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Abstract 

We consider the problem of building o~~timul hinuu~, srurch trees. The binary search tree is 
a widely used data structure for information storage and retrieval. A binary search tree T for a 
set of keys from a total order is a binary tree in which each node has a key value and all the 
keys of the left subtree are less than the key at the root and all the keys of the right subtree arc 
greater than the key at the root, this property holding recursively for the left and right subtrees 
of the tree T. 

Suppose we are given n keys and the probabilities of accessing each key and those occurring 
in the gap bctwccn two succcssivc keys. The optinzal binary .cearch trc’e prohlrr?~ is to construct 
a binary search tree on these n keys that minimizes the expected access time. One variant of 
this problem is when only the gaps have nonzero access probabilities, and is called the optimal 

alphuhetic~ tree prohlen?. Another related problem is when there is no order between the keys 
and there are probabilities associated only with the gaps and the objective is to build a bmary 
tree with minimum expected weighted path length from the root. This is called the H@?Ku~ 
trw prohlmz. 

In this survey, we assess known results on the structural properties of the optimal trees, 
algorithms and lower bounds to construct and to verify optimal trees and heuristics to construct 
nearly optimal trees and other related results. 

Keywords: Binary search tree; Data structures: Optimal binary search tree 

1. Introduction 

1.1. Motiwtion 

The binmy search tree is a widely used data-structure for information storage 

and retrieval as it supports many dynamic-set operations including Search, Minimum, 

Maximum, Predecessor, Successor, Insert and Delete. 
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A binary tree is either empty or composed of a root node together with left and 

right subtrees which are themselves binary trees. A binary search tree T for a set of 

keys from a total order is a binary tree in which each node has a key value and all 

the keys of the left subtree are less than the key at the root and all the keys of the 

right subtree are greater than the key at the root, this property holding recursively for 

the left and right subtrees of the tree T. 

Suppose we are given n keys KI < K2 < . . < K, and 2n + 1 probabilities /IIt, Pz,. . . , 

fin, ~0, ~1,. . . , a,, with C /Ii + C Hj = 1 where pi is the probability of accessing the key 

Ki and Mj is the probability of accessing a key which lies between KJ and &,+I, with 

~(0 and an having obvious interpretations. Consider a binary search tree for this set of 

keys. Let bi be the number of edges on the path from the root to the interior node K, 

and aj be the number of edges on the path from the root to the leaf (Kj,IC,+l ). Then the 

expected cost of accessing all the keys in the binary search tree is CPi(bi + 1) + Cxja,, 

since the cost of accessing key K, is b; + 1, while for the gap (&i, Kj+l ) it is simply 

aj. An optimal binary search tree for this set of keys is one which has the minimum 

cost. The optimal binary search tree problem is to construct an optimal binary search 

tree given the keys and their access probabilities. 

A simple dynamic programming algorithm requiring O(n3) time and O(n*) space 

was given by Gilbert and Moore [48] for the special case when only the pi’s are zero. 

This algorithm was extended by Knuth [86] to include the case when the /Ii’s are 

also present. Knuth also improved the algorithm to run in O(n’) time by observing a 

monotonicity property of the roots of the optimal binary search trees. Another solution 

for the same problem was given by Yao [ 1611 using her general method for speeding 

up dynamic programming. This however had the same time and space complexities. 

Knuth’s algorithm is the best known so far for the general optimal binary search tree 

problem. Recently, Karpinski et al. [74] gave an algorithm with subquadratic expected 

running time for the special case of the optimal binary search tree problem when the 

X’S are zero. They also mention that they can obtain such a result for the general case. 

We study known upper and lower bounds [86,113,129,130,162] on the cost of 

optimal and nearly optimal binary search trees. For an optimal binary search tree T 

with a subtree S(d) rooted at a depth d from the root of T, we study the ratio of the 

weight of S(d), to the weight of T and correct a result obtained by Hirschberg et al. 

[60]. This result is used by Larmore [95] in his subquadratic algorithm for constructing 

approximately optimal binary search trees. 

Several heuristics for constructing binary search trees which have nearly the optimal 

cost but requiring significantly less time and often less space than Knuth’s algorithm 

have been proposed [95, 102, 110, 111, 129, 1621. We explore some of these heuristics. 

The optimal binary search tree problem when the PI’s are all zero is called the op- 

timal alphabetic tree problem. An 0(n2) time, O(n*) space algorithm for constructing 

optimal alphabetic trees was first proposed by Hu and Tucker [68]. This was later im- 

proved by Knuth [86]. The improved algorithm required only O(n log n) time and O(n) 

space and employed better data structures. The original proof of correctness [68] of the 

Hu-Tucker algorithm as given by its inventors was extremely complicated and lengthy. 
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A much simpler proof of correctness was given later by Hu 1631 and Hu et al. [65]. 

Another O(n logn) time, O(n) space algorithm was found by Garsia and Wachs ]43]. 

The two algorithms were shown to be equivalent later [64]. The proof of correctness 

of the Garsia-Wachs algorithm was simplified considerably much later by Kingston 

[78]. We discuss this algorithm, its implementation and its proof of correctness. 

It has been shown recently by Klawe and Mumey [80] that a class of techniques for 

finding optimal alphabetic trees which includes all current methods yielding O(n log/r) 

algorithms are at least as hard as sorting in whatever model of computation is employed. 

They introduce an idea for finding optimal alphabetic trees which they refer to as rr~gior7 

processing and use this method to produce O(n) algorithms for the case when all inputs 

are within a constant factor of one another and when they are exponentially separated, 

notions which they define. Linear-time algorithms for constructing optimal alphabetic 

trees when the weights are within a factor of two or when the input is in sorted order 

are known [64, 1161. We discuss these algorithms. 

Another related problem is the well-known Hz@zan tree problem where the external 

node weights may appear in any order, not necessarily the alphabetic order. The Huff- 

man trees and the alphabetic trees are used for data compression [85,87]. An optimal 

Ofnlogn) algorithm (under the colnparison tree model) for const~cting Huffman trees 

was first proposed by Huffman 1691. We study the linear-time algorithms known for 

the Huffman tree problem when the weights are within a factor of 2 or when the input 

is in sorted order [64,80, 113, 1161. We discuss the problem of verifying the optimality 

of weighted extended binary trees and Hut’fman trees. 

The main source of motivation in studying the optimal binary search tree problem are 

the many unresolved problems [65,80, 1 16, 1371 associated with it. The most important 

ones are the following: 

1. What is the true complexity of the optimal binary search tree problem :’ 

In other words, is there an o(n2) time/space algorithm for the general case of the 

optimal binary search tree problem ? 

2. What is the true complexity of the optimal alphabetic tree problem ‘? 

In other words, is there an o(nlogn) time algorithm for the optimal alphabetic tree 

problem ? 

3. Is there an o(n log n) algorithm for the Huffman tree problem in the general model 

where we are allowed to compute floors and ceilings of numbers ? 

4. How fast can we test whether a given binary search tree or alphabetic tree is 

optimal ? 

In an attempt to address these questions, we first study and survey important known 

resuhs on optimal binary search trees and related variants. 

A binury tree is a finite set of vertices that is either empty or consists of a root 

node together with two binary subtrees which are disjoint from each other, and from 

the root, and are called the left and right subtree. 
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An extended binary tree is a binary tree with external nodes attached to its leaf 

nodes. 

A binary search tree T for a set of keys from a total order is a binary tree in which 

each node has a key value and all the keys of the left subtree are less than the key at 

the root and all the keys of the right subtree are greater than the key at the root. This 

property holding recursively for the left and right subtrees of the tree T. 

The level of any node in a binary tree is the number of internal nodes on the path 

from the root to that node. 

We measure the cost of searching for a key K in a binary search tree T by the 

number of comparisons, CT(K) needed to locate K or to determine that K is not in T. 

Assume that T contains keys K1, K2, . . . , K,. The interval between the keys K, and K,,, 

is denoted by (K,, Ki+l ). For 1 <i <n we define CT(Ki) = 1+ number of edges in the 

path from the root of T to K;, and for 06 j dn and Kj < K <K&l, define CT(K) = 

C’T((Kj,Kj+l)) to be the number of edges in the path from the root of T to (Kj,K,+I). 

It is possible to associate real numbers, or weights with the keys and the intervals 

between the keys, of a binary search tree T. We denote the weight of the key Ki of 

T by /& for 1 d i < n, and the weight of (Kj, K,+l ) by Xj for 0 <.j < n. We define the 

cost of a binary search tree T to be 

C(T) = 5 CT(Ki)fli + 2 CT((Kj,K,+l )Pj. 
i=l j=O 

The cost of a binary search tree is also called as its wleighted path length. 

The weight of a node Y is denoted by W(T). The weight of a binary search tree T is 

defined to be the sum of the weights of its internal and external nodes. If the weights 

/i’i and aj of a binary search tree T satisfy the condition Cy=, fli + c,“=. aj = 1, these 

weights are called probabilities. 

Let (71,. . . , I/~) be a discrete probability distribution i.e. yi 3 0 and Cy, = 1. Then 

H(yt,. . . ,y,) = - cyr, yi. lg(y,) is called the entropy of the distribution. It is denoted 

by H. 

For a binary search tree T, we use the following notation when we discuss subtree 

weight ratios: 

root(T) the root of tree T 

W(T) the weight of tree T 

TL TR the left and right subtrees 

TLL, TLR the left and right subtrees 

TRL, TRR the left and right subtrees 

PO the weight of root(T) 

of T 

of root( T,) 

of root( TR ) 

h, PR the weights of root( TL), root( TR) 

An optimal binary search tree, given a set of keys and the probabilities of accessing 

them and the gaps is a binary search tree for that set which has the minimum cost. 

The optimal binary search tree problem is to construct an optimal binary search tree. 



Given a sequence of n weights /?I, fil,. . , /!J,, an dphuhetic tree for this sequence of 

weights is any binary tree whose leaves have these weights, such that as we traverse the 

tree in inorder, the weights occur in the given (alphabetic) order. We can alternatively 

think of these weights as gap probabilities given II ~ I keys. An alphabetic tree having 

the minimum cost for a given sequence of weights is called an optimul ~~lphufwtic 

trrr for that set of weights. The optimul mlphahetic tree p~ohkm is to construct an 

optimal alphabetic tree for a given sequence of weights. If we relax the condition that 

the weights should be in alphabetic order then the optimal alphabetic tree problem is 

called the Hufnmn tree problem. 

In the case of alphabetic trees and Huffman trees, the n.riUht qf’an intrmul no& is 

defined bottom up recursively, as the sum of the weights of its children. 

In any binary tree T, the ahstr-urt position of a node .I.- is defined to be the bit list 

of descent commands necessary to find x from the root. By positionr(x) we denote 

the abstract position of x in T. 

We define u =+ r to mean r is the inorder successor of u in some abstract binary 

tree. 

In Section 2, we study the general optimal binary search tree problem and solutions 

to it, including the classical dynamic programming algorithm. We look at Knuth’s 

improved method using the monotonicity property of the roots of the optimal binary 

search trees. We analyse bounds on the cost of optimal trees and look at subtree weight 

ratios for optimal binary search trees. Finally, we consider heuristics for constructing 

nearly optimal binary search trees. 

In Section 3, we study the Huffman tree problem. We give the classical O(n log II) 

algorithm to construct Huffman trees. We note certain properties of Huffman trees and 

look at O(n) algorithms to construct Huffman trees in some special cases. We discuss 

the problem of verifying the optimality of weighted extended binary trees and Huffman 

trees. 

In Section 4, we study the optimal alphabetic tree problem. We look at the Hu-Tucker 

and Garsia-Wachs algorithms for constructing optimal alphabetic trees. We also note 

the equivalence of the two algorithms. We discuss algorithms for constructing opti- 

mal alphabetic trees in some special cases. We also study the lower bound result for 

constructing optimal alphabetic trees obtained by Klawe and Mumey. 

In Section 5, we discuss open problems and directions for further research. 

2. Optimal binary search trees 

In this section, we study the general optimal binary search tree problem and solutions 

to it, including the classical dynamic programming algorithm. We look at Knuth’s 

improved method using the monotonicity property of the roots of the optimal binary 
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search trees. We analyse bounds on the cost of optimal trees and look at subtree weight 

ratios for optimal binary search trees. Finally, we consider heuristics for constructing 

nearly optimal binary search trees. 

2.1. The dynamic programming algorithm 

2.1.1. The 0(n3) dynamic programming algorithm 

The number of different binary search trees on n nodes is the Catalan number viz. 

[l/(n + 1 )I(‘,“) E 4n/nfi. Th’ g’ IS Ives an 0(n) lower bound for the optimal binary 

search tree problem in the decision tree model. However, an exhaustive search for the 

optimum will result in an algorithm which is exponential in n. We can do much better 

as seen below. 

The first algorithm running in time polynomial in n was given for the special case 

of optimal alphabetic trees by Gilbert and Moore [48] and required O(n3) time and 

O(n*) space. This method was extended by Knuth [85] to include the more general 

case where the successful and unsuccessful search probabilities are both taken into 

account. The key fact that makes the optimal binary search tree problem amenable 

to dynamic programming is that all the subtrees of an optimal tree are optimal (this 

is the principle of optimality). If Ki appears at the root then its left subtree is an 

optimum solution for the probabilities ~0, at,. . , Ct_ 1 and 81,. , pi_ 1, its right subtree 

is an optimum solution for the probabilities cl;, . . . , CY, and /Ii+, , . , /In. Therefore, we 

can get a bottom up algorithm for building an optimal binary search tree for a set 

of probabilities (as.. . , a,, /?I,. . . , /II,,). We can build up optimal trees T1,, for all the 

probabilities ai,. . . ,ccj and pi+,,. . ., pj where i<j starting from the smallest intervals 

and working toward the largest. 

Let Pi,j and Wi,j denote the weighted path length and the total weight of an optimal 

binary search tree for all words Ki < X < Kj+l where id j. Let Ri,j denote the index 

of the root of this tree when i < j. The following formulae determine the cubic time 

algorithm: 

Pi,i = Wj,i = (xi for Odi<n, (1) 

wi,j = wi,j-l + /3j + Xj, (2) 

Pi,/ = Wi,j + i<mkllj(Pi,k--l + Pk,j) for 0 < i < j d n. (3) 

Since we choose Ri,,i from among j - i pairs for each i, j such that 0 < i < j <II the 

algorithm runs in O(n3) time, as there are only (n + 1 )(n + 2)/2 choices of 0 < i < j < II, 

the space required being O(n2). 

2.1.2. The monotonicity of roots and consequent O(n2) algorithm 

Knuth [85] observed that the Ri,j’S satisfy the condition Ri,j-1 <Ri,j < Ri+l,j. We 

will look at the proof in the next subsection. This condition means that we only have 

to search all the indices between Ri,j-1 and Ri+l,j to compute Ri,j. The running time 



S. V. NayarqjI Tlworetkal C’onzputer Science 188 f 19971 I 44 

of the algorithm is therefore, 

0 2) @+I.~ - R;,;-I + 1) 

which is O(~~~C~ n) = 0(n2). This is the best algorithm known so far for the general 

optimal binary search tree problem. Karpinski et al. [74] recently gave an algorithm 

with subquadratic expected running time for the special case when the X’S are zero. 

They also claim that they can obtain such a result for the general problem. 

2.2. Proprrtirs of optimul binmy, srurch trers 

In this subsection we look at certain properties of optimal binary search trees that 

are helpful to obtain fast algorithms and to obtain nearly optimal binary search trees. 

2.2.1. Momtonicity of’ the roots 

As observed in the previous subsection, Knuth proved the monotonicity of the roots 

in an optimal binary search tree. Yao [ 1611 observed that the recurrence obtained for 

the optimal binary search tree problem can be generalised to solve a larger class of 

dynamic programming problems, using which she proved the monotonicity of the roots. 

We look at her proof. 

Let lv(i,.j) for 1 <i < j<n be real numbers and let c(i,,j) be defined by 

c(i, i) = 0. (4) 

c(i..j) = w(i, j) + ,F$I;(c(i,k - 1 ) + c(k,j)) for i < .j. (5) 

The recurrence of c(i,j) for optimal binary search trees is a special case of this 

recurrence where we have w(i, j) = IV,,, = r, + pi +, + + pi + x,, c(i,.j) = p,,, 
IF IV satisfies 

4i.j) + 4i’,.j’) d w(i’,j) + w(i.,j’) for i < i’ < ,j <,j’ (6) 

it is said to satisfy Quadrunyl~ ineqzwlit~~. 

We use ck(i,,j) to denote w(i,j) + c(i,k - 1) + c(k,j) and define 

R( i. i) = i, (7) 

R(i,j) = max{k;Ck(i,j) = c(i,j)} for i<j. (8) 

Then R(i.j) is the largest index where the minimum is achieved in the definition of 

c(i, j). 

IV is said to be monotone if w(i, j’)<w(i’,,j) for i<i’<j<j’. 

The following theorem (see [ 1131) proves the monotonicity of‘ the roots. 

Theorem 2.1. IJ’w sutisfies thtr quudrunyle inequulit~~ und is monotone. then R(i.j) < 

R(i,j + l)<R(i + 1, j + 1) for i<j. 
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Note: It is easily seen that the w(i,j) for the optimal binary search tree problem is 

monotone and satisfies the quadrangle inequality in fact with equality. 

We state a few lemmas (see [ 1131) leading to the proof of the theorem. 

Lemma 2.2. If w satisfies the quadrangle inequality and is monotone, then the jiinc- 

tion c de$ned above also satisjies the quadrangle inequality, i.e. c(i, j) + c(i’, j’)< 

c(i,j’)+c(i’,j) for i<i’<j<j’. 

Proof. We use induction on the length I = j’ - i to prove the result. 

This inequality is trivially true if i = i’ or j = j’. This proves the quadrangle 

inequality for c for I< 1. For the induction step we distinguish two cases i’ = .j, 

i’<j. 

Case 1: i < i’ = j < j'. In this case the quadrangle inequality for c reduces to 

c(i, j) + c(j, j’) <c(i, j’). (9) 

Let k = R(i, j’). We distinguish two symmetric subcases: k<j, k 3 j. 

Case 1.1: k <j. We have 

c(i, j) + c(j, j’)< w(i, j) + c(i, k - 1) + c(k,j) + c(j, j’) 

(by definition of c(i, j)) (10) 

d w(i, j') + c(i, k - 1) + c(k, j) + c(j, j’) 

(by monotonicity of w) (11) 

< w(i, j’) + c(i, k - 1) + c(k, j’) 

(by the induction hypothesis) (12) 

= c(i, j’) (by definition of c(i, j’) and k). (13) 

Cuse 1.2: k > j. As this case is symmetric to case 1.1 the proof is similar. 

Case 2: i < i’ < j < j'. Let y = R(i’, j) and z = R(i, j’). We have to distinguish two 

symmetric cases: z < y or z > y. We only consider the case z < y. We note that z < y < j 

by the definition of y and i <z by the definition of z. We have 

c(i’, j’) + c(i, j) (14) 

<c_di’, j’) + CA&j> (15) 

= w(i’, j’) + c(i’, y - 1) + c(y, j’) + w(i, j) + c(i,z - 1) + c(z, j) (16) 

<w(i,j’)+w(i’,j)+c(i’,y- l)+c(i,z- I)+c(z,j)+c(y,j’) 

(by the quadrangle inequality for w) (17) 
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<w(i,j') + w(i’,j) + c(i’, y - 1) + c(i.z - 1) + c(y,,j) + c(z,,j’) 

(by the induction hypothesis) 

(i.e. the quadrangle inequality for c applied to z <~‘<j<,j’) 

= e(i..i’) + c(i’,j) (by the definition of y and z). 

This completes the induction step and proves the lemma. n 

(18) 

(19) 

Proof of’ the main Theorrm. The claim is trivially true when i=,j so we assume i <,j. 

We will show R(i,j)<R(i,j + 1), the argument for R(i.j+ l)<R(i+ l,,i+ 1) follows 

by symmetry. Since R(i,j) is the largest index where the minimum is assumed in the 

definition of c(i.j), it is sufficient if we show 

[c~~(i..j)<c~(i,.j)] * [ckr(i,.j + l><cr(i.j + l)] for all i < k<k’<,j (20) 

We show a stronger inequality. for all i K k <k’< j 

ck(i.J) - ckr(i,j)<q(i,j + 1) - ~.k~(i.j + 1). (21) 

i.e. 

ck(i,.i) + cl;f(i,.i + l)<ck~(i,j) + ck(i,,i + 11, (22) 

or equivalently by expanding all the four terms using their definition 

c(k,j) + c(k’,j + 1) <c(k’,j) + c(k,.j + 1 ). (23) 

This is just the quadrangle inequality for c at k <k’ <,j < j + 1. 

As discussed earlier this result yields an O(n*) time algorithm for computing L’( 1. n) 

and hence for the optimal binary search tree problem. 

2.2.2. Bounds on the cost of optimul binary seurch trees 

It is useful to obtain upper and lower bounds on the cost of optimal binary search 

trees and their variants in terms of the access probabilities. Many useful bounds have 

been obtained by methods of information theory [86, 110, 111, 113, 130, 1621. 

Mehlhorn [ 1131 obtained a lower bound for the cost of any binary search tree T 

for the given set of keys, in particular for the optimum tree. It requires the following 

result. 

Lemma 2.3. Let c be u real number such thut O<c< 1. Let 8, = (( 1 - c)!~)~‘c 

fbr 1 <i<n, ?, = ((1 - c)/2)a~ for O<jdn then /?,,C,>O untl ZB, + CE, = I i.e. 

‘(c%J,~ - , . , B,,, Cc,,) is u probability distribution. 

The proof of this lemma is by induction on n. By showing that it holds for the left 

and right subtrees of the tree T, we can show that it holds for the tree T. 

We now prove Mehlhorn’s theorem (see [ 1131) which enables us to get a lower 

bound on the weighted path length of any binary search tree. 
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Theorem 2.4 (Lower bound on the weighted path length). Let B = C/I, then 

1. max 
{ 

H-dB .d E R <P, ~ lg(2+2-“) ’ > 
2. H 6P + B[lg(e) - 1 + lg(P/B)]. 

Proof. 1. Define pi and ~?i as in the previous lemma. Then 

b* + 1 = 1 + (MB, > - MC))/ M9 

aj = lg<Q I/ 1gcq, 

where C = (1 - c)/2. 

Now 

(24) 

(25) 

P = Cpi(b, + 1) + CCtjUj (26) 

=B(l-z)+ 

>B(l-3)-(&H 

= H - B ‘g(dc) 
Ml/E) ’ 

where we have used a property of the entropy function, viz., 

H(~~>...>lin)=fJ(y~ +1/2,11(3...,%1)+(“/1 +Y~)H --&,A 

(27) 

(28) 

(29) 

Setting d = lg(C/c) and observing that c/C = 2c/( 1 - c) is a surjective mapping from 

0 6 c < 1 onto the reals gives us the required result. 

2. As there is no closed-form expression for the value of d which minimises the 

left-hand side of the first inequality we proved, numerical methods have to be used 

to compute d,,, in every single application. A good approximation for A,,, is d = 
lg(P/2B). It yields 

H < Plg(2+2-d)+dB 

=.,,(2+:) +Blg(&) 

<$I+ (;)I&,) +B(Ig 

(since lg(x)<(x - l)lg(e)) 

P 0 > B 
-1 

= P + B . q 

(31) 

(32) 

The special case d = 0 is also useful as it yields H/lg(3)< P, i.e. 0.63H <P. This 

result is true for any binary search tree, in particular, it holds for the optimal binary 



search tree. Let Copt denote the weighted path length of an optimal binary search tree 

then by the above result 0.63H < Cop,. In fact, Mehlhorn [ 1 lo] has shown that this 

lower bound is sharp for infinitely many distributions. In the case of alphabetic trees 

we get a much better result than the one implied by the above result. The following 

result is attributed to Gilbert and Moore by Knuth (see [86]). 

Proof. To get the lower bound we use induction on n. Let Qi = coci c k Y, for some 

k. If /? > 0 the weighted external path length is at least 

1 + C ~tlg(QliX,) + C xi Ig((l - QI )/xO (35) 
O&;i~i X<_,<rr 

3 C XiltdliXi) + .f(Ql) (36) 
O<I<il 

= H + ./‘(QI ). (37) 

where 

.~‘(QI ) = 1 + QI lg(Ql ) + (1 - QI 1 Ig(l - QI ). (38) 

The function ,f(Ql) is nonnegative and it takes its minimum value of zero when 

Q, =: f, hence the lower bound result follows. 

To get the upper bound, Knuth [SS] constructs code words C, of O’s and l’s, using 

the most significant e; + 1 binary digits of the function c oGxi, x/; t- (r;/2 expressed in 

binary notation and shows that Ci is never an initial substring of C, when i # ,j, and 

hence that we can construct a binary search tree corresponding to these code words. 

The weighted path length of the binary tree constructed by this procedure is 

< c (e, + I)% < c x;( 2 $ lg( 1 /IX! )) = H + 2. !7 (39) 
0 b i L I? O<i</l 

Knuth [86] also mentions that the first part of the above proof may be extended to 

show that the weighted path length of every weighted extended binary tree must be 

greater than or equal to the entropy H of the probability distribution (xc), Y(I). . . T,, ). 

He mentions that this fundamental result is due to Claude Shannon (see [X6]). Hence. 

we note the following: 

Let C denote the cost of any weighted extended binary tree with gap probabilities 

(20, ~1,. , r,,) and CHUFF the cost of any Huffman tree, CAT. the cost of an alphabetic 

tree, Co,,-, the cost of an optimal alphabetic tree on that set. 

The cost of any tree on that set satisfies 

(1) H <CHUFF <c. 

(2) H < CWFF <COAT < H+2, 

(3) COAT d CAT. 

(40) 

(41) 

(42) 
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Knuth [86] has generahsed the above result to show that the cost of any binary 

search tree on the set of access probabilities (a~,. . . , x,,,p,, . . . ,/&) is 

< 2 - Ho lg(~o) - c (LA + @i>&(Bi + a;>. (43) 
I Si</? 

Much better upper bounds are known for the cost of the optimal binary search trees. 

Mehlhorn [I IO] showed that the cost of an optimal binary search tree on (x0,. . . , CX,~, 

Bl,. . . , /$) with E/?i+Zq = 1 is < 2+ 1.44H. In fact, he exhibited a linear time heuris- 

tic which constructs a binary search tree for a given distribution (x0,. . . , IX,,, PI,. . . , j!&) 

having a cost < 2 + 1.4411. Bayer [14] improved the upper bound to H + 2. Mehlhorn 

[ 11 l] also exhibited another linear time heuristic and showed that the upper bound 

is I + x cxi + H and is best possible in the sense that if cr C pi + c2 x xj + qH 

is an upper bound on the cost of an optimal binary search tree then cl > 1, cz > 1 

and c3 > 1. He proved this by exhibiting suitable probability distributions. Yeung [ 1621 

has derived upper and lower bounds on the cost of optimal alphabetic trees. He also 

mentions several other results about upper and lower bounds on the cost of Huffman 

trees and optimal alphabetic trees. He proposes a linear time heuristic to construct an 

alphabetic binary tree whose cost is 

d~-1-2-f(~o)-.f(a,,)<H+2-cx~-x, 

where f(x) = x(2 - lg(x) - [- lg(x)l). (44) 

improved bounds on the cost of optima1 binary search trees and optimal alphabetic 

trees were obtained by Roberto de Prisco and Alfred0 de Santis [ 129, 1301. They 

proposed a linear time heuristic that constructs a binary search tree whose cost satisfies 

the condition Copt d C < H + 1 - cc0 - a,, + ctmax where E,,,~~ is the maximum value 

among (xg,zr,. . .,x,. This result improves on Mehlhorn’s upper bound on the cost of 

optimal binary search trees and also improves on Yeung’s upper bound on the cost of 

optimal alphabetic trees. 

New lower bounds on the cost of binary search trees were obtained recently by 

Prisco and Santis [130]. Their bounds were expressed in terms of the entropy H of 

the probability distribution (x0,. . . , x,, PI, . . . , j&), the number of elements n and the 

probability Q = EYE, /I$ that a search is successful. Their bounds exploit relations 

between trees and codes. Mehlho~‘s lower bound of C>H/ lg 3 is tight when the 

entropy H is small. If further information on the probability distribution is given then 

a better [4,5] lower bound of C >H - lg e - Q(lg lg(n + 1) - 1) can be obtained. This 

bound [130] has been shown to be better than Mehlhorn’s bound when H > 3.909 + 

2.710Qlglg(n+l)-2.71OQ. Prisco and Santis [130] show that in fact C>H+HlgH- 
(H + I)lg(H f I). They show that this bound is better than Mehlho~‘s bound when 

H3x where XE 14.4922. They also derive several other lower bounds which are a 

function of H, Q and n or H and Q only. They show that the bounds C&. H - 1 - 

Q(lglg(n + 1) - 1) and C&H + Q + HlogH - (H + l)lg(H + 1) are better than 

previously known bounds when the entropy, H is not very small. 



It is useful to obtain bounds on the cost of binary search trees produced by heuristics, 

since we can compare them with the best-known upper bound on the cost of the optimal 

binary search trees and determine how close, they are to the optimal cost. 

Hirschberg et al. [60] obtained bounds for the ratio of the weight of a subtree S((/) 

rooted at a depth d from the root of an optimal binary search tree T, to the weight 

of T. They call the maximum possible value of the ratio of weights as /I(c/)_ Their 

work on this problem was motivated by Mehlhorn’s heuristic [ 1131 for constructing 

nearly optimal binary search trees. Mehlhorn showed that a tree, that is constructed 

by equalising as much as possible the weights of the left and right subtrccs, is nearly 

optimal. Hirschberg et al. [60] consider the related problem: how skewed can an optimal 

binary search tree be. Their result was used by Larmore 1951 in his subquadratic 

algorithm for constructing approximately optimal binary search trees. 

The following theorem was proved by Hirschbcrg et al. 1601. We include their proof 

and show why it is erroneous and also show later. how we can correct this error. 

Theorem 2.6 (Erroneous: valid only if external node weights are zeroes). I/ T is (ur 

optimrl hituii:l. star-cl? tree, tlziw tlzr nviglzt of’ t/w lefi or ri~ght suhtrw rnlrst lx, lit 

west g tlw u’oiql7t of’ t/w entiw trrr. 

Proof. Suppose that W( TR) > ($)W( T). Root( T,) has two subtrees, 7’,, and TRR. 

There are two possible cases: 

I. The weight of TKL is greater than (t)W(T). Then make root( TRL) the neu! root 

of T. using a double left rotation. 

2. /I’,< + I+‘( T,, ) > ( f )W( T). Then make mot( T, ) the new root of T, using a single 

left rotation. 

In tither case, the new tree has lower expected search time than T. a contradiction 

to the optimality of T. By symmetry, the same argument holds for the left subtrcc 

of T. El 

The proof as given above is valid if the optimal binary search trees considered have 

no external node weights. However, if there are nonzero external node weights then 

the proof may not be valid, since we may be trying to make an external node TOIL. or 

TR as the root node. 

They also prove the following lemma by arguments similar to those used in the 

previous theorem. 

Lemma 2.7 (Erroneous: valid only if external node weights are zeroes). 117 L,~I opt- 
imul hinarj~ srurch tree, 

1. PO + @‘(TR)>max{@‘(Tu), W(TLR)}. 

2. PO + W(TL)>max{W(TRR), W(&L)}. 
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Their proof of this lemma also has the same error we observed before but holds for 

the subtrees which have only internal nodes. 

Their main theorem, which uses the above lemma is the following: 

Theorem 2.8 (Erroneous: valid only if external node weights are zeroes). For any 
subtree S Gth its root at a distance d from the root of an optimal binary search tree 

T, W(S)/W(T) < 2/Fd+3 where F, is the nth Fibonacci nu~nber (F, = 1, Fz= I, F3=2). 

Hence p(d) < 2/Fd+3. 

By fixing the problem encountered at the leaf levels we get the following correct 

theorem. 

Theorem 2.9. Let T be an o~ti~la~ binary search tree kth a subtree S rooted at a 

node at a distance d from the root. If S is rooted at un internal node, W~S)~W~T)~ 

l/Fd+l and ij” it is rooted at an external node, then W(S)/ W( T) < 1/Fd. Hence p(d) < 

l/&i. 

Proof. We consider two cases: one when the root of the subtree S is an internal node 

another when the root of the subtree S is an external node. 

1. Let the root of the subtree S = 7” be an internal node, say PO. We start at the root 

of S and go up the path to the root of T, one level at a time. At each step i, we are 

at the root of a bigger subtree. Let us call this subtree as Ti, and let /3, be the weight 

of root( Ti). T; has one subtree 7;:_t and another subtree Vi which was not along the 

path followed. Also let W( To) = Wo = W(S) and W(~,) = WI. Since every subtree of 

an optimal tree is also optimal, we can use the previous lemma, observing that: 

P2 + W(V2> 3 W(TO), 

VT21 = W(Tl) + P2 + W(ff,), 

WIT21 2 F’(To) + wtrl), 

and in general 

W(7;)> W(Tj_,)+ W(Tr-2) ‘dd>:i22. 

Solving this recurrence we get, 

l=w(T)=W(~d)~F~Wg+Fd_,W, 

>fi&+fFd-.~& 

=r &I(& + k-l) 

(45) 

(46) 

(47) 

(48) 

(49) 

(50) 

(51) 

-= ~~+i, 

n;, ws 1 
-=-<- 
WT WT Fd+l 

since W; > WO. This proves the first part of the theorem. 

(52) 

(53) 



2. When the root of S is an external node, we have 

W(i”,)>W(T;_.j)+ W(T,_l) Vd>i>3, 

I = W(T)= W(T(,)>&, w, + b;,-~l/t/, 

= F;, w,. 

(54) 

(55) 

(56) 

(57) 

So we get W(S)/W( T)< l/E,. 0 

It is useful to obtain bounds on the subtree weight ratios of the optimal binary search 

trees since they tell us how skewed an optimal binary search tree can be. It also gives 

a necessary condition to check the optimality of a binary search tree. 

2.3.1. Lumow’s subquudmtic ul~qor-ithrn 

Larmore [95] presented an algorithm for constructing optimal binary search trees. 

Using subtree weight ratios, that requires subquadratic time if there is no long sublist 

of very low frequency items. The time required by it is O(FZ’.~) if the frequency of 

each item is at least r:/n for some constant x > 0. He also presented a modification 

which constructs a nearly optimal binary search tree in the general case. We discuss 

this algorithm in the next subsection. 

The following are his main results. 

Corollary 2.1 I. Suppose pi + C!, > c/n fill- (111 i, H,htJre :: > 0 is u consturzt. Then tlww 

is m ui~qorithm thut computes un optirnul binq~ seur~ch trre in O(n”(log n)‘) tinw, 

1tAtv.e ci = 1 + l/( 1 + log 4) zz 1 S9023 urld T = 1 - I!( 1 + log 4) M 0.40977. 

Larmore formulates the optimal binary search tree problem as a problem on a 

weighted acyclic digraph. For any fixed integer n 20, he shows how we can con- 

struct a weighted acyclic digraph G,, such that the minimum weight of any path in 

G,/ from its source to its sink is the weighted path length P,,, of the optimal binary 

search tree for a set of n keys, (KI, . . K,,). The edges and vertices of the graph G,, 

are defined as given below. 

Let Z(“) = {~a E C* / 1 w 1 d d}. We define Cd = ( &, I!?,,), where 

I$ = {{K,. ,K,} x Zcd’} U {sozwce, sink}, (58) 
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&I = {(K, ~1, (K,,, ~1) I u, v E Zcd’, u * v} 
U {(source,(K~,v)) 1 u E O"} u {((K,,,u),sink) 1 u E l*}, 

Sd = {((Ki, U), (Kj, zj)) 1 i < j; U, C E C’“‘, U * G,mU.X{ / II /, 1 V I} = d} 

U {(SOuYce, (Kj, v)) 1 1 v I = d} U {((Ki, u),sink) I / u I = d}, 

(59) 

(60) 

Ed =Rd u&. (61) 

The members of Rd are called reyulur edges, while the members of & are called 

speciul edges. The runk of each vertex is also defined: 

runk(K;, w) = i, (62) 

runk(source) = 0, (63) 

runk(sink) = n + 1. (64) 

Weights are placed both on the vertices and the edges as follows: for vertices 

weiyht(source) = weight(sink) = 0, (65) 

weight(Ki,w) = (1~1 + l)Bi, (66) 

for the regular edges as 

weiyht((~;,u),(K,+l,V)) = (~u.~{I~I, IVl} + I)%, 

weiyht(source, (K,, Ok)) = (k + l)cca, 

weight((l(,, l”),sink) = (k + l)a,, 

for the special edges as 

(67) 

(68) 

(69) 

weiyht((lk;,,u),(K,,u)) = Pi.j + Cd + l>K,j, (70) 

weight(source, (Kj, V)) = P0.j + (d + l)JVo,;, (71) 

wei&r((K;i,u),sink) = Pi,n+r + (d + ~)K,,,+I, (72) 

where P,,, and Wi,j denote the path length and the total weight of all items strictly 

between Ki and Kj, when i < j. 

The following lemmas show the relationship between the minimum weight path 

problem for the graph Gd and the optimal binary search tree problem. 

Lemma 2.12. Let x be a path in Gd from source to sink. Then there is u binury search 

tree T such thut positionr(Ki)=wi jtir each interior node (K!,wi) qj’x. Furthermore, 

the weighted path length of T is the weight of x. 

Lemma 2.13. Let T be u seurch tree (not necessarily optimal), and let P be its 

weighted puth length. Let xd = {(Ki, w;) I wi = positionr(K,), lw;l <d}. Then the ele- 



As the graph as defined above has n(2”+’ - 1) + 2 vertices, (tg ~ I )(2”- ’ - 21 ~~ 

4) + 2( d + 1) regular edges, and (2(’ ~ 1 )(n - 1 )(n - 2) + 2(n - 1 )(d + I ) special edges 

which are not regular, it becomes necessary to take advantage of the special structure 

of the graph. 

For any u’ and for any vertex x of G,,, ,f;,(x) is defined to be the least weight of 

any path in G,, from SOUYW to X. The weight of a path was defined as the sum of the 

weights of the vertices and the edges of that path, the weight of the last vertex being 

included. Hence, ,f;,(sink) = Pop,. If no path exists from soww to s, j;,(x) = X. For a 

fixed integer I dn, let G~J be the subgraph of G,, consisting of all the vertices and 

only edges of span not exceeding 1. For any vertex .x, let ,J,.,(x)>~;,(.Y) be the least 

weight of any path in G,,,, from sown’ to X. The sputa of an edge is defined to be the 

difl‘erence of the ranks of its end points. 

Larmore gives a result that uses the lemma concerning subtree weight ratios that a 

subtree 7;,, of an optimal binary search tree T rooted at a depth d has weight less 

than 2/F;,+;. In view of our result concerning subtree weight ratios, his result must be 

read as follows: 

Lemma 2.15. If’ W,,, > l/F;, jilr ~11 puir’s i. ,j such thut ,j-i > 1. thrtl &,,, = f;t.t(.sittk ). 

Larmore’s Algorithm 

Choose d, I 

Compute .f;,,,(K,,O”) for all i 

11‘ t- o’/ 

while w # 1” do 

begin 

w + the inorder successor of w in C(“) 

Compute ,fk,,(Ki,w) for all i 

end 

Compute ,f;,,,(sink) 

For any vertex _v, fd. l(y) = weight(y) $- rnin{JJt, i(x) + weiqht(x, y )} where the mini- 

mum is taken over all the edges (x, y) of the graph Gd. 1. The classic minimum weight 

path algorithm examines all edges. Larmore’s algorithm examines all regular edges. 

but only a small subset of the special edges. 

The first step of the algorithm is to find the smallest integers d, 1 such that I =: 

[2” log n1 and WQ > l/Fd (In Larmore’s paper [95] a value of 2/Fd+3 is given, but 

due to our correction we get the value l!Fd ) for all pairs i, j such that ,j ~ i > 1. It 
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requires O(n) time to determine whether a particular candidate value for d is suitable, 

since it suffices to check W;.,+, for all i, and there are O(logn) values of d to check. 

Thus, choosing d, I requires O(n log n) time. 

For any i, there is at most one edge to (Ki,Od) and that edge is from source. It 

takes O(n) time to compute fd,,(Ki,O”) for all i. 

Suppose that w # Od, and that fd,,(Ki, u) has been computed for all u E Ccd) such 

that u is an inorder predecessor of v. Let w’ be the inorder predecessor of w in Ccd). 

Larmore defines an IZ x II matrix A4 as follows: M[j, i] = fd, ,(K;, w’) + P,,,; + (d + 1) Wi,j 

provided 0 < j - i < 1, and M[j, i] = CC otherwise. Then the minimum value in the jth 

row of M is precisely the minimum weight of any path in G~,I from Source to (Kj, w) 

where the last edge of that path is a special edge. By the quadrangle inequality of 

W and P, M is monotone, i.e. the column position of the minimum entry in each 

row is an increasing function of the row. Hence, the minimum row values can be 

found by using an O(n logn) algorithm for finding the row minimums of a monotone 

matrix. Each regular edge is then examined once to find lower values for fd,,(K,,w) if 

any. The total time for the main loop of the algorithm is therefore 0(2dn logn). The 

final step of computing fd,I(sink) requires examining each of the It d edges to sink. 

This step takes linear time. Therefore, the algorithm takes O(nl + 2dn log n) time if 

W;,j > I/& for all i, j such that j - i > 1. 

Now given that W;,j > 3. for all pairs i, j such that j - i > I we choose d such that 

i, > l/Fd. Then $d > l/i. and therefore d 3 log( l/n)/(log 4) where 4 is the golden ratio, 
dzl.618. Hence, 2d = 2- ‘% i = 2-(‘W: ~)(‘W, 2, = j,- '% 2. Therefore, ()(n/ + 

2dn log n) becomes O(nl + i.- log4 2 a log n) and the theorem follows. 

2.4. Nearly optimal binary search trees 

Knuth’s algorithm [86] for constructing optimal binary search trees requires 0(n2) 

space and runs in 0(n2) time. Quite often exact probabilities of accesses are not avail- 

able. So nearly optimal trees that can be obtained faster will be useful. Many heuristics 

[95, 102, 110, 111, 129,162] using the properties of the optimal binary search trees of 

the previous subsection have been proposed for constructing trees which have nearly 

the optimal cost but which can be constructed much more quickly. Many of these 

heuristics run in linear time and require O(n) space. Several of these heuristics have 

resulted in new upper and lower bounds on the cost of optimal trees as noted before 

in the previous subsection. 

2.4.1. The rootmax heuristic 

A simple heuristic for constructing approximately optimal binary search trees is the 

rootmax heuristic. The most frequently occurring key is chosen as the root and the 

remaining keys are attached to the root node recursively. An O(n) implementation of 

this heuristic is possible. This is achieved by using a data structure called the “Treap” 

[ 13,901. A treap is a binary tree in which each node has two keys; the binary search 

tree property is maintained in one and the heap property is maintained in the other. 



A tree constructed by rootmax heuristic has heap property on the weights and binary 

search tree property on the keys. Hence using the O(n) algorithm to construct the treap 

[ 131, we can build the tree by rootmax heuristic. 

In this heuristic the gap probabilities are ignored: this could be disadvantageous in 

some cases. This heuristic produces trees whose cost is very far from the optimal as can 

be shown by the following reasoning. Suppose that we have n keys whose frequencies 

are 1,2.3.. , n. Let us assume for simplicity that 17 is of the form 2” - 1. The root 

node is the node having the highest frequency, II. The rootmax heuristic produces a 

left leaning search tree. The cost of this search tree is seen to be 

&7 _ ; + 1) = n(n + 1;‘” + 21, 
(73) 

,‘- I 

The cost of the balanced search tree is seen to be 

(74) 

Hence, the ratio of the cost of the search tree produced by the rootmax heuristic to 

that of the optimal binary search tree is > n/6 log 77. 

2.4.2. Bisection heuristic 

Mehlhorn [ 1131 obtained a heuristic which builds a binary search tree, the weight 

of whose left and right subtree are nearly the same. He showed that the cost of this 

binary search tree is very close to the optimal. 

Mehlhorn’s method uses a bisection on the set 

iI 

i-l 
s, s; = x(x,, + flP) + fij + xi/2 where O<i<n 

p=o I 
. 

i.e. the root k is chosen so that Sk-1 < i and Sk 3 i. The heuristic proceeds recursively 

on the subsets {Si 1 i< k - I} and {s, 1 i> k}. If binary search is used to find the k at 

each recursive step then the running time of the heuristic is O(n logn). If the search for 

k is implemented using a combination of exponential and binary search, the running 

time of the heuristic can be reduced to O(n). Mehlhom [ 1131 showed that the cost of 

the binary search tree produced by this heuristic is <H + 1 + ?7Xj. 

2.4.::. Min-mus heuristic 

In this heuristic we choose the root so as to minimize the maximum of the weights 

of the left and right subtree. The implementation and performance of this heuristic are 

quite comparable to that of Mehlhom’s heuristic. 

2.4.4. Lurmore’s heuristic 

Larmore’s algorithm [95] for a special case can be modified to get a heuristic which 

constructs an approximately optimal binary search tree for the general case. This heuris- 

tic has one parameter, and exhibits a trade-off between speed and accuracy. It is possible 
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to choose the parameter so that the time required by it is O(n’.‘) and the error is o( 1). 

This heuristic is the first subquadratic method to construct an approximately optimal 

binary search tree, whose cost differs from that of the optimal by o( 1 ), answering a 

question of B. Allen [S]. 

Larmore’s heuristic is a modification of his algorithm for constructing an optimal 

binary search tree in subquadratic time if there is no long sublist of low-frequency 

elements, which we discussed in the previous subsection. The worst case for his algo- 

rithm for constructing an optimal binary search tree is when there are a large number of 

low-frequency elements. The main idea behind his heuristic is to delete these sublists 

of low-frequency elements, and then to apply his algorithm to construct an optimal 

binary search tree on the remaining elements. Then a complete balanced tree on the 

low-frequency elements is formed and attached to the tree so constructed. 

The variable parameter of this heuristic is a parameter r satisfying the inequality 

O<r< 1. Let 

I= [?q, (75) 

6 = (lognY0S4 
[l+logg ’ (76) 

D={l<i<?Zj!X_I +/?,+!Xi <S}. (77) 

Larmore uses his algorithm to construct an optimal binary search tree T’ for the list 

obtained by deleting both Kj and (K,, K;+I ) for all i in D. The deleted items are then 

organised into an almost complete binary tree and attached to the tree T’. Suppose D 

is the disjoint union of the maximal runs, i.e. D = [il . .jl] U . . . U [i, . .j,], where 

&+I > jk + 1. For each k, let Tk be the almost complete binary search tree for the 

keys strictly between Ki, -1 and Kj,,+l . A binary search tree T for all the keys is then 

formed, by removing from T’ each external node (Ki, _ I, K,,, ) and replacing it by Tk. 

Larmore shows that the time complexity of his heuristic is O(n’+“) where Y is a 

real number between zero and one. The special feature of this heuristic is the trade-off 

between speed and accuracy it offers. 

Let P, P’ be the costs of the trees T and T’, respectively, and let P,,, be the cost 

of the optimal binary search tree. Larmore shows that the accuracy offered by this 

heuristic is 

P - Popt<P - P’=O(n6logn)=O(n’-‘~‘+‘~~~~(logn)’+’~”~). 

Larmore obtained the following result. 

Theorem 2.16. For any choice of real 0 < r -C 1, there is an algorithm that computes 

a binnry search tree Tapprox in O(n’+‘) time such that 

n’ ( > 
4I+lW4) 

error = Papprox - Popt <n __ 
log n 

where Popt is the weighted puth length of the optimal binary search tree, und Papprox 

is the weighted path length of’ Tapprox. 



The corollary follows from the theorem since if I. > 1 /(I + log c,h) then 

(78) 

2.5. Other r~c.sult.s 

We record a few other results known about optimal binary search trees. 

The lcast upper bound on the cost of optimal binary search trees as a function of 

the number of external nodes, given the total weight of the nodes to be one, was found 

by Hu and Tan [66]. They showed that 

1 
{((/ ~ 1)[2”_’ - n/2] + y(” - 2” _‘)}--- 

L’Z/2J ’ 
(79) 

where q = [lg /?I, is the least upper bound on the cost of any optimal binary search 

tree built on II external nodes and PI ~ 1 internal nodes where the total weight of the 

internal and external nodes is one. 

Karpinski et al. [74] recently gave an algorithm with subquadratic expected running 

time for the special case of the optimal binary search tree problem when the x’s arc 

all zero. They also claim that they can obtain such a result for the general case. Their 

result is: 

They also claim that they can obtain such a result for the general problem where 

the external node weights are also given. 

In the dynamic version of the optimal binary search tree problem where new keys 

are added or existing keys are deleted, the access probabilities of the keys change is 

an interesting problem we have not discussed. Mehlhorn [I 121 studied dynamic binary 

search trees. 

3. Huffman trees 

In this section, we study the H&man tree problem. We give the classic O(n log n ) 

algorithm to construct Huffman trees. We note certain properties of Huffman trees and 

look at O(n) algorithms to construct Huffman trees in some special cases. We discuss 
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the problem of verifying the optimality of weighted extended binary trees and Huffman 

trees. 

3.1. The Huffmun ulgorithm 

Huffman [64,69,84] proposed an algorithm for constructing Huffman trees. The term 

Huffman trees is generally reserved for the trees produced by the Huffman algorithm 

although that algorithm may not produce all the trees having minimum weighted path 

length. The algorithm given below is recursive. 

The Huffman algorithm 

Given a sequence of weights (WI, ~2,. . , wn), the algorithm produces a Huffman tree 

on that sequence of weights. 

HT(~I,J+L...,~,,) 
1. If n = 1 then create an external node of weight wi and stop. 

2. Find the the two smallest values of the sequence say w;, wj 

3. Call HT(w~,w~,...,w~_~,w~+~~, wi+l,...,wj~I,wj+],...,wn) 

4. Replace an external node of weight wi + wj in the tree obtained in the previous 

step by a tree with one internal node having an external node as its left-son with 

weight wi and an external node with weight w, as its right-son. 

Since we need to find the two smallest values at each step, a brute force method of 

finding the two smallest values using a linear search will give an O(n2) time algorithm. 

If we use a priority queue on the wi’s for this purpose then we can delete the wi and 

wi and also insert the wi +wj in O(logn) time, so we get an O(n logn) implementation 

for the Huffman algorithm. 

The tree produced by Huffman’s algorithm is optimal. We can show this by induction 

on 12. 

Given any binary tree with minimum weighted path length, if an internal node of 

maximum path length has two sons which are not the smallest nodes, then we can 

interchange the position of the two smallest nodes WI and w2 with the sons of that 

internal node without increasing the cost of the tree. We then merge the two smallest 

weight nodes ~1, w2 to get an external node of weight WI + ~2. In the resulting tree, 

we have n - 1 leaves with weights wi + wz,ws,. . . , w,. By the induction hypothesis 

this tree is optimal so the original tree is also optimal. 

Schwartz [143] showed how we can construct a Huffman tree that is as well-balanced 

as possible (has the smallest maximum depth) among all possible Huffman trees for a 

given sequence of weights. 

We can define t-ary trees just as we defined binary trees, where every internal node 

has exactly t sons and every external node has no sons. It is known (see [84]) that the 

Huffman construction of combining the t smallest weight nodes will give an optimum 

t-ary tree, except that we have to add some zero weight nodes initially so that at every 

later step we combine exactly t weights. The zero weight nodes do not contribute to 

the cost of the t-at-y Huffman tree. 
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3.2. Propertics sf’ Hgjfinan trees 

The following well-known result (see [84]) tells us when it is possible to construct 

an extended binary tree given its level numbers. 

Proof. It is easily seen by induction on n that the condition above is necessary. Con- 

versely, if C, arc,, 22’1 = I we want to construct an extended binary tree with these 

path lengths. If II = I then 1, = 0 and the construction is trivial. Otherwise. WC may 

assume that the I’s are ordered so that 

for some q with I <q <n. Now, 

Y = z + an integer (so q is even). (X2) 

By induction on n there is a tree with path lengths 1, - I. 13.. . . I,,; take such a tree 

and replace one of the external nodes at level Ii - 1 by a tree with one internal node 

having two external nodes as its children, this gives us the required result. 3 

An interesting result by Schwartz and Kallick [ 1441 is the following. 

Theorem 3.2. Giwn LI sequence oJ’ n ,tvights ~‘1, we. . , MS,, suck hut 11’1 < 1t’1 < 
. . <II+‘,, there is un extended binary> tree on this sequrnce of’ IveiGqhts .uuch thtrt it 

minimises thr nrighted path lemgth uric/ JOr which the terminul no&s in inordw con- 

trrirl the w1ur.v 1~1, ~1, . , w,,. 

Proof. We note that we are using the term extended binary tree instead of Huffman tree 

because there may be trees having the minimum weighted path length which are not 

produced by Huffman’s construction. First we construct a tree by Huffman’s algorithm 

for the sequence of weights wi,w2,.. ..\v,,. If +v, < IV,+~ then I, > /,~+I (or else the tree 

would not be optimal). The construction given in the proof of the previous theorem 

now gives us another tree with the same lengths and with the weights in the proper 

sequence. 0 

It is not hard to show that there is an (2(n log n) lower bound on the running time 

of any algorithm for constructing a Huffman tree on a sequence of n weights, in the 

decision tree model. Hence, the optimality of the Huffman algorithm in this model 

follows. However, we shall see in the next subsection that by choosing a model of 
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computation in which we can sort a sequence of numbers faster, we can construct 

Huffman trees much faster. 

3.3. Fast algorithms in special cases 

3.3.1. When the weights are in sorted order 

A linear-time algorithm for constructing a Huffman tree when the input weights are 

in sorted order is known [ 1131. 

Theorem 3.3. Hz.@man trees can be constructed in O(n) time if the weights are in 

sorted order. 

Proof. As we combine the two smallest weight nodes at each step, the weights of 

the resulting new nodes also come in sorted order. Hence by maintaining two sorted 

lists (one of external nodes and one of internal nodes), we need to check only three 

elements to find the smallest weight pair. 

In particular, if we are able to sort a sequence of n positive numbers in F(n) time 

we can construct a Huffman tree on this sequence by just spending an extra O(n) time. 

Hence if we are able to sort a sequence of n positive numbers in linear time, we can 

construct a Huffman tree on that sequence in linear time. 0 

A corollary of this result is 

Corollary 3.4. We can construct a Huffman tree corresponding to a valley sequence 

in O(n) time where a valley sequence is a sequence of the type WI > w2 > . . . >w-I 

<Wj<Wj+i .f. <W,, 

3.3.2. When the weights are within a factor of two 

It is known [116] that if the input weights are within a factor of two, we can 

construct a Huffman tree on these weights in linear time. 

We state the following theorem due to Klawe and Mumey [80, 1161. 

Theorem 3.5. Given u sequence of n nodes whose weights are within u jixtor of two, 

ajier the first [(n + I)/21 minimum weight pairs have been jbund and combined the 

new sequence will consist of [n/2] nodes whose weights are agkn within a ,fizctor ?f 

two. 

We sketch the main ideas behind this result. 

Let the initial sequence of n nodes be VI, ~2,. , u, and let c be a real number such 

that c <w(vi) <2c for i = 1 to n. Whenever two nodes forming the minimal weight 

pair are combined, the weight of the new node formed is greater than 2c, so it will not 

be involved in a minimal weight pair combination until there are no two nodes whose 

weights are less than 2c. When n is odd, after (n - I)/2 pairings have occurred, there 

will be only one node left, whose weight is less than 2c, it is the largest weight node 



initially present. This forms a minimal weight pair with the smallest newly formed 

node. When n is even, the largest weight node present in the original sequence merges 

with another original node. Thus during the [(77 + I )/2]th pairing the largest weight 

node present initially, forms a minimal weight pair. Klawe and Mumey [go. I 161 show 

that at this stage the weights will again be within a factor of two. 

Klawe and Mumey 180, 1161 extend this result to show that if we keep combining 

minimum weight pairs, the resulting tree will be balanced with the leaves differing in 

level by at most one. It will be seen that 2(n - 2[‘2”1) smallest weights will be at level 

[Ign] + 1 and the others are at level [lgn]. Thus the Huffman tree can be constructed 

in linear-time. They also extend this result to optimal alphabetic trees, which we will 

see in the next section. 

Though there is an n(n log n) lower bound for constructing Huffman trees in the 

comparison model, it will be interesting to see whether we can verify whether a given 

weighted extended binary tree is a Huffman tree in o(n logn) time. We first develop 

necessary conditions for a given weighted extended binary tree to be optimal, we then 

show that these conditions can be tested in O(77) time. 

Proof. The first condition is necessary since otherwise we can interchange the position 

of any two nodes violating this condition, and obtain a tree of cheaper cost. We now 

show that the second condition is also necessary. Suppose it is not so, then at some 

level I, there are three nodes a, b.c such that )v(c) > u(a)+u(h). Since the cost of the 

tree does not change if we interchange weights at a given level, we can permute the 

weights at the level I so that the nodes a and b are siblings and recompute the weights 

of the internal nodes. Now, the nodes of weight IV(~) + *l,(h) which is at level 1 - I 

and w(c), do not satisfy the first condition (which is a necessary condition). Hence. 

the second condition is also a necessary condition. 0 

Now though it appears that condition 2 implies condition 1, if an external node 

appears in a level above the current level, condition 2 need not imply condition I 

for the external node. It is easy to show that the above necessary conditions can be 

verified in 007) time. 

Theorem 3.7. Giwn u weighted extmtled bincuy, trrr. u’c cm test the conditions qicrn 

in the prt5iou.r theowm in O(n) time. 
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Proof. For every level 1, compute the two smallest weights al,bl and the maximum 

weight c/. Then for every level 1, 

1. Check if al 3 cl+1 and 

2. if al +bl>c, 

If at any level 1 either of the two conditions are not satisfied then we know that the 

tree is not optimal due to our previous theorem. 

It is not hard to show that the running time of the above algorithm, if we use 

linear-time algorithms for selection, is O(n) where n is the number of nodes in the 

tree because at any level we have to spend time proportional to the number of nodes 

in that level. 0 

It is known [87] that a binary tree on the weights (~1,. . . , w,) is a Huffman tree if 

it satisfies the following properties: 

1. The n external nodes have been assigned the weights (WI,. . . , w,) in some order, 

and each internal node has been assigned a weight equal to the sum of the weights of 

its two children. 

2. The 2n- 1 nodes (external and internal) can be arranged in a sequence yi , , JQ,~- I 

such that if xj is the weight of node yj we have XI < . . <xzn- 1, and such that nodes 

y2j-1 and yzj are siblings (children of the same parent), for 1 <j <n, where this 

common parent node does not precede y2j-i and ~2, in the sequence. 

Knuth [87] shows by induction that such a tree is one that Huffman’s algorithm 

might construct. 

Ramanan [ 1371 showed that the necessary conditions we derived for a given weighted 

extended binary tree to be optimal are in fact sufficient when applied to a complete 

binary tree. Ramanan [137] mentions that it is possible to check whether a given tree 

is a Huffman tree in linear-time by using his conditions for the optimality of alphabetic 

trees. 

It would be interesting to devise a linear-time algorithm for verifying the optimality 

of a weighted extended binary tree using our necessary conditions and also Knuth’s 

[87] and Ramanan’s [137] conditions for Huffman trees. 

4. Optimal alphabetic trees 

In this section, we study the optimal alphabetic tree problem. We look at the 

O(n log n) Hu-Tucker and GarsiaaWachs algorithms for constructing optimal alpha- 

betic trees. We also note the equivalence of the two algorithms. We discuss algorithms 

for constructing optimal alphabetic trees in some special cases. We also study the lower 

bound result for constructing optimal alphabetic trees obtained by Klawe and Mumey. 

4.1. The Hu-Tucker algorithm 

The Hu-Tucker algorithm [64] and their variants begin by building an intermediate 

tree (called the lmcp tree) on the input weight sequence. The levels of the leaves 



in this intermediate tree are recorded and then they are used to build an alphabetic 

tree where each leaf is at the same level as in the lmcp tree. Thus, the cost of the 

alphabetic tree is the same as that of the intermediate (possibly nonalphabetic) tree. 

The intermediate tree is proved to have optimal cost in a class of trees which con- 

tains all the alphabetic trees, so it follows that the alphabetic tree constructed is indeed 

optimal. 

The Hu-Tucker algorithm begins with a list of leaf nodes containing the weights 

~t’i, w:!. . , tr,, in order. This list is called the ,l-orklist and is used to determine how the 

nodes combine to form the intermediate tree. Nodes in the worklist are designated either 

as c~ro.vs~~h/r or t~onc~ros.suhle. This affects the way the nodes may pair off. Initially all 

nodes are noncrossable. When the nodes are paired off, the resulting internal parent 

node is designated crossable. The weight of the parent node is assigned the sum of the 

weights of its children. The nodes that are paired off are removed from the worklist 

and the new parent node occupies the position of its left child. We say that two nodes 

in the list are cornputible if they are adjacent in the worklist or if all the nodes which 

separate them are crossable nodes. WC will use the symbol r, to refer to a node in 

the worklist and M; its weight. We denote I, for the level of that node. We define an 

order on the nodes in the worklist by l‘, < 2’). if M’, <IV, or if M‘, = M’, and r, is to the 

left of r, in the list. A compatible pair of nodes (L’,,, t’/,) is said to be /oc,ol nzil7iuzunl 

cwmputil~lr pair (lmcp) if and only if 

I. l-1, < I’, for all nodes c, compatible with node I‘,, 

2. P,,<I’, for all nodes c, compatible with node ch. 

To obtain the lmcp tree, we keep combining the minimum compatible pairs accord- 

ing to HLI and Tucker [68], any local minimum compatible pairs according to Hu 1631. 

In fact, it was shown later [64] that we can combine the lmcps in any order since the 

lmcp tree is unique. We state the HuTucker algorithm. 

Hu-‘Tucker algorithm 

1. Given the initial sequence of nodes cl, ~‘2,. , c,, form II priority queues, one for 

each node; consisting of all nodes compatible to the given node. 

2. Since all the nodes are compatible within a given priority queue the two smallest 

nodes at the top of the queue will be the only candidates for being an Imcp. 

To find an lmcp we can use a stack-based method. Beginning with the leftmost queue, 

maintain a pointer to the current queue being considered. By checking neighbouring 

nodes we can determine in constant time whether or not the current pair is an Imcp. If 

it is so, we combine the two nodes and place the resulting node in the place previously 

occupied by the leftmost node; otherwise move the pointer backward. 

Combining two nodes will result in the merger of several queues. We must choose 

a data structure for representing the queues so that they can be merged 0( log n) time. 

Leftist trees (see [86]) are useful for this purpose. After each lmcp combination updat- 

ing the queue structure requires O(logn) time. Hence, forming the lmcp tree this way 

takes O(n log n) time. We simply record the level numbers of the nodes. The lmcp tree 

obtained this way is proved to have the same cost as an optimal alphabetic tree but it 
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need not be alphabetic because the leaves could have appeared in an order which is 

not alphabetic. 

3. From the lmcp tree, to construct the optimal alphabetic tree we require [141] only 

linear-time. This requires only using the level numbers of the lmcp tree. This is done as 

follows: When the level numbers 11) 11,. . . , I, are known we scan the sequence of level 

numbers from left to right and locate the leftmost maximum level number, say Ii = q. 

Then li+r = q also since the level sequence 11, 12,. . , I,, has the property that the max- 

imum level numbers are always adjacent. We create the father of the pair with level q 

and assign the father with the level q - 1. In other words, we replace the level sequence 

II, 12,. . , l;- I, (4 - 1 1, lr+Z, 3 l,,. 

Then we repeat the same process of combining maximum-level adjacent pairs to the 

level sequence of n - 1 numbers. Finally, we create the root with level zero. 

The proof of correctness of the Hu-Tucker algorithm as given in the original paper 

[68] is quite involved so we sketch the ideas used. 

We note that the algorithm consists of two major steps 

1. combining the lmcps to get the the lmcp tree, 

2. constructing an alphabetic tree using the lmcp tree level numbers. 

The algorithm must satisfy the conditions 

1. The level numbers of the lmcp tree must be realisable by an alphabetic tree. 

2. The lmcp tree must be optimum within a class of trees that includes all alphabetic 

trees. 

The crux of the proof is in proving the second condition. 

We note the equivalence of the Hu-Tucker and Garsia-Wachs algorithms in Section 

4.3 and look at the simple proof of correctness of the Garsia-Wachs algorithm as given 

by Kingston [78]. This gives another proof of correctness of the Hu-Tucker algorithm. 

4.2. The Gursiu- Wuclzs algorithm 

In the combination phase of the Hu-Tucker algorithm we successively combine 

lmcps while the pair in consideration can be separated by many crossable nodes (nodes 

obtained as a result of combinations). The Garsia-Wachs algorithm eliminates the 

distinction between crossable and non-crossable nodes (nodes which have not resulted 

due to a combination step) and arranges the weight sequence such that the lmcp is 

always an adjacent pair. We note that in a sequence of non-crossable nodes an adjacent 

pair (wi_1, w,) is a lmcp if and only if ~3-2 > w, and wj-r <wj+t Before describing 

the Garsia-Wachs algorithm we give a definition (see [78]). 

Definition 1. A pair of leaves CL_, , x, is right minimal if 

1. I <i<n, 



2. x,-l + xi-1 >x;_, + xi and 

3. 3Lj_ 1 4- X, < xi_ i + ,G!, for all j > i. 

Garsia-Wachs algorithm. The GarsiaaWachs algorithm also constructs initially a min- 

imal tree T, quite similar to that of lmcp tree of Hu-Tucker. Once this is done, the 

levels of the X, in re may be used to construct T, an optimal alphabetic tree as we 

described earlier. 

To construct the minimal tree the following two steps are repeated (for II - I times) 

until only node remains. 

I. Locate the rightmost right minimal pair of entries. Let that be x,-l, 2,. 

2. Locate the first entry to the right of x, that is greater than or equal to x,_ I -t-x,. Let 

that be x,.,/~_+I. Then the new list is al . . .._ x,-_2,zi__r ,..., x,+~,(x~-~ +xi).r,.l,! I..... I,!. 

An O(n logn) implementation of Garsia--Wachs algorithm was given by Garsia and 

Wachs [43]. An algorithm requiring O(nlog~) comparisons is easily obtained. Given 

31. ~2,. . . . x,) we first find the biggest i such that zi _l+ xi_ 1 2 x,_ t + %i. Next we locate 

the first cl, with j > i such that 2, > xi _ L + xi, remove CX_ 1. r, and insert r,.. 1 + zi just 

before x, (or at the end if such an zj does not exist). We repeat the above steps on the 

new list of numbers. The first step can take O(n) as it involves scanning through the 

list to find the rightmost rightminimal pair. Since xi-_2 < x, for ,j = i+ 1 to PI, the second 

step using binary insertion requires only O(logti) comparisons. Since the search for the 

next rightlninimal pair starts from where we left off. scan is O(n) time in total. Since 

there at-e n -- 1 steps requiring O(log n) comparisons, therefore O(n log ~7) comparisons 

are required for the whole algorithm. Garsia and Wachs [43] also describe an algorithm 

due to Tarjan which requires only O(n log n) time, including data tnoves and pointer 

manipulations using balanced trees. 

The proof of correctness of the Garsia-Wachs algorithm as given by its inventors is 

complicated. A simpler proof was found much later by Kingston [78]. We sketch the 

main results that led to Kingston’s proof. 

Definition 2. If 7’1,. . . , Tk are binary trees, we denote by F( Tt,. . . , Tt ) the set of all 

trees with k leaves, but with those leaves replaced by T,, . . , Tk from left to right. For 

a fixed i. we define T, by a tree with one internal node having as left son; an external 

node of weight ui_1, as right son an external node of weight X, and define 

F = F(x~,....x~), 

Fo = F( I,, . , x;_2, I-,, x~-~,. . , I%,? ), 

F’k = F(r,, . .,r;-?, x[+~,. * . 5 %+k, G, Xi-kk +. I, ~ . , x,, 1. 
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Definition 3. The level of any leaf xi is denoted by hi. The root of 7” is a node x.X 

of level JzY (R.~ = xi_, + xi). The weight of TfF,Fo or F, is 

w(T) = 5 h$i (83) 
I=1 

and we define 

MI(S) = yi&l w( r> 

for any set S of trees. A tree T ES is called minimul for S if w(T) = w(S). 

(84) 

Definition 4. Let U E F(al,. . . , a,) and V E F(1;,, . . . , yn). Let hi be the level of xi in 

U, and ki be the level of yi in V. U is a rearrangement of V (briefly U-V), if there 

is a pe~utation (CT~ ,..., 0,) of (1,2 ,..., n) such that xj=yn,, hi=k, for l<i<n. 

Informally, a rearrangement merely moves leaves around within a tree, without alter- 

ing their level. Consequently, “ N ” is an equivalence relation, and U G V implies 

w(U) = w(V). 

The main theorem proved by Kingston [78] is the following: 

Theorem 4.1. Let C(i_1, sli be the rightmost rightminimal pair, and let k>O be such 

that 

Xi+j < Eti-I + Xi for 1 d j < k and &+k+l 3 xi-1 + Xi. 

Then W(F) = w(Fk) and every minimal tree j& Fk has a rearra~?~~m~nt in F. 

We now state the lemmas leading to the proof of this theorem. 

Lemma 4.2. Suppose we have a sequence of at least three nodes a,, ix,+ 1,. . . , q, such 

thur 

Xj-1 + gj<Mj + aj+l jbr a<j<b. 

Then 

Lemma 4.3. If ai_ I, xi is the rightmost rightminimal pair, then hi > hi+, . . . 2 h, in 

every minimal tree. 

Lemma 4.4. Zf xi_,, cli is the rightmost r~~jhtrnin~rn(~~ pair, then hi-t = hi in some 

mini~nal free. 

Lemma 4.5. Let ~l~+k+~ be the jirst entry to the right qf’ the rightmost rightminimal 

pair xi_\, Q such that Xj+k+[ >a~-1 + ‘xi. Then in some minimal tree T ,for which 
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hi-1 I= hi, either 

1. h ,+k = h, - 1; or 

2. k,+k = h, und x,+k is a right child. 

Lemma 4.6. Let T be u minimul tree sf F. Then there is N tree in T, such thut 

w(Tk )dw(T). 

LC!ItIIWi 4.7. Let Tk be any minimal tree ,fbr Fk. Then W( Tk) 3 w(F), and ij equu/itj, 

holds, Tk has u rearrangement in F. 

The proof of all these lemmas simply involve rotating (once or twice) or permuting 

nodes at some level of the minimal tree to obtain a tree satisfying the claim of the 

lemma. 

4.3. Proof sf equivulence of the taco ulqorithms 

The Garsia-Wachs algorithm can be considered as a modification of the Hu-Tucker 

algorithm. The main observation made by Garsia and Wachs is that crossable nodes may 

be moved past smaller nodes, regardless of whether the latter are crossable or not. This 

follows from the fact that the smaller nodes will combine and become crossable before 

the moved crossable node will be involved in an lmcp. By moving the newly formed 

nodes carefully, they make sure that all the lmcp combinations are between adjacent 

nodes, and hence no information about crossability of nodes needs to be maintained. 

Hence intuitively we would expect the Garsia-Wachs and the Hu-Tucker algorithms 

to produce the same intermediate tree. Finding the lmcp is the major activity while 

inserting the elements is not in the Hu-Tucker algorithm. However, in the Garsiaa 

Wachs algorithm adjacent nodes are compatible eventhough much time is spent in 

inserting the elements. The equivalence of Garsia-Wachs and Hu-Tucker algorithms 

proved formally, as given below is attributed by Hu [64] to Kuo. Consider the following 

version of the Garsia-Wachs algorithm (see [64]) to construct the minimal tree. 

Given a sequence of weights MI, x2?. . , r,,: 

1. Find the leftmost minimal adjacent pair, Xj_r,r, 

2. Combine a,_1 and “L~ as a single node with weight x,* = x,-t + 3, 

3. Move #xi* to the left, skipping over all nodes with weight less than or equal to 

a,*. Obtain the new working sequence of II - 1 nodes 

XI,...rS(,,Mj*,X;+l,...,31j_2,~j+I,...,X,, where 

Cl; > Xi* 3 lTlaX(C$+l, . ,3,-l). (85) 

Repeat the process until we get only one node in the node sequence. This is the tree 

which may be non-alphabetic but having the same cost as the optimal alphabetic tree on 

the sequence of weights (c[r , . . , zn). Having obtained the level numbers of a minimal 

tree we can construct an optimal alphabetic tree as described earlier. 
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The two algorithms will obtain the same tree after their completion as shown below. 

Consider the following two sequences (A) and (B) 

(A) ~1,~2~...,~i~~j*,~i+l,...,~j-2,~j+I,.~~, a, where all the nodes are noncrossable 

nodes. 

(B) crl,a2,...,ai,ai+l,...,~jj_2,0Lj*,aj+l,..., a, where all the nodes are noncrossable 

nodes except z,% which is a crossable node. 

Note that (A) consists of n - 1 noncrossable nodes and is derived from a sequence of 

12 noncrossable nodes after one combination of Garsia-Wachs and (B) consists of n - 2 

non-crossable nodes and one crossable node and is derived from the same sequence 

after one combination of Hu-Tucker. We will show that if we apply the Hu-Tucker 

algorithm to both (A) and (B), they will give the same tree, i.e. all the combinations 

will be identical. (If a node 0~~ combines with a,* of (A), the same node CQ, will 

combine with LX,* in (B)). 

In fact, we can show that the tree constructed by any number of combinations of 

Garsia-Wachs followed by Hu-Tucker will give the same lmcp tree as defined in the 

Hu-Tucker algorithm. 

To show that (A) and (B) give the same tree T, we can make three observations 

about merging of the lmcp in the sequence (B). 

1. In the subsequence of nodes al,. . . ,cxi, Cli+l,. . . ,c+2 a node cannot be merged 

before a node to its right is merged. 

This is because Rj- 1 + Nj (= cc,*) is the leftmost minimal adjacent pair. 

2. When Uj* is merged, Ui+i, . . , Ej-2 have all been merged (or merged with zjz+). 

If this is not true, let XI be the rightmost node among (Xi+,, . . . , aj-2 which has not 

been merged. From 1 all the nodes between LX[ and OLj, have been merged and al 

is compatible to any node compatible to the crossable node oLj* in (B) and XI < Mj*. 

Hence Xi* cannot form an lmcp with another node. 

3. When an lmcp is between a node in ~(1,. . , Mi and a node in ai+i,. . . , a, then Mj* 

has been merged. 

Let the lmcp be (x1,, (xY) where Q is either a node in c(i). . . , zi or a sum of at least 

two nodes in ~1,. . , ai. Since Xj* = Mj-1 + Uj is the leftmost minimal adjacent pair 

xl+C(2>a2+C(3>.">ai_l+cci (86) 

therefore. 

Lx] >a3 >M5 >... (87) 

Thus one of the two adjacent nodes is larger than C(i. Thus aX > Xi >,Uj,. Let C+ be the 

right node. From 1 when Olje is merged all the nodes between clY and oLjz+ have been 

merged and aY _ Ej*. But R, > tli > Ctj*, this contradicts that (clX, zY) is a lmcp, if Mj* 

has not been merged. 
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From the above three observations we can consider the sequences (A) and (B). 

Before r,* in either is merged, from 3 the sequences (A) and (B) can do exactly the 

same combinations since xl,. . ,x; are not involved and x,* is a crossable node in (B). 

From 2 when r,* is merged in (B), all the nodes between z, and ylct are crossable 

nodes. So the noncrossable node z,,* in (A) and the crossable node a,* in (B) are 

compatible to the same set of nodes. After Zj* is merged&he sequences (A) and ( B) 

result in the same node sequence. 

4.4. Fust d]orithms in speciul cuses 

4.4. I. When the input is u valley sequence 

Consider a weight sequence n’t, ~2,. , I+~-, , w,. . , M’,~, where 

\V[ >M’~>‘.‘>M/I~~~WJ~~~~+~~‘.’ <lb’,,. (89) 

In other words, the weights are first decreasing and then increasing. Such a weight 

sequence is called a valley sequence. As two special cases of a valley sequence, we 

have 

WI > M’? > > M’,,, (90) 

w , < IV2 < . . < w,, (91) 

The notion of ralle_r sequence was defined by Hu [64], who obtained the following 

results. 

Lemma 4.8. If the weight sequence is a vrzlley sequence, then the cost of the optimul 

ulphtzbetic tree is the sume us the cost of‘ the optimum tree lvithout the ulphuhetic 

construint. 

Proof. Assume that the weight sequence is a valley sequence as defined above and 

the lmcp is “‘j-t + Wj (or wj_2 +ny_t ). Then w,_t*., is a crossable node and the next 

minimum weight pair may be one of the following five pairs: wj-2 +~‘,+t , w, -3 +M‘,-2, 

M’/i I + w’/+?, “t’,-2 + WY-l*.j3 MT,-l*,j + W/4ml. 

In any case the node constructed say “‘A is a crossable node. In general, let w,~ <n’n 

d d WG be crossable nodes created, while on the left we have wI > ~2 > > w, -: 

and on the right we have IV,+, < GM?,,. Then the next lmcp (the only one) is one of 

the following six pairs: ~-2 + ~~~1, It’,_) + l&‘/-2. W’j-1 + W/+2, W/-2 + WA, %%‘A + It’,-], 

%‘A i- h)3. 

So the next crossable node created, N u is again compatible with all the crossable 

nodes created so far. In other words, the minimum weight compatible pair is always 

the minimum weight pair. Hence the cost of the optimal alphabetic tree is the same as 

Huffman’s tree. 0 

Lemma 4.9. We cun construct un optimtrl alphabetic. tree .fiw a valley sequence in 

O(n) time. 
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Proof. The proof is due to the result in Section 3.3. 0 

4.4.2. When the weights are within u factor of two 

Klawe and Mumey [SO, 1161 introduce a new technique for finding optimal alphabetic 

trees. The input weights wi are first classified according to their order of magnitude, 

base 2. They define a category of a node of weight w to be Llg(w)i. A maximal 

length sequence in the worklist of weights with the same category is called a region. 

By keeping a stack of regions and considering only regions whose adjacent regions 

have a higher category, we can restrict most of our attention to the pairings occurring 

within these regions. They call this as region-processing. Their idea is motivated by 

the situation when the input weights are within a factor of two. In this case the optimal 

alphabetic tree is the same as Huffman’s tree. Hence they use the result we described 

in Section 3.3. 

Theorem 4.10. There is a linear-time algorithm for jinding an optimal alphabetic tree 

on u sequence of input weights which d@er at most by a factor of two. 

Proof. 1. Initialise the worklist to contain the original input sequence. Note that all 

the nodes are noncrossable. 

2. Use a stack-based method to find lmcps and pair them off, removing each pair 

of nodes from the worklist and placing the parent in a temporary list but not in the 

worklist. These newly formed nodes are to be left out of the worklist because their 

weights are greater than the weight of any of the original weights and hence need 

not be considered in the search for lmcps. This process continues until there are zero 

or one nodes left in the worklist the stack-based algorithm requires only O(n) time 

because of the absence of crossable nodes in the worklist. If a single node x remains 

(n is odd) scan through the temporary list of newly formed crossable nodes to find the 

smallest node y. Pair x with y and replace y in the temporary list by its parent. 

3. At this stage we have m = [n/2] crossable nodes in the temporary list. Moreover, 

the new nodes are still within a factor of two, by the same argument as in the proof 

of the Theorem 3.4. Now as all the nodes are crossable, the optimal alphabetic tree is 

the same as Huffman tree for these nodes. As the weights are again within a factor of 

two we can find the lmcp tree for these weights in O(n) time using the algorithm of 

Section 4.1. 0 

4.4.3. When the weights are exponentially separated 

Klawe and Mumey [80, 1161 define an input weight sequence WI, ~2,. , w, to be 

exponentially separated if there exists a constant C such that for all n, 

I{i: [lgwi] = k}] <C for all kEZ. 

They also give an O(n) algorithm for constructing an optimal alphabetic tree when the 

input weights are exponentially separated. They use their idea of region processing for 

this purpose. They observe that there are at most 2C nodes in any region processed. 
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They also show that every region of size r can be processed in O(v) time and use 

their region processing method to construct the lmcp tree in O(n) time. Given the level 

numbers of the leaves of the lmcp tree we can construct an optimal alphabetic tree in 

O(n) time as described in Section 4.1. 

4.4.4. When the input wrights are mull integers 

Recently, Larmore et al. [98] have obtained an O(~~,/logn) algorithm for the opti- 

mal ~~lphabetic binary tree problem when the input weights are integers in the range 

[O,no(‘)]. They also give an O(n logk) time algorithm for the general optimal alpha- 

betic binary tree problem where the parameter k is bounded by the number of local 

minima in the input sequence. 

It has been shown by Klawe and Mumey [SO, 1161 that constructing the intermediate 

lmcp tree produced by the Hu-Tucker-based algorithms in any model of computation 

is at least as hard as sorting in that model. Given an unsorted list of II numbers we 

can transform the problem of sorting the list into a problem of constructing a tree in 

O(n) time. They show that from the ~nfo~ation recorded in the structure of the tree 

produced we can compute the sorted order of numbers in O(n) time. This gives an 

0(n log II) lower bound for constructing the lmcp tree in the comparison model. The 

following lemma is used by them. 

Their result is 

Theorem 4.12. Sorting con br reduced to ,jndiny the Imcp tree in O(n) time. 

Proof. Assume n is even, Let XI , . . . ,.u, be drawn from [2,4). Define the ~3; as above 

and consider the behaviour of some lmcp combining algorithm on the input sequence 

_VI,. . ‘ , ?‘2n. According to the previous lemma, after n imcps have been combined there 

will be n nodes present in the node list. They will have weights ~1,. _ .x,,. Since these 

nodes are all crossable, there will be only one lmcp present, the smallest pair of nodes 

in (~-1 , , . ,_I-,,}. This pair will combine to form a new node having a weight of at least 

4. The next lmcp will be the second smallest pair of nodes from {XI,. . ,A-,,} and so on. 

Hence, the next n/2 lmcps found after the first yt lmcp combinations have occurred sort 

{XI,...,x,1} by p airs (only consecutive pairs may need to be switched in order for the 

list to be totally sorted). This information can be easily recovered from an lmcp tree 

produced by any method of searching it depth-first, always searching the least weight 

subtree first. We will encounter the nodes corresponding to {XI,. . . .x,} in fully sorted 
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order (a node with weight xi will be the parent of leaf nodes with weights y2i-1 and 

y*i). Hence, we can reduce sorting to find the lmcp tree in O(n) time. 0 

4.6. Verifying optimal alphabetic trees 

We mentioned in the last section that Huffman trees can be verified in O(n) time. 

We noted that the best-known algorithms for constructing optimal alphabetic trees run 

in O(n log n) time while we have only a 0(n) lower bound for this problem in the 

decision tree model. It is will be interesting to see whether we can close the gap 

between the lower bound and the upper bound. In this direction we note that if we are 

able to construct an optimal binary search tree on a given set of keys, then we can test 

whether a given binary search tree for that set of keys is optimal, simply by comparing 

their costs. An appropriate traversal of the tree can be used to compute the costs in 

O(n) time. Therefore, the problem of testing the optimality of a binary search tree 

is linear-time transformable to the problem of constructing an optimal binary search 

tree. Thus, a lower bound for the former is also a lower bound for the latter. Some 

conditions on the weights, for a given alphabetic tree, to be optimal have been obtained 

by Ramanan [137]. He shows that the optimality of very skewed trees (trees in which 

the number of nodes in any level is bounded by some constant) can be tested in linear 

time. He also shows that the optimality of well-balanced trees (trees in which the levels 

of any two leaves is bounded by some constant) can also be tested in linear time. He 

also considers a class of trees that is neither skewed nor well balanced and discusses 

the difficulty involved in testing its optimality in linear time. 

4.7. Other results 

The known heuristics for constructing nearly optimal binary search trees can be used 

for constructing nearly optimal alphabetic trees as the optimal alphabetic tree problem 

is a special case of the optimal binary search tree problem [ 110, 111, 129, 1621. These 

heuristics except Larmore’s (Larmore’s offers a tradeoff between speed and accuracy, 

as mentioned earlier, by spending 0(n’.6) time it produces a binary search tree whose 

weighted path length differs from the optimal by o( 1)) produce trees which are within 

an additive factor of about two from the optimal; however, the small additive factor 

does not ensure a low multiplicative factor when the cost of the optimal alphabetic 

tree is very small. Levcopoulos et al. [102] show that for an arbitrarily small, positive 

real number G, they can construct an O(n) heuristic yielding an alphabetic tree whose 

cost is within a factor of (1 + s) from the optimum. 

5. Conclusions and directions for further research 

We have looked at algorithms for optimal binary search trees, optimal alphabetic 

trees and Huffman trees. The best-known algorithm for the general optimal binary 

search tree problem is Knuth’s O(n’) time algorithm. For the general optimal alphabetic 
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tree problem, the best-known algorithms are the Garsia-Wachs and the Hu-Tucker 

algorithms which have a time complexity of O(n log n). Huffman’s O(n log n) algorithm 

to construct Huffman trees is optimal for the decision tree model. There are many 

aspects of optimal binary search trees and their variants for which we would like to 

obtain answers. We discuss some of the open problems in this area. 

5.1. Optimal binary search trees 

1. Is there any o(n2) time algorithm for the optimal binary search tree problem? 

We have looked at Larmore’s subquadratic time algorithm for constructing an optimal 

binary search tree, if there is no long sublist of low-frequency elements. It makes 

use of subtree weight ratios of the optimal binary search trees. It may be the case 

that we can use some other properties of optimal binary search trees to obtain a 

subquadratic time algorithm for the general case. It may also be possible to improve 

Knuth’s quadratic time dynamic programming algorithm. We should also note the recent 

result of Karpinski et al. [74] in this direction. 

2. Is there any o(n2) space algorithm for the optimal binary search tree problem? 

We can find an optimal binary search tree using linear space and exponential time 

by generating all possible binary search trees [ 1411. If we can avoid generating many 

of these binary search trees by using properties of the optimal binary search trees 

like monotonicity, subtree weight ratios, we might be able to get a subexponential 

algorithm using O(n) space. Perhaps we can get an o(n2) space algorithm by keeping 

only o(n2) entries of the Pi,j we compute in the dynamic programming algorithm. We 

can recompute from scratch the P;,j’s we don’t remember. It will be worth exploring 

whether such a technique would result in an o(n2) space, polynomial-time algorithm. 

3. Does there exist a subquadratic algorithm for verifying the optimality of a binary 

search tree? 

We do know that the monotonicity of roots and the subtree weight ratio conditions 

are necessary for a given binary search tree to be optimal. These conditions can be 

verified in O(n) time. It is worth exploring other necessary and sufficient conditions 

that enable us to verify in o(n*) time whether a given binary search tree is optimal. An 

answer to this question will enable us to know whether we can close the gap between 

constructing an optimal binary search tree and testing its optimality. We must also take 

a note of the recent result of Karpinski et al. [74] as mentioned before. 

4. Do the algorithms and properties of optimal binary search trees extend to optimal 

multiway search trees? 

5.2. Optimul alphabetic trees 

1. Can we construct optimal alphabetic trees in o(n log n) time? 

Existing O(n logn) algorithms construct first an lmcp tree. The lower bound result 

of Klawe and Mumey for lmcp trees says that any algorithm for constructing an lmcp 

tree will take R(n log n) time. Hence, we must follow a different approach to obtain 
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an o(n log n) algorithm. It is also possible that there is an n(n log n) lower bound for 

constructing optimal alphabetic trees. 

2. Can we verify the optimality of alphabetic trees in linear time? 

Ramanan [ 1371 has given some necessary and sufficient conditions for the optimality 

of an alphabetic tree. These conditions are verifiable in O(n) time for some special 

cases. Some of the properties of optimal alphabetic trees proved enroute to the proof of 

correctness of Garsia-Wachs algorithm for constructing optimal alphabetic trees may 

be noted along with Ramanan’s conditions. 

3. Does there exist algorithms similar to the Hu-Tucker or the Garsia-Wachs algo- 

rithms for the optimal ternary tree problem? 

For the binary case we combine lmcp pairs of nodes, therefore we may attempt 

to combine triples of nodes. However, Hu [64] has observed that combining lmcp 

triples does not give an optimal ternary tree. It may be the case that the Garsia-Wachs 

algorithm may generalise, though both the algorithms are equivalent in the binary case. 

5.3. HufSman trees 

1. Is there an o(n log n) algorithm for constructing Huffman trees in a model where 

we are allowed to compute the floor’s and ceiling’s of numbers? 

We have an fl(n log n) lower bound on the time required for constructing Huffman 

trees in the decision tree model. It is possible that we can construct Huffman trees in 

o(n logn) time in models where we are allowed to compute the floor’s and ceilings of 

numbers. In fact, the O(n) algorithms for the special case when the weights are within 

a factor of two do compute floor’s and ceiling’s. 

2. Dynamic Huffman codes 

Knuth [87] gives an O(Z) algorithm to increase or decrease the weight of a node at a 

level 1 of a Huffman tree by 1. This immediately gives an 0( Iw) algorithm to increase 

or decrease the weight of a node at level I by w. To insert or delete a node of weight 

w, this gives an O(Lw) algorithm where L is the maximum level of the tree. But his 

result uses the fact that the tree is produced by Huffman’s algorithm. It is useful to 

see whether this result can be extended for any optimal extended binary tree. Perhaps 

the necessary and sufficient conditions we used for Huffman trees may be useful here. 

The reader may consult the references for several other interesting problems related 

to binary search trees. 
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