } n > d \end{cases}$$

where, a>0, c>0, b>1, d is an integer constant, and f(n) is a complexity function. Let $r=\log_b a$. Then,

Form

Suppose your recurrence has the following form:

$$T(n) = \begin{cases} c, & \text{if } n \leq d \\ a \cdot T(\frac{n}{b}) + f(n), & \text{if } n > d \end{cases}$$

where, a > 0, c > 0, b > 1, d is an integer constant, and f(n) is a complexity function. Let $r = \log_b a$. Then,

(i) If there is a small constant $\epsilon > 0$, such that $f(n) \in O(n^{r-\epsilon})$, then $T(n) \in \Theta(n^r)$.

Form

Suppose your recurrence has the following form:

$$T(n) = \begin{cases} c, & \text{if } n \leq d \\ a \cdot T(\frac{n}{b}) + f(n), & \text{if } n > d \end{cases}$$

where, a > 0, c > 0, b > 1, d is an integer constant, and f(n) is a complexity function. Let $r = \log_b a$. Then,

- (i) If there is a small constant $\epsilon > 0$, such that $f(n) \in O(n^{r-\epsilon})$, then $T(n) \in \Theta(n^r)$.
- (ii) If there is a constant $k \ge 0$, such that $f(n) \in \Theta(n^r \cdot \log^k n)$, then $T(n) \in \Theta(n^r \log^{k+1} n)$.

Form

Suppose your recurrence has the following form:

$$T(n) = \begin{cases} c, & \text{if } n \leq d \\ a \cdot T(\frac{n}{b}) + f(n), & \text{if } n > d \end{cases}$$

where, a > 0, c > 0, b > 1, d is an integer constant, and f(n) is a complexity function. Let $r = \log_b a$. Then,

- (i) If there is a small constant $\epsilon > 0$, such that $f(n) \in O(n^{r-\epsilon})$, then $T(n) \in \Theta(n^r)$.
- (ii) If there is a constant $k \ge 0$, such that $f(n) \in \Theta(n^r \cdot \log^k n)$, then $T(n) \in \Theta(n^r \log^{k+1} n)$.
- (iii) If there are small constants $\epsilon > 0$ and $\delta > 1$, such that $f(n) \in \Omega(n^{r+\epsilon})$, and $a \cdot f(\frac{n}{h}) \le \delta \cdot f(n)$, for $n \ge d$, then $T(n) \in \Theta(f(n))$.

Recursion

Formula (including Master Theorem)

The Master Method

Examples

Example

Recursion

Formula (including Master Theorem)

The Master Method

Examples

Example

Examples

Example

$$T(n) = 4 \cdot T(\frac{n}{2}) + n.$$

Example

$$T(n) = 4 \cdot T(\frac{n}{2}) + n.$$

$$2 T(n) = 2 \cdot T(\frac{n}{2}) + n \cdot \log n.$$

Examples

Example

$$T(n) = 4 \cdot T(\frac{n}{2}) + n.$$

$$2 T(n) = 2 \cdot T(\frac{n}{2}) + n \cdot \log n.$$

3
$$T(n) = T(\frac{n}{3}) + n$$
.

Example

$$T(n) = 4 \cdot T(\frac{n}{2}) + n.$$

$$2 T(n) = 2 \cdot T(\frac{n}{2}) + n \cdot \log n.$$

3
$$T(n) = T(\frac{n}{3}) + n$$
.

$$T(n) = 9 \cdot T(\frac{n}{3}) + n^{2.5}.$$

Example

$$T(n) = 4 \cdot T(\frac{n}{2}) + n.$$

$$2 T(n) = 2 \cdot T(\frac{n}{2}) + n \cdot \log n.$$

3
$$T(n) = T(\frac{n}{3}) + n$$
.

$$T(n) = 9 \cdot T(\frac{n}{3}) + n^{2.5}.$$

$$T(n) = 2 \cdot T(\sqrt{n}) + \log n.$$

thodology	
	1
	ı
	п
	J

thodology	
	1
	ı
	п
	J

Methodology

Generate a recursion tree.

Methodology

- Generate a recursion tree.
- Obtain bounds on the level and depth of the tree.

Methodology

- Generate a recursion tree.
- Obtain bounds on the level and depth of the tree.
- Stablish bounds.

Methodology

- Generate a recursion tree.
- Obtain bounds on the level and depth of the tree.
- Stablish bounds.

Methodology

- Generate a recursion tree.
- Obtain bounds on the level and depth of the tree.
- Stablish bounds.

Methodology

- Generate a recursion tree.
- Obtain bounds on the level and depth of the tree.
- Stablish bounds.

$$T(n) = 2 \cdot T(\frac{n}{2}) + c \cdot n.$$

Methodology

- Generate a recursion tree.
- Obtain bounds on the level and depth of the tree.
- Stablish bounds.

- $T(n) = 2 \cdot T(\frac{n}{2}) + c \cdot n.$
- $T(n) = 3 \cdot T(\frac{n}{4}) + c \cdot n^2.$

Methodology

- Generate a recursion tree.
- Obtain bounds on the level and depth of the tree.
- Stablish bounds.

- $T(n) = 2 \cdot T(\frac{n}{2}) + c \cdot n.$
- $T(n) = 3 \cdot T(\frac{n}{4}) + c \cdot n^2.$
- **3** $T(n) = T(\frac{n}{3}) + T(\frac{2 \cdot n}{3}) + c \cdot n$.

Function Max(a, b)

- 1: if $(a \ge b)$ then
- 2: **return**(*a*).
- 3: else
- 4: **return**(*b*).
- 5: end if

Function Max(a, b)1: if $(a \ge b)$ then

- 2: **return**(*a*).
- 3: **else**
- 4: **return**(*b*).

5: end if

```
Function FIND-MAX(A, n)
```

- 1: **if** (n = 1) **then**
- 2: return(A[1]).
- 3: else
- 4: **return**(MAX(A[n], FIND-MAX(A, n 1))).
- 5: end if

Function Max(a, b)

- 1: if $(a \ge b)$ then
- 2: return(a).
- 3: else
- 4: **return**(*b*).
- 5: end if

Function FIND-MAX(A, n)

- 1: **if** (n = 1) **then**
- 2: return(A[1]).
- 3: else
- 4: return(Max(A[n], FIND-Max(A, n-1))).
- 5: end if

Note

Function Max(a, b)

- 1: if $(a \ge b)$ then
- 2: **return**(*a*).
- 3: else
- 4: **return**(*b*).
- 5: end if

Function FIND-MAX(A, n)

- 1: **if** (n = 1) **then**
- 2: return(A[1]).
- 3: else
- 4: **return**(MAX(A[n], FIND-MAX(A, n 1))).
- 5: end if

Note

How many element-to-element comparisons are performed by the FIND-MAX() algorithm on an array of size n?