
Theoretical
Computer Science

Theoretical Computer Science 188 (I 997) I-44

Tutorial

Optimal binary search trees

S.V. Nagaraj *

Received October 1996
Communicated by M. Nivat

Abstract

We consider the problem of building o~~timul hinuu~, srurch trees. The binary search tree is
a widely used data structure for information storage and retrieval. A binary search tree T for a
set of keys from a total order is a binary tree in which each node has a key value and all the
keys of the left subtree are less than the key at the root and all the keys of the right subtree arc
greater than the key at the root, this property holding recursively for the left and right subtrees
of the tree T.

Suppose we are given n keys and the probabilities of accessing each key and those occurring
in the gap bctwccn two succcssivc keys. The optinzal binary .cearch trc’e prohlrr?~ is to construct
a binary search tree on these n keys that minimizes the expected access time. One variant of
this problem is when only the gaps have nonzero access probabilities, and is called the optimal

alphuhetic~ tree prohlen?. Another related problem is when there is no order between the keys
and there are probabilities associated only with the gaps and the objective is to build a bmary
tree with minimum expected weighted path length from the root. This is called the H@?Ku~
trw prohlmz.

In this survey, we assess known results on the structural properties of the optimal trees,
algorithms and lower bounds to construct and to verify optimal trees and heuristics to construct
nearly optimal trees and other related results.

Keywords: Binary search tree; Data structures: Optimal binary search tree

1. Introduction

1.1. Motiwtion

The binmy search tree is a widely used data-structure for information storage

and retrieval as it supports many dynamic-set operations including Search, Minimum,

Maximum, Predecessor, Successor, Insert and Delete.

* E-mail: svn@imsc.ernet.in.

0304.3975/97/$17.00 @ 1997 - Elsevier Science B.V. All rights reserved

PII SO304-3975(96)00320-9

2 S. l! Nagarajl Theoretical Computer Science 188 (1997) l-44

A binary tree is either empty or composed of a root node together with left and

right subtrees which are themselves binary trees. A binary search tree T for a set of

keys from a total order is a binary tree in which each node has a key value and all

the keys of the left subtree are less than the key at the root and all the keys of the

right subtree are greater than the key at the root, this property holding recursively for

the left and right subtrees of the tree T.

Suppose we are given n keys KI < K2 < . . < K, and 2n + 1 probabilities /IIt, Pz,. . . ,

fin, ~0, ~1,. . . , a,, with C /Ii + C Hj = 1 where pi is the probability of accessing the key

Ki and Mj is the probability of accessing a key which lies between KJ and &,+I, with

~(0 and an having obvious interpretations. Consider a binary search tree for this set of

keys. Let bi be the number of edges on the path from the root to the interior node K,

and aj be the number of edges on the path from the root to the leaf (Kj,IC,+l). Then the

expected cost of accessing all the keys in the binary search tree is CPi(bi + 1) + Cxja,,

since the cost of accessing key K, is b; + 1, while for the gap (&i, Kj+l) it is simply

aj. An optimal binary search tree for this set of keys is one which has the minimum

cost. The optimal binary search tree problem is to construct an optimal binary search

tree given the keys and their access probabilities.

A simple dynamic programming algorithm requiring O(n3) time and O(n*) space

was given by Gilbert and Moore [48] for the special case when only the pi’s are zero.

This algorithm was extended by Knuth [86] to include the case when the /Ii’s are

also present. Knuth also improved the algorithm to run in O(n’) time by observing a

monotonicity property of the roots of the optimal binary search trees. Another solution

for the same problem was given by Yao [1611 using her general method for speeding

up dynamic programming. This however had the same time and space complexities.

Knuth’s algorithm is the best known so far for the general optimal binary search tree

problem. Recently, Karpinski et al. [74] gave an algorithm with subquadratic expected

running time for the special case of the optimal binary search tree problem when the

X’S are zero. They also mention that they can obtain such a result for the general case.

We study known upper and lower bounds [86,113,129,130,162] on the cost of

optimal and nearly optimal binary search trees. For an optimal binary search tree T

with a subtree S(d) rooted at a depth d from the root of T, we study the ratio of the

weight of S(d), to the weight of T and correct a result obtained by Hirschberg et al.

[60]. This result is used by Larmore [95] in his subquadratic algorithm for constructing

approximately optimal binary search trees.

Several heuristics for constructing binary search trees which have nearly the optimal

cost but requiring significantly less time and often less space than Knuth’s algorithm

have been proposed [95, 102, 110, 111, 129, 1621. We explore some of these heuristics.

The optimal binary search tree problem when the PI’s are all zero is called the op-

timal alphabetic tree problem. An 0(n2) time, O(n*) space algorithm for constructing

optimal alphabetic trees was first proposed by Hu and Tucker [68]. This was later im-

proved by Knuth [86]. The improved algorithm required only O(n log n) time and O(n)

space and employed better data structures. The original proof of correctness [68] of the

Hu-Tucker algorithm as given by its inventors was extremely complicated and lengthy.

S. 1/ Nuyarujl Theoretid Computer Sc,ience 188 I 1997) I 44 3

A much simpler proof of correctness was given later by Hu 1631 and Hu et al. [65].

Another O(n logn) time, O(n) space algorithm was found by Garsia and Wachs]43].

The two algorithms were shown to be equivalent later [64]. The proof of correctness

of the Garsia-Wachs algorithm was simplified considerably much later by Kingston

[78]. We discuss this algorithm, its implementation and its proof of correctness.

It has been shown recently by Klawe and Mumey [80] that a class of techniques for

finding optimal alphabetic trees which includes all current methods yielding O(n log/r)

algorithms are at least as hard as sorting in whatever model of computation is employed.

They introduce an idea for finding optimal alphabetic trees which they refer to as rr~gior7

processing and use this method to produce O(n) algorithms for the case when all inputs

are within a constant factor of one another and when they are exponentially separated,

notions which they define. Linear-time algorithms for constructing optimal alphabetic

trees when the weights are within a factor of two or when the input is in sorted order

are known [64, 1161. We discuss these algorithms.

Another related problem is the well-known Hz@zan tree problem where the external

node weights may appear in any order, not necessarily the alphabetic order. The Huff-

man trees and the alphabetic trees are used for data compression [85,87]. An optimal

Ofnlogn) algorithm (under the colnparison tree model) for const~cting Huffman trees

was first proposed by Huffman 1691. We study the linear-time algorithms known for

the Huffman tree problem when the weights are within a factor of 2 or when the input

is in sorted order [64,80, 113, 1161. We discuss the problem of verifying the optimality

of weighted extended binary trees and Hut’fman trees.

The main source of motivation in studying the optimal binary search tree problem are

the many unresolved problems [65,80, 1 16, 1371 associated with it. The most important

ones are the following:

1. What is the true complexity of the optimal binary search tree problem :’

In other words, is there an o(n2) time/space algorithm for the general case of the

optimal binary search tree problem ?

2. What is the true complexity of the optimal alphabetic tree problem ‘?

In other words, is there an o(nlogn) time algorithm for the optimal alphabetic tree

problem ?

3. Is there an o(n log n) algorithm for the Huffman tree problem in the general model

where we are allowed to compute floors and ceilings of numbers ?

4. How fast can we test whether a given binary search tree or alphabetic tree is

optimal ?

In an attempt to address these questions, we first study and survey important known

resuhs on optimal binary search trees and related variants.

A binury tree is a finite set of vertices that is either empty or consists of a root

node together with two binary subtrees which are disjoint from each other, and from

the root, and are called the left and right subtree.

S. V. Nagarajl Theoretical Computer Science 188 (1997) I-44

An extended binary tree is a binary tree with external nodes attached to its leaf

nodes.

A binary search tree T for a set of keys from a total order is a binary tree in which

each node has a key value and all the keys of the left subtree are less than the key at

the root and all the keys of the right subtree are greater than the key at the root. This

property holding recursively for the left and right subtrees of the tree T.

The level of any node in a binary tree is the number of internal nodes on the path

from the root to that node.

We measure the cost of searching for a key K in a binary search tree T by the

number of comparisons, CT(K) needed to locate K or to determine that K is not in T.

Assume that T contains keys K1, K2, . . . , K,. The interval between the keys K, and K,,,

is denoted by (K,, Ki+l). For 1 <i <n we define CT(Ki) = 1+ number of edges in the

path from the root of T to K;, and for 06 j dn and Kj < K <K&l, define CT(K) =

C’T((Kj,Kj+l)) to be the number of edges in the path from the root of T to (Kj,K,+I).

It is possible to associate real numbers, or weights with the keys and the intervals

between the keys, of a binary search tree T. We denote the weight of the key Ki of

T by /& for 1 d i < n, and the weight of (Kj, K,+l) by Xj for 0 <.j < n. We define the

cost of a binary search tree T to be

C(T) = 5 CT(Ki)fli + 2 CT((Kj,K,+l)Pj.
i=l j=O

The cost of a binary search tree is also called as its wleighted path length.

The weight of a node Y is denoted by W(T). The weight of a binary search tree T is

defined to be the sum of the weights of its internal and external nodes. If the weights

/i’i and aj of a binary search tree T satisfy the condition Cy=, fli + c,“=. aj = 1, these

weights are called probabilities.

Let (71,. . . , I/~) be a discrete probability distribution i.e. yi 3 0 and Cy, = 1. Then

H(yt,. . . ,y,) = - cyr, yi. lg(y,) is called the entropy of the distribution. It is denoted

by H.

For a binary search tree T, we use the following notation when we discuss subtree

weight ratios:

root(T) the root of tree T

W(T) the weight of tree T

TL TR the left and right subtrees

TLL, TLR the left and right subtrees

TRL, TRR the left and right subtrees

PO the weight of root(T)

of T

of root(T,)

of root(TR)

h, PR the weights of root(TL), root(TR)

An optimal binary search tree, given a set of keys and the probabilities of accessing

them and the gaps is a binary search tree for that set which has the minimum cost.

The optimal binary search tree problem is to construct an optimal binary search tree.

Given a sequence of n weights /?I, fil,. . , /!J,, an dphuhetic tree for this sequence of

weights is any binary tree whose leaves have these weights, such that as we traverse the

tree in inorder, the weights occur in the given (alphabetic) order. We can alternatively

think of these weights as gap probabilities given II ~ I keys. An alphabetic tree having

the minimum cost for a given sequence of weights is called an optimul ~~lphufwtic

trrr for that set of weights. The optimul mlphahetic tree p~ohkm is to construct an

optimal alphabetic tree for a given sequence of weights. If we relax the condition that

the weights should be in alphabetic order then the optimal alphabetic tree problem is

called the Hufnmn tree problem.

In the case of alphabetic trees and Huffman trees, the n.riUht qf’an intrmul no& is

defined bottom up recursively, as the sum of the weights of its children.

In any binary tree T, the ahstr-urt position of a node .I.- is defined to be the bit list

of descent commands necessary to find x from the root. By positionr(x) we denote

the abstract position of x in T.

We define u =+ r to mean r is the inorder successor of u in some abstract binary

tree.

In Section 2, we study the general optimal binary search tree problem and solutions

to it, including the classical dynamic programming algorithm. We look at Knuth’s

improved method using the monotonicity property of the roots of the optimal binary

search trees. We analyse bounds on the cost of optimal trees and look at subtree weight

ratios for optimal binary search trees. Finally, we consider heuristics for constructing

nearly optimal binary search trees.

In Section 3, we study the Huffman tree problem. We give the classical O(n log II)

algorithm to construct Huffman trees. We note certain properties of Huffman trees and

look at O(n) algorithms to construct Huffman trees in some special cases. We discuss

the problem of verifying the optimality of weighted extended binary trees and Huffman

trees.

In Section 4, we study the optimal alphabetic tree problem. We look at the Hu-Tucker

and Garsia-Wachs algorithms for constructing optimal alphabetic trees. We also note

the equivalence of the two algorithms. We discuss algorithms for constructing opti-

mal alphabetic trees in some special cases. We also study the lower bound result for

constructing optimal alphabetic trees obtained by Klawe and Mumey.

In Section 5, we discuss open problems and directions for further research.

2. Optimal binary search trees

In this section, we study the general optimal binary search tree problem and solutions

to it, including the classical dynamic programming algorithm. We look at Knuth’s

improved method using the monotonicity property of the roots of the optimal binary

6 S. V. Nugarajl Theoretical Computer Science 188 (1997) I-44

search trees. We analyse bounds on the cost of optimal trees and look at subtree weight

ratios for optimal binary search trees. Finally, we consider heuristics for constructing

nearly optimal binary search trees.

2.1. The dynamic programming algorithm

2.1.1. The 0(n3) dynamic programming algorithm

The number of different binary search trees on n nodes is the Catalan number viz.

[l/(n + 1)I(‘,“) E 4n/nfi. Th’ g’ IS Ives an 0(n) lower bound for the optimal binary

search tree problem in the decision tree model. However, an exhaustive search for the

optimum will result in an algorithm which is exponential in n. We can do much better

as seen below.

The first algorithm running in time polynomial in n was given for the special case

of optimal alphabetic trees by Gilbert and Moore [48] and required O(n3) time and

O(n*) space. This method was extended by Knuth [85] to include the more general

case where the successful and unsuccessful search probabilities are both taken into

account. The key fact that makes the optimal binary search tree problem amenable

to dynamic programming is that all the subtrees of an optimal tree are optimal (this

is the principle of optimality). If Ki appears at the root then its left subtree is an

optimum solution for the probabilities ~0, at,. . , Ct_ 1 and 81,. , pi_ 1, its right subtree

is an optimum solution for the probabilities cl;, . . . , CY, and /Ii+, , . , /In. Therefore, we

can get a bottom up algorithm for building an optimal binary search tree for a set

of probabilities (as.. . , a,, /?I,. . . , /II,,). We can build up optimal trees T1,, for all the

probabilities ai,. . . ,ccj and pi+,,. . ., pj where i<j starting from the smallest intervals

and working toward the largest.

Let Pi,j and Wi,j denote the weighted path length and the total weight of an optimal

binary search tree for all words Ki < X < Kj+l where id j. Let Ri,j denote the index

of the root of this tree when i < j. The following formulae determine the cubic time

algorithm:

Pi,i = Wj,i = (xi for Odi<n, (1)

wi,j = wi,j-l + /3j + Xj, (2)

Pi,/ = Wi,j + i<mkllj(Pi,k--l + Pk,j) for 0 < i < j d n. (3)

Since we choose Ri,,i from among j - i pairs for each i, j such that 0 < i < j <II the

algorithm runs in O(n3) time, as there are only (n + 1)(n + 2)/2 choices of 0 < i < j < II,

the space required being O(n2).

2.1.2. The monotonicity of roots and consequent O(n2) algorithm

Knuth [85] observed that the Ri,j’S satisfy the condition Ri,j-1 <Ri,j < Ri+l,j. We

will look at the proof in the next subsection. This condition means that we only have

to search all the indices between Ri,j-1 and Ri+l,j to compute Ri,j. The running time

S. V. NayarqjI Tlworetkal C’onzputer Science 188 f 19971 I 44

of the algorithm is therefore,

0 2) @+I.~ - R;,;-I + 1)

which is O(~~~C~ n) = 0(n2). This is the best algorithm known so far for the general

optimal binary search tree problem. Karpinski et al. [74] recently gave an algorithm

with subquadratic expected running time for the special case when the X’S are zero.

They also claim that they can obtain such a result for the general problem.

2.2. Proprrtirs of optimul binmy, srurch trers

In this subsection we look at certain properties of optimal binary search trees that

are helpful to obtain fast algorithms and to obtain nearly optimal binary search trees.

2.2.1. Momtonicity of’ the roots

As observed in the previous subsection, Knuth proved the monotonicity of the roots

in an optimal binary search tree. Yao [1611 observed that the recurrence obtained for

the optimal binary search tree problem can be generalised to solve a larger class of

dynamic programming problems, using which she proved the monotonicity of the roots.

We look at her proof.

Let lv(i,.j) for 1 <i < j<n be real numbers and let c(i,,j) be defined by

c(i, i) = 0. (4)

c(i..j) = w(i, j) + ,F$I;(c(i,k - 1) + c(k,j)) for i < .j. (5)

The recurrence of c(i,j) for optimal binary search trees is a special case of this

recurrence where we have w(i, j) = IV,,, = r, + pi +, + + pi + x,, c(i,.j) = p,,,
IF IV satisfies

4i.j) + 4i’,.j’) d w(i’,j) + w(i.,j’) for i < i’ < ,j <,j’ (6)

it is said to satisfy Quadrunyl~ ineqzwlit~~.

We use ck(i,,j) to denote w(i,j) + c(i,k - 1) + c(k,j) and define

R(i. i) = i, (7)

R(i,j) = max{k;Ck(i,j) = c(i,j)} for i<j. (8)

Then R(i.j) is the largest index where the minimum is achieved in the definition of

c(i, j).

IV is said to be monotone if w(i, j’)<w(i’,,j) for i<i’<j<j’.

The following theorem (see [1131) proves the monotonicity of‘ the roots.

Theorem 2.1. IJ’w sutisfies thtr quudrunyle inequulit~~ und is monotone. then R(i.j) <

R(i,j + l)<R(i + 1, j + 1) for i<j.

S. V. Nayarajl Theoretical Computer Science 188 (1997) 1-44

Note: It is easily seen that the w(i,j) for the optimal binary search tree problem is

monotone and satisfies the quadrangle inequality in fact with equality.

We state a few lemmas (see [1131) leading to the proof of the theorem.

Lemma 2.2. If w satisfies the quadrangle inequality and is monotone, then the jiinc-

tion c de$ned above also satisjies the quadrangle inequality, i.e. c(i, j) + c(i’, j’)<

c(i,j’)+c(i’,j) for i<i’<j<j’.

Proof. We use induction on the length I = j’ - i to prove the result.

This inequality is trivially true if i = i’ or j = j’. This proves the quadrangle

inequality for c for I< 1. For the induction step we distinguish two cases i’ = .j,

i’<j.

Case 1: i < i’ = j < j'. In this case the quadrangle inequality for c reduces to

c(i, j) + c(j, j’) <c(i, j’). (9)

Let k = R(i, j’). We distinguish two symmetric subcases: k<j, k 3 j.

Case 1.1: k <j. We have

c(i, j) + c(j, j’)< w(i, j) + c(i, k - 1) + c(k,j) + c(j, j’)

(by definition of c(i, j)) (10)

d w(i, j') + c(i, k - 1) + c(k, j) + c(j, j’)

(by monotonicity of w) (11)

< w(i, j’) + c(i, k - 1) + c(k, j’)

(by the induction hypothesis) (12)

= c(i, j’) (by definition of c(i, j’) and k). (13)

Cuse 1.2: k > j. As this case is symmetric to case 1.1 the proof is similar.

Case 2: i < i’ < j < j'. Let y = R(i’, j) and z = R(i, j’). We have to distinguish two

symmetric cases: z < y or z > y. We only consider the case z < y. We note that z < y < j

by the definition of y and i <z by the definition of z. We have

c(i’, j’) + c(i, j) (14)

<c_di’, j’) + CA&j> (15)

= w(i’, j’) + c(i’, y - 1) + c(y, j’) + w(i, j) + c(i,z - 1) + c(z, j) (16)

<w(i,j’)+w(i’,j)+c(i’,y- l)+c(i,z- I)+c(z,j)+c(y,j’)

(by the quadrangle inequality for w) (17)

S. V. Nagarqjl Theoretid Computer Scierzcr 188 (1997) I- 44

<w(i,j') + w(i’,j) + c(i’, y - 1) + c(i.z - 1) + c(y,,j) + c(z,,j’)

(by the induction hypothesis)

(i.e. the quadrangle inequality for c applied to z <~‘<j<,j’)

= e(i..i’) + c(i’,j) (by the definition of y and z).

This completes the induction step and proves the lemma. n

(18)

(19)

Proof of’ the main Theorrm. The claim is trivially true when i=,j so we assume i <,j.

We will show R(i,j)<R(i,j + 1), the argument for R(i.j+ l)<R(i+ l,,i+ 1) follows

by symmetry. Since R(i,j) is the largest index where the minimum is assumed in the

definition of c(i.j), it is sufficient if we show

[c~~(i..j)<c~(i,.j)] * [ckr(i,.j + l><cr(i.j + l)] for all i < k<k’<,j (20)

We show a stronger inequality. for all i K k <k’< j

ck(i.J) - ckr(i,j)<q(i,j + 1) - ~.k~(i.j + 1). (21)

i.e.

ck(i,.i) + cl;f(i,.i + l)<ck~(i,j) + ck(i,,i + 11, (22)

or equivalently by expanding all the four terms using their definition

c(k,j) + c(k’,j + 1) <c(k’,j) + c(k,.j + 1). (23)

This is just the quadrangle inequality for c at k <k’ <,j < j + 1.

As discussed earlier this result yields an O(n*) time algorithm for computing L’(1. n)

and hence for the optimal binary search tree problem.

2.2.2. Bounds on the cost of optimul binary seurch trees

It is useful to obtain upper and lower bounds on the cost of optimal binary search

trees and their variants in terms of the access probabilities. Many useful bounds have

been obtained by methods of information theory [86, 110, 111, 113, 130, 1621.

Mehlhorn [1131 obtained a lower bound for the cost of any binary search tree T

for the given set of keys, in particular for the optimum tree. It requires the following

result.

Lemma 2.3. Let c be u real number such thut O<c< 1. Let 8, = ((1 - c)!~)~‘c

fbr 1 <i<n, ?, = ((1 - c)/2)a~ for O<jdn then /?,,C,>O untl ZB, + CE, = I i.e.

‘(c%J,~ - , . , B,,, Cc,,) is u probability distribution.

The proof of this lemma is by induction on n. By showing that it holds for the left

and right subtrees of the tree T, we can show that it holds for the tree T.

We now prove Mehlhorn’s theorem (see [1131) which enables us to get a lower

bound on the weighted path length of any binary search tree.

10 S. l! Nayarajl Theoretical Computer Science 188 (1997) 1-44

Theorem 2.4 (Lower bound on the weighted path length). Let B = C/I, then

1. max
{

H-dB .d E R <P, ~ lg(2+2-“) ’ >
2. H 6P + B[lg(e) - 1 + lg(P/B)].

Proof. 1. Define pi and ~?i as in the previous lemma. Then

b* + 1 = 1 + (MB, > - MC))/ M9

aj = lg<Q I/ 1gcq,

where C = (1 - c)/2.

Now

(24)

(25)

P = Cpi(b, + 1) + CCtjUj (26)

=B(l-z)+

>B(l-3)-(&H

= H - B ‘g(dc)
Ml/E) ’

where we have used a property of the entropy function, viz.,

H(~~>...>lin)=fJ(y~ +1/2,11(3...,%1)+(“/1 +Y~)H --&,A

(27)

(28)

(29)

Setting d = lg(C/c) and observing that c/C = 2c/(1 - c) is a surjective mapping from

0 6 c < 1 onto the reals gives us the required result.

2. As there is no closed-form expression for the value of d which minimises the

left-hand side of the first inequality we proved, numerical methods have to be used

to compute d,,, in every single application. A good approximation for A,,, is d =
lg(P/2B). It yields

H < Plg(2+2-d)+dB

=.,,(2+:) +Blg(&)

<$I+ (;)I&,) +B(Ig

(since lg(x)<(x - l)lg(e))

P 0 > B
-1

= P + B . q

(31)

(32)

The special case d = 0 is also useful as it yields H/lg(3)< P, i.e. 0.63H <P. This

result is true for any binary search tree, in particular, it holds for the optimal binary

search tree. Let Copt denote the weighted path length of an optimal binary search tree

then by the above result 0.63H < Cop,. In fact, Mehlhorn [1 lo] has shown that this

lower bound is sharp for infinitely many distributions. In the case of alphabetic trees

we get a much better result than the one implied by the above result. The following

result is attributed to Gilbert and Moore by Knuth (see [86]).

Proof. To get the lower bound we use induction on n. Let Qi = coci c k Y, for some

k. If /? > 0 the weighted external path length is at least

1 + C ~tlg(QliX,) + C xi Ig((l - QI)/xO (35)
O&;i~i X<_,<rr

3 C XiltdliXi) + .f(Ql) (36)
O<I<il

= H + ./‘(QI). (37)

where

.~‘(QI) = 1 + QI lg(Ql) + (1 - QI 1 Ig(l - QI). (38)

The function ,f(Ql) is nonnegative and it takes its minimum value of zero when

Q, =: f, hence the lower bound result follows.

To get the upper bound, Knuth [SS] constructs code words C, of O’s and l’s, using

the most significant e; + 1 binary digits of the function c oGxi, x/; t- (r;/2 expressed in

binary notation and shows that Ci is never an initial substring of C, when i # ,j, and

hence that we can construct a binary search tree corresponding to these code words.

The weighted path length of the binary tree constructed by this procedure is

< c (e, + I)% < c x;(2 $ lg(1 /IX!)) = H + 2. !7 (39)
0 b i L I? O<i</l

Knuth [86] also mentions that the first part of the above proof may be extended to

show that the weighted path length of every weighted extended binary tree must be

greater than or equal to the entropy H of the probability distribution (xc), Y(I). . . T,,).

He mentions that this fundamental result is due to Claude Shannon (see [X6]). Hence.

we note the following:

Let C denote the cost of any weighted extended binary tree with gap probabilities

(20, ~1,. , r,,) and CHUFF the cost of any Huffman tree, CAT. the cost of an alphabetic

tree, Co,,-, the cost of an optimal alphabetic tree on that set.

The cost of any tree on that set satisfies

(1) H <CHUFF <c.

(2) H < CWFF <COAT < H+2,

(3) COAT d CAT.

(40)

(41)

(42)

12 S. V. Nagurajl Throretical Computer Science 188 (1997) l-44

Knuth [86] has generahsed the above result to show that the cost of any binary

search tree on the set of access probabilities (a~,. . . , x,,,p,, . . . ,/&) is

< 2 - Ho lg(~o) - c (LA + @i>&(Bi + a;>. (43)
I Si</?

Much better upper bounds are known for the cost of the optimal binary search trees.

Mehlhorn [I IO] showed that the cost of an optimal binary search tree on (x0,. . . , CX,~,

Bl,. . . , /$) with E/?i+Zq = 1 is < 2+ 1.44H. In fact, he exhibited a linear time heuris-

tic which constructs a binary search tree for a given distribution (x0,. . . , IX,,, PI,. . . , j!&)

having a cost < 2 + 1.4411. Bayer [14] improved the upper bound to H + 2. Mehlhorn

[11 l] also exhibited another linear time heuristic and showed that the upper bound

is I + x cxi + H and is best possible in the sense that if cr C pi + c2 x xj + qH

is an upper bound on the cost of an optimal binary search tree then cl > 1, cz > 1

and c3 > 1. He proved this by exhibiting suitable probability distributions. Yeung [1621

has derived upper and lower bounds on the cost of optimal alphabetic trees. He also

mentions several other results about upper and lower bounds on the cost of Huffman

trees and optimal alphabetic trees. He proposes a linear time heuristic to construct an

alphabetic binary tree whose cost is

d~-1-2-f(~o)-.f(a,,)<H+2-cx~-x,

where f(x) = x(2 - lg(x) - [- lg(x)l). (44)

improved bounds on the cost of optima1 binary search trees and optimal alphabetic

trees were obtained by Roberto de Prisco and Alfred0 de Santis [129, 1301. They

proposed a linear time heuristic that constructs a binary search tree whose cost satisfies

the condition Copt d C < H + 1 - cc0 - a,, + ctmax where E,,,~~ is the maximum value

among (xg,zr,. . .,x,. This result improves on Mehlhorn’s upper bound on the cost of

optimal binary search trees and also improves on Yeung’s upper bound on the cost of

optimal alphabetic trees.

New lower bounds on the cost of binary search trees were obtained recently by

Prisco and Santis [130]. Their bounds were expressed in terms of the entropy H of

the probability distribution (x0,. . . , x,, PI, . . . , j&), the number of elements n and the

probability Q = EYE, /I$ that a search is successful. Their bounds exploit relations

between trees and codes. Mehlho~‘s lower bound of C>H/ lg 3 is tight when the

entropy H is small. If further information on the probability distribution is given then

a better [4,5] lower bound of C >H - lg e - Q(lg lg(n + 1) - 1) can be obtained. This

bound [130] has been shown to be better than Mehlhorn’s bound when H > 3.909 +

2.710Qlglg(n+l)-2.71OQ. Prisco and Santis [130] show that in fact C>H+HlgH-
(H + I)lg(H f I). They show that this bound is better than Mehlho~‘s bound when

H3x where XE 14.4922. They also derive several other lower bounds which are a

function of H, Q and n or H and Q only. They show that the bounds C&. H - 1 -

Q(lglg(n + 1) - 1) and C&H + Q + HlogH - (H + l)lg(H + 1) are better than

previously known bounds when the entropy, H is not very small.

It is useful to obtain bounds on the cost of binary search trees produced by heuristics,

since we can compare them with the best-known upper bound on the cost of the optimal

binary search trees and determine how close, they are to the optimal cost.

Hirschberg et al. [60] obtained bounds for the ratio of the weight of a subtree S((/)

rooted at a depth d from the root of an optimal binary search tree T, to the weight

of T. They call the maximum possible value of the ratio of weights as /I(c/)_ Their

work on this problem was motivated by Mehlhorn’s heuristic [1131 for constructing

nearly optimal binary search trees. Mehlhorn showed that a tree, that is constructed

by equalising as much as possible the weights of the left and right subtrccs, is nearly

optimal. Hirschberg et al. [60] consider the related problem: how skewed can an optimal

binary search tree be. Their result was used by Larmore 1951 in his subquadratic

algorithm for constructing approximately optimal binary search trees.

The following theorem was proved by Hirschbcrg et al. 1601. We include their proof

and show why it is erroneous and also show later. how we can correct this error.

Theorem 2.6 (Erroneous: valid only if external node weights are zeroes). I/ T is (ur

optimrl hituii:l. star-cl? tree, tlziw tlzr nviglzt of’ t/w lefi or ri~ght suhtrw rnlrst lx, lit

west g tlw u’oiql7t of’ t/w entiw trrr.

Proof. Suppose that W(TR) > ($)W(T). Root(T,) has two subtrees, 7’,, and TRR.

There are two possible cases:

I. The weight of TKL is greater than (t)W(T). Then make root(TRL) the neu! root

of T. using a double left rotation.

2. /I’,< + I+‘(T,,) > (f)W(T). Then make mot(T,) the new root of T, using a single

left rotation.

In tither case, the new tree has lower expected search time than T. a contradiction

to the optimality of T. By symmetry, the same argument holds for the left subtrcc

of T. El

The proof as given above is valid if the optimal binary search trees considered have

no external node weights. However, if there are nonzero external node weights then

the proof may not be valid, since we may be trying to make an external node TOIL. or

TR as the root node.

They also prove the following lemma by arguments similar to those used in the

previous theorem.

Lemma 2.7 (Erroneous: valid only if external node weights are zeroes). 117 L,~I opt-
imul hinarj~ srurch tree,

1. PO + @‘(TR)>max{@‘(Tu), W(TLR)}.

2. PO + W(TL)>max{W(TRR), W(&L)}.

14 S. F Nuguraj?jl Theoretical Computer Science I88 (1997) I-44

Their proof of this lemma also has the same error we observed before but holds for

the subtrees which have only internal nodes.

Their main theorem, which uses the above lemma is the following:

Theorem 2.8 (Erroneous: valid only if external node weights are zeroes). For any
subtree S Gth its root at a distance d from the root of an optimal binary search tree

T, W(S)/W(T) < 2/Fd+3 where F, is the nth Fibonacci nu~nber (F, = 1, Fz= I, F3=2).

Hence p(d) < 2/Fd+3.

By fixing the problem encountered at the leaf levels we get the following correct

theorem.

Theorem 2.9. Let T be an o~ti~la~ binary search tree kth a subtree S rooted at a

node at a distance d from the root. If S is rooted at un internal node, W~S)~W~T)~

l/Fd+l and ij” it is rooted at an external node, then W(S)/ W(T) < 1/Fd. Hence p(d) <

l/&i.

Proof. We consider two cases: one when the root of the subtree S is an internal node

another when the root of the subtree S is an external node.

1. Let the root of the subtree S = 7” be an internal node, say PO. We start at the root

of S and go up the path to the root of T, one level at a time. At each step i, we are

at the root of a bigger subtree. Let us call this subtree as Ti, and let /3, be the weight

of root(Ti). T; has one subtree 7;:_t and another subtree Vi which was not along the

path followed. Also let W(To) = Wo = W(S) and W(~,) = WI. Since every subtree of

an optimal tree is also optimal, we can use the previous lemma, observing that:

P2 + W(V2> 3 W(TO),

VT21 = W(Tl) + P2 + W(ff,),

WIT21 2 F’(To) + wtrl),

and in general

W(7;)> W(Tj_,)+ W(Tr-2) ‘dd>:i22.

Solving this recurrence we get,

l=w(T)=W(~d)~F~Wg+Fd_,W,

>fi&+fFd-.~&

=r &I(& + k-l)

(45)

(46)

(47)

(48)

(49)

(50)

(51)

-= ~~+i,

n;, ws 1
-=-<-
WT WT Fd+l

since W; > WO. This proves the first part of the theorem.

(52)

(53)

2. When the root of S is an external node, we have

W(i”,)>W(T;_.j)+ W(T,_l) Vd>i>3,

I = W(T)= W(T(,)>&, w, + b;,-~l/t/,

= F;, w,.

(54)

(55)

(56)

(57)

So we get W(S)/W(T)< l/E,. 0

It is useful to obtain bounds on the subtree weight ratios of the optimal binary search

trees since they tell us how skewed an optimal binary search tree can be. It also gives

a necessary condition to check the optimality of a binary search tree.

2.3.1. Lumow’s subquudmtic ul~qor-ithrn

Larmore [95] presented an algorithm for constructing optimal binary search trees.

Using subtree weight ratios, that requires subquadratic time if there is no long sublist

of very low frequency items. The time required by it is O(FZ’.~) if the frequency of

each item is at least r:/n for some constant x > 0. He also presented a modification

which constructs a nearly optimal binary search tree in the general case. We discuss

this algorithm in the next subsection.

The following are his main results.

Corollary 2.1 I. Suppose pi + C!, > c/n fill- (111 i, H,htJre :: > 0 is u consturzt. Then tlww

is m ui~qorithm thut computes un optirnul binq~ seur~ch trre in O(n”(log n)‘) tinw,

1tAtv.e ci = 1 + l/(1 + log 4) zz 1 S9023 urld T = 1 - I!(1 + log 4) M 0.40977.

Larmore formulates the optimal binary search tree problem as a problem on a

weighted acyclic digraph. For any fixed integer n 20, he shows how we can con-

struct a weighted acyclic digraph G,, such that the minimum weight of any path in

G,/ from its source to its sink is the weighted path length P,,, of the optimal binary

search tree for a set of n keys, (KI, . . K,,). The edges and vertices of the graph G,,

are defined as given below.

Let Z(“) = {~a E C* / 1 w 1 d d}. We define Cd = (&, I!?,,), where

I$ = {{K,. ,K,} x Zcd’} U {sozwce, sink}, (58)

16 S. V. Nagarajl Theoretical Computer Science 188 (1997) IL44

&I = {(K, ~1, (K,,, ~1) I u, v E Zcd’, u * v}
U {(source,(K~,v)) 1 u E O"} u {((K,,,u),sink) 1 u E l*},

Sd = {((Ki, U), (Kj, zj)) 1 i < j; U, C E C’“‘, U * G,mU.X{ / II /, 1 V I} = d}

U {(SOuYce, (Kj, v)) 1 1 v I = d} U {((Ki, u),sink) I / u I = d},

(59)

(60)

Ed =Rd u&. (61)

The members of Rd are called reyulur edges, while the members of & are called

speciul edges. The runk of each vertex is also defined:

runk(K;, w) = i, (62)

runk(source) = 0, (63)

runk(sink) = n + 1. (64)

Weights are placed both on the vertices and the edges as follows: for vertices

weiyht(source) = weight(sink) = 0, (65)

weight(Ki,w) = (1~1 + l)Bi, (66)

for the regular edges as

weiyht((~;,u),(K,+l,V)) = (~u.~{I~I, IVl} + I)%,

weiyht(source, (K,, Ok)) = (k + l)cca,

weight((l(,, l”),sink) = (k + l)a,,

for the special edges as

(67)

(68)

(69)

weiyht((lk;,,u),(K,,u)) = Pi.j + Cd + l>K,j, (70)

weight(source, (Kj, V)) = P0.j + (d + l)JVo,;, (71)

wei&r((K;i,u),sink) = Pi,n+r + (d + ~)K,,,+I, (72)

where P,,, and Wi,j denote the path length and the total weight of all items strictly

between Ki and Kj, when i < j.

The following lemmas show the relationship between the minimum weight path

problem for the graph Gd and the optimal binary search tree problem.

Lemma 2.12. Let x be a path in Gd from source to sink. Then there is u binury search

tree T such thut positionr(Ki)=wi jtir each interior node (K!,wi) qj’x. Furthermore,

the weighted path length of T is the weight of x.

Lemma 2.13. Let T be u seurch tree (not necessarily optimal), and let P be its

weighted puth length. Let xd = {(Ki, w;) I wi = positionr(K,), lw;l <d}. Then the ele-

As the graph as defined above has n(2”+’ - 1) + 2 vertices, (tg ~ I)(2”- ’ - 21 ~~

4) + 2(d + 1) regular edges, and (2(’ ~ 1)(n - 1)(n - 2) + 2(n - 1)(d + I) special edges

which are not regular, it becomes necessary to take advantage of the special structure

of the graph.

For any u’ and for any vertex x of G,,, ,f;,(x) is defined to be the least weight of

any path in G,, from SOUYW to X. The weight of a path was defined as the sum of the

weights of the vertices and the edges of that path, the weight of the last vertex being

included. Hence, ,f;,(sink) = Pop,. If no path exists from soww to s, j;,(x) = X. For a

fixed integer I dn, let G~J be the subgraph of G,, consisting of all the vertices and

only edges of span not exceeding 1. For any vertex .x, let ,J,.,(x)>~;,(.Y) be the least

weight of any path in G,,,, from sown’ to X. The sputa of an edge is defined to be the

difl‘erence of the ranks of its end points.

Larmore gives a result that uses the lemma concerning subtree weight ratios that a

subtree 7;,, of an optimal binary search tree T rooted at a depth d has weight less

than 2/F;,+;. In view of our result concerning subtree weight ratios, his result must be

read as follows:

Lemma 2.15. If’ W,,, > l/F;, jilr ~11 puir’s i. ,j such thut ,j-i > 1. thrtl &,,, = f;t.t(.sittk).

Larmore’s Algorithm

Choose d, I

Compute .f;,,,(K,,O”) for all i

11‘ t- o’/

while w # 1” do

begin

w + the inorder successor of w in C(“)

Compute ,fk,,(Ki,w) for all i

end

Compute ,f;,,,(sink)

For any vertex _v, fd. l(y) = weight(y) $- rnin{JJt, i(x) + weiqht(x, y)} where the mini-

mum is taken over all the edges (x, y) of the graph Gd. 1. The classic minimum weight

path algorithm examines all edges. Larmore’s algorithm examines all regular edges.

but only a small subset of the special edges.

The first step of the algorithm is to find the smallest integers d, 1 such that I =:

[2” log n1 and WQ > l/Fd (In Larmore’s paper [95] a value of 2/Fd+3 is given, but

due to our correction we get the value l!Fd) for all pairs i, j such that ,j ~ i > 1. It

I8 S. K Nayarajl Theoretical Computer Science 188 (1997) I-44

requires O(n) time to determine whether a particular candidate value for d is suitable,

since it suffices to check W;.,+, for all i, and there are O(logn) values of d to check.

Thus, choosing d, I requires O(n log n) time.

For any i, there is at most one edge to (Ki,Od) and that edge is from source. It

takes O(n) time to compute fd,,(Ki,O”) for all i.

Suppose that w # Od, and that fd,,(Ki, u) has been computed for all u E Ccd) such

that u is an inorder predecessor of v. Let w’ be the inorder predecessor of w in Ccd).

Larmore defines an IZ x II matrix A4 as follows: M[j, i] = fd, ,(K;, w’) + P,,,; + (d + 1) Wi,j

provided 0 < j - i < 1, and M[j, i] = CC otherwise. Then the minimum value in the jth

row of M is precisely the minimum weight of any path in G~,I from Source to (Kj, w)

where the last edge of that path is a special edge. By the quadrangle inequality of

W and P, M is monotone, i.e. the column position of the minimum entry in each

row is an increasing function of the row. Hence, the minimum row values can be

found by using an O(n logn) algorithm for finding the row minimums of a monotone

matrix. Each regular edge is then examined once to find lower values for fd,,(K,,w) if

any. The total time for the main loop of the algorithm is therefore 0(2dn logn). The

final step of computing fd,I(sink) requires examining each of the It d edges to sink.

This step takes linear time. Therefore, the algorithm takes O(nl + 2dn log n) time if

W;,j > I/& for all i, j such that j - i > 1.

Now given that W;,j > 3. for all pairs i, j such that j - i > I we choose d such that

i, > l/Fd. Then $d > l/i. and therefore d 3 log(l/n)/(log 4) where 4 is the golden ratio,
dzl.618. Hence, 2d = 2- ‘% i = 2-(‘W: ~)(‘W, 2, = j,- '% 2. Therefore, ()(n/ +

2dn log n) becomes O(nl + i.- log4 2 a log n) and the theorem follows.

2.4. Nearly optimal binary search trees

Knuth’s algorithm [86] for constructing optimal binary search trees requires 0(n2)

space and runs in 0(n2) time. Quite often exact probabilities of accesses are not avail-

able. So nearly optimal trees that can be obtained faster will be useful. Many heuristics

[95, 102, 110, 111, 129,162] using the properties of the optimal binary search trees of

the previous subsection have been proposed for constructing trees which have nearly

the optimal cost but which can be constructed much more quickly. Many of these

heuristics run in linear time and require O(n) space. Several of these heuristics have

resulted in new upper and lower bounds on the cost of optimal trees as noted before

in the previous subsection.

2.4.1. The rootmax heuristic

A simple heuristic for constructing approximately optimal binary search trees is the

rootmax heuristic. The most frequently occurring key is chosen as the root and the

remaining keys are attached to the root node recursively. An O(n) implementation of

this heuristic is possible. This is achieved by using a data structure called the “Treap”

[13,901. A treap is a binary tree in which each node has two keys; the binary search

tree property is maintained in one and the heap property is maintained in the other.

A tree constructed by rootmax heuristic has heap property on the weights and binary

search tree property on the keys. Hence using the O(n) algorithm to construct the treap

[131, we can build the tree by rootmax heuristic.

In this heuristic the gap probabilities are ignored: this could be disadvantageous in

some cases. This heuristic produces trees whose cost is very far from the optimal as can

be shown by the following reasoning. Suppose that we have n keys whose frequencies

are 1,2.3.. , n. Let us assume for simplicity that 17 is of the form 2” - 1. The root

node is the node having the highest frequency, II. The rootmax heuristic produces a

left leaning search tree. The cost of this search tree is seen to be

&7 _ ; + 1) = n(n + 1;‘” + 21,
(73)

,‘- I

The cost of the balanced search tree is seen to be

(74)

Hence, the ratio of the cost of the search tree produced by the rootmax heuristic to

that of the optimal binary search tree is > n/6 log 77.

2.4.2. Bisection heuristic

Mehlhorn [1131 obtained a heuristic which builds a binary search tree, the weight

of whose left and right subtree are nearly the same. He showed that the cost of this

binary search tree is very close to the optimal.

Mehlhorn’s method uses a bisection on the set

iI

i-l
s, s; = x(x,, + flP) + fij + xi/2 where O<i<n

p=o I
.

i.e. the root k is chosen so that Sk-1 < i and Sk 3 i. The heuristic proceeds recursively

on the subsets {Si 1 i< k - I} and {s, 1 i> k}. If binary search is used to find the k at

each recursive step then the running time of the heuristic is O(n logn). If the search for

k is implemented using a combination of exponential and binary search, the running

time of the heuristic can be reduced to O(n). Mehlhom [1131 showed that the cost of

the binary search tree produced by this heuristic is <H + 1 + ?7Xj.

2.4.::. Min-mus heuristic

In this heuristic we choose the root so as to minimize the maximum of the weights

of the left and right subtree. The implementation and performance of this heuristic are

quite comparable to that of Mehlhom’s heuristic.

2.4.4. Lurmore’s heuristic

Larmore’s algorithm [95] for a special case can be modified to get a heuristic which

constructs an approximately optimal binary search tree for the general case. This heuris-

tic has one parameter, and exhibits a trade-off between speed and accuracy. It is possible

20 S. V. Nayarajl Theoretical Computer Science 188 (1997) IL44

to choose the parameter so that the time required by it is O(n’.‘) and the error is o(1).

This heuristic is the first subquadratic method to construct an approximately optimal

binary search tree, whose cost differs from that of the optimal by o(1), answering a

question of B. Allen [S].

Larmore’s heuristic is a modification of his algorithm for constructing an optimal

binary search tree in subquadratic time if there is no long sublist of low-frequency

elements, which we discussed in the previous subsection. The worst case for his algo-

rithm for constructing an optimal binary search tree is when there are a large number of

low-frequency elements. The main idea behind his heuristic is to delete these sublists

of low-frequency elements, and then to apply his algorithm to construct an optimal

binary search tree on the remaining elements. Then a complete balanced tree on the

low-frequency elements is formed and attached to the tree so constructed.

The variable parameter of this heuristic is a parameter r satisfying the inequality

O<r< 1. Let

I= [?q, (75)

6 = (lognY0S4
[l+logg ’ (76)

D={l<i<?Zj!X_I +/?,+!Xi <S}. (77)

Larmore uses his algorithm to construct an optimal binary search tree T’ for the list

obtained by deleting both Kj and (K,, K;+I) for all i in D. The deleted items are then

organised into an almost complete binary tree and attached to the tree T’. Suppose D

is the disjoint union of the maximal runs, i.e. D = [il . .jl] U . . . U [i, . .j,], where

&+I > jk + 1. For each k, let Tk be the almost complete binary search tree for the

keys strictly between Ki, -1 and Kj,,+l . A binary search tree T for all the keys is then

formed, by removing from T’ each external node (Ki, _ I, K,,,) and replacing it by Tk.

Larmore shows that the time complexity of his heuristic is O(n’+“) where Y is a

real number between zero and one. The special feature of this heuristic is the trade-off

between speed and accuracy it offers.

Let P, P’ be the costs of the trees T and T’, respectively, and let P,,, be the cost

of the optimal binary search tree. Larmore shows that the accuracy offered by this

heuristic is

P - Popt<P - P’=O(n6logn)=O(n’-‘~‘+‘~~~~(logn)’+’~”~).

Larmore obtained the following result.

Theorem 2.16. For any choice of real 0 < r -C 1, there is an algorithm that computes

a binnry search tree Tapprox in O(n’+‘) time such that

n’ (>
4I+lW4)

error = Papprox - Popt <n __
log n

where Popt is the weighted puth length of the optimal binary search tree, und Papprox

is the weighted path length of’ Tapprox.

The corollary follows from the theorem since if I. > 1 /(I + log c,h) then

(78)

2.5. Other r~c.sult.s

We record a few other results known about optimal binary search trees.

The lcast upper bound on the cost of optimal binary search trees as a function of

the number of external nodes, given the total weight of the nodes to be one, was found

by Hu and Tan [66]. They showed that

1
{((/ ~ 1)[2”_’ - n/2] + y(” - 2” _‘)}---

L’Z/2J ’
(79)

where q = [lg /?I, is the least upper bound on the cost of any optimal binary search

tree built on II external nodes and PI ~ 1 internal nodes where the total weight of the

internal and external nodes is one.

Karpinski et al. [74] recently gave an algorithm with subquadratic expected running

time for the special case of the optimal binary search tree problem when the x’s arc

all zero. They also claim that they can obtain such a result for the general case. Their

result is:

They also claim that they can obtain such a result for the general problem where

the external node weights are also given.

In the dynamic version of the optimal binary search tree problem where new keys

are added or existing keys are deleted, the access probabilities of the keys change is

an interesting problem we have not discussed. Mehlhorn [I 121 studied dynamic binary

search trees.

3. Huffman trees

In this section, we study the H&man tree problem. We give the classic O(n log n)

algorithm to construct Huffman trees. We note certain properties of Huffman trees and

look at O(n) algorithms to construct Huffman trees in some special cases. We discuss

22 S. V. Nagamjl Theoretical Computer Science 188 (1997) 1-44

the problem of verifying the optimality of weighted extended binary trees and Huffman

trees.

3.1. The Huffmun ulgorithm

Huffman [64,69,84] proposed an algorithm for constructing Huffman trees. The term

Huffman trees is generally reserved for the trees produced by the Huffman algorithm

although that algorithm may not produce all the trees having minimum weighted path

length. The algorithm given below is recursive.

The Huffman algorithm

Given a sequence of weights (WI, ~2,. . , wn), the algorithm produces a Huffman tree

on that sequence of weights.

HT(~I,J+L...,~,,)
1. If n = 1 then create an external node of weight wi and stop.

2. Find the the two smallest values of the sequence say w;, wj

3. Call HT(w~,w~,...,w~_~,w~+~~, wi+l,...,wj~I,wj+],...,wn)

4. Replace an external node of weight wi + wj in the tree obtained in the previous

step by a tree with one internal node having an external node as its left-son with

weight wi and an external node with weight w, as its right-son.

Since we need to find the two smallest values at each step, a brute force method of

finding the two smallest values using a linear search will give an O(n2) time algorithm.

If we use a priority queue on the wi’s for this purpose then we can delete the wi and

wi and also insert the wi +wj in O(logn) time, so we get an O(n logn) implementation

for the Huffman algorithm.

The tree produced by Huffman’s algorithm is optimal. We can show this by induction

on 12.

Given any binary tree with minimum weighted path length, if an internal node of

maximum path length has two sons which are not the smallest nodes, then we can

interchange the position of the two smallest nodes WI and w2 with the sons of that

internal node without increasing the cost of the tree. We then merge the two smallest

weight nodes ~1, w2 to get an external node of weight WI + ~2. In the resulting tree,

we have n - 1 leaves with weights wi + wz,ws,. . . , w,. By the induction hypothesis

this tree is optimal so the original tree is also optimal.

Schwartz [143] showed how we can construct a Huffman tree that is as well-balanced

as possible (has the smallest maximum depth) among all possible Huffman trees for a

given sequence of weights.

We can define t-ary trees just as we defined binary trees, where every internal node

has exactly t sons and every external node has no sons. It is known (see [84]) that the

Huffman construction of combining the t smallest weight nodes will give an optimum

t-ary tree, except that we have to add some zero weight nodes initially so that at every

later step we combine exactly t weights. The zero weight nodes do not contribute to

the cost of the t-at-y Huffman tree.

23

3.2. Propertics sf’ Hgjfinan trees

The following well-known result (see [84]) tells us when it is possible to construct

an extended binary tree given its level numbers.

Proof. It is easily seen by induction on n that the condition above is necessary. Con-

versely, if C, arc,, 22’1 = I we want to construct an extended binary tree with these

path lengths. If II = I then 1, = 0 and the construction is trivial. Otherwise. WC may

assume that the I’s are ordered so that

for some q with I <q <n. Now,

Y = z + an integer (so q is even). (X2)

By induction on n there is a tree with path lengths 1, - I. 13.. . . I,,; take such a tree

and replace one of the external nodes at level Ii - 1 by a tree with one internal node

having two external nodes as its children, this gives us the required result. 3

An interesting result by Schwartz and Kallick [1441 is the following.

Theorem 3.2. Giwn LI sequence oJ’ n ,tvights ~‘1, we. . , MS,, suck hut 11’1 < 1t’1 <
. . <II+‘,, there is un extended binary> tree on this sequrnce of’ IveiGqhts .uuch thtrt it

minimises thr nrighted path lemgth uric/ JOr which the terminul no&s in inordw con-

trrirl the w1ur.v 1~1, ~1, . , w,,.

Proof. We note that we are using the term extended binary tree instead of Huffman tree

because there may be trees having the minimum weighted path length which are not

produced by Huffman’s construction. First we construct a tree by Huffman’s algorithm

for the sequence of weights wi,w2,.. ..\v,,. If +v, < IV,+~ then I, > /,~+I (or else the tree

would not be optimal). The construction given in the proof of the previous theorem

now gives us another tree with the same lengths and with the weights in the proper

sequence. 0

It is not hard to show that there is an (2(n log n) lower bound on the running time

of any algorithm for constructing a Huffman tree on a sequence of n weights, in the

decision tree model. Hence, the optimality of the Huffman algorithm in this model

follows. However, we shall see in the next subsection that by choosing a model of

24 S. V. Nayarajl Theorriical Computer Sciencr 188 (1997) I-44

computation in which we can sort a sequence of numbers faster, we can construct

Huffman trees much faster.

3.3. Fast algorithms in special cases

3.3.1. When the weights are in sorted order

A linear-time algorithm for constructing a Huffman tree when the input weights are

in sorted order is known [1131.

Theorem 3.3. Hz.@man trees can be constructed in O(n) time if the weights are in

sorted order.

Proof. As we combine the two smallest weight nodes at each step, the weights of

the resulting new nodes also come in sorted order. Hence by maintaining two sorted

lists (one of external nodes and one of internal nodes), we need to check only three

elements to find the smallest weight pair.

In particular, if we are able to sort a sequence of n positive numbers in F(n) time

we can construct a Huffman tree on this sequence by just spending an extra O(n) time.

Hence if we are able to sort a sequence of n positive numbers in linear time, we can

construct a Huffman tree on that sequence in linear time. 0

A corollary of this result is

Corollary 3.4. We can construct a Huffman tree corresponding to a valley sequence

in O(n) time where a valley sequence is a sequence of the type WI > w2 > . . . >w-I

<Wj<Wj+i .f. <W,,

3.3.2. When the weights are within a factor of two

It is known [116] that if the input weights are within a factor of two, we can

construct a Huffman tree on these weights in linear time.

We state the following theorem due to Klawe and Mumey [80, 1161.

Theorem 3.5. Given u sequence of n nodes whose weights are within u jixtor of two,

ajier the first [(n + I)/21 minimum weight pairs have been jbund and combined the

new sequence will consist of [n/2] nodes whose weights are agkn within a ,fizctor ?f

two.

We sketch the main ideas behind this result.

Let the initial sequence of n nodes be VI, ~2,. , u, and let c be a real number such

that c <w(vi) <2c for i = 1 to n. Whenever two nodes forming the minimal weight

pair are combined, the weight of the new node formed is greater than 2c, so it will not

be involved in a minimal weight pair combination until there are no two nodes whose

weights are less than 2c. When n is odd, after (n - I)/2 pairings have occurred, there

will be only one node left, whose weight is less than 2c, it is the largest weight node

initially present. This forms a minimal weight pair with the smallest newly formed

node. When n is even, the largest weight node present in the original sequence merges

with another original node. Thus during the [(77 + I)/2]th pairing the largest weight

node present initially, forms a minimal weight pair. Klawe and Mumey [go. I 161 show

that at this stage the weights will again be within a factor of two.

Klawe and Mumey 180, 1161 extend this result to show that if we keep combining

minimum weight pairs, the resulting tree will be balanced with the leaves differing in

level by at most one. It will be seen that 2(n - 2[‘2”1) smallest weights will be at level

[Ign] + 1 and the others are at level [lgn]. Thus the Huffman tree can be constructed

in linear-time. They also extend this result to optimal alphabetic trees, which we will

see in the next section.

Though there is an n(n log n) lower bound for constructing Huffman trees in the

comparison model, it will be interesting to see whether we can verify whether a given

weighted extended binary tree is a Huffman tree in o(n logn) time. We first develop

necessary conditions for a given weighted extended binary tree to be optimal, we then

show that these conditions can be tested in O(77) time.

Proof. The first condition is necessary since otherwise we can interchange the position

of any two nodes violating this condition, and obtain a tree of cheaper cost. We now

show that the second condition is also necessary. Suppose it is not so, then at some

level I, there are three nodes a, b.c such that)v(c) > u(a)+u(h). Since the cost of the

tree does not change if we interchange weights at a given level, we can permute the

weights at the level I so that the nodes a and b are siblings and recompute the weights

of the internal nodes. Now, the nodes of weight IV(~) + *l,(h) which is at level 1 - I

and w(c), do not satisfy the first condition (which is a necessary condition). Hence.

the second condition is also a necessary condition. 0

Now though it appears that condition 2 implies condition 1, if an external node

appears in a level above the current level, condition 2 need not imply condition I

for the external node. It is easy to show that the above necessary conditions can be

verified in 007) time.

Theorem 3.7. Giwn u weighted extmtled bincuy, trrr. u’c cm test the conditions qicrn

in the prt5iou.r theowm in O(n) time.

26 S. V. Nayarajl Theoretical Computer Science 188 (1997) I-44

Proof. For every level 1, compute the two smallest weights al,bl and the maximum

weight c/. Then for every level 1,

1. Check if al 3 cl+1 and

2. if al +bl>c,

If at any level 1 either of the two conditions are not satisfied then we know that the

tree is not optimal due to our previous theorem.

It is not hard to show that the running time of the above algorithm, if we use

linear-time algorithms for selection, is O(n) where n is the number of nodes in the

tree because at any level we have to spend time proportional to the number of nodes

in that level. 0

It is known [87] that a binary tree on the weights (~1,. . . , w,) is a Huffman tree if

it satisfies the following properties:

1. The n external nodes have been assigned the weights (WI,. . . , w,) in some order,

and each internal node has been assigned a weight equal to the sum of the weights of

its two children.

2. The 2n- 1 nodes (external and internal) can be arranged in a sequence yi , , JQ,~- I

such that if xj is the weight of node yj we have XI < . . <xzn- 1, and such that nodes

y2j-1 and yzj are siblings (children of the same parent), for 1 <j <n, where this

common parent node does not precede y2j-i and ~2, in the sequence.

Knuth [87] shows by induction that such a tree is one that Huffman’s algorithm

might construct.

Ramanan [1371 showed that the necessary conditions we derived for a given weighted

extended binary tree to be optimal are in fact sufficient when applied to a complete

binary tree. Ramanan [137] mentions that it is possible to check whether a given tree

is a Huffman tree in linear-time by using his conditions for the optimality of alphabetic

trees.

It would be interesting to devise a linear-time algorithm for verifying the optimality

of a weighted extended binary tree using our necessary conditions and also Knuth’s

[87] and Ramanan’s [137] conditions for Huffman trees.

4. Optimal alphabetic trees

In this section, we study the optimal alphabetic tree problem. We look at the

O(n log n) Hu-Tucker and GarsiaaWachs algorithms for constructing optimal alpha-

betic trees. We also note the equivalence of the two algorithms. We discuss algorithms

for constructing optimal alphabetic trees in some special cases. We also study the lower

bound result for constructing optimal alphabetic trees obtained by Klawe and Mumey.

4.1. The Hu-Tucker algorithm

The Hu-Tucker algorithm [64] and their variants begin by building an intermediate

tree (called the lmcp tree) on the input weight sequence. The levels of the leaves

in this intermediate tree are recorded and then they are used to build an alphabetic

tree where each leaf is at the same level as in the lmcp tree. Thus, the cost of the

alphabetic tree is the same as that of the intermediate (possibly nonalphabetic) tree.

The intermediate tree is proved to have optimal cost in a class of trees which con-

tains all the alphabetic trees, so it follows that the alphabetic tree constructed is indeed

optimal.

The Hu-Tucker algorithm begins with a list of leaf nodes containing the weights

~t’i, w:!. . , tr,, in order. This list is called the ,l-orklist and is used to determine how the

nodes combine to form the intermediate tree. Nodes in the worklist are designated either

as c~ro.vs~~h/r or t~onc~ros.suhle. This affects the way the nodes may pair off. Initially all

nodes are noncrossable. When the nodes are paired off, the resulting internal parent

node is designated crossable. The weight of the parent node is assigned the sum of the

weights of its children. The nodes that are paired off are removed from the worklist

and the new parent node occupies the position of its left child. We say that two nodes

in the list are cornputible if they are adjacent in the worklist or if all the nodes which

separate them are crossable nodes. WC will use the symbol r, to refer to a node in

the worklist and M; its weight. We denote I, for the level of that node. We define an

order on the nodes in the worklist by l‘, < 2’). if M’, <IV, or if M‘, = M’, and r, is to the

left of r, in the list. A compatible pair of nodes (L’,,, t’/,) is said to be /oc,ol nzil7iuzunl

cwmputil~lr pair (lmcp) if and only if

I. l-1, < I’, for all nodes c, compatible with node I‘,,

2. P,,<I’, for all nodes c, compatible with node ch.

To obtain the lmcp tree, we keep combining the minimum compatible pairs accord-

ing to HLI and Tucker [68], any local minimum compatible pairs according to Hu 1631.

In fact, it was shown later [64] that we can combine the lmcps in any order since the

lmcp tree is unique. We state the HuTucker algorithm.

Hu-‘Tucker algorithm

1. Given the initial sequence of nodes cl, ~‘2,. , c,, form II priority queues, one for

each node; consisting of all nodes compatible to the given node.

2. Since all the nodes are compatible within a given priority queue the two smallest

nodes at the top of the queue will be the only candidates for being an Imcp.

To find an lmcp we can use a stack-based method. Beginning with the leftmost queue,

maintain a pointer to the current queue being considered. By checking neighbouring

nodes we can determine in constant time whether or not the current pair is an Imcp. If

it is so, we combine the two nodes and place the resulting node in the place previously

occupied by the leftmost node; otherwise move the pointer backward.

Combining two nodes will result in the merger of several queues. We must choose

a data structure for representing the queues so that they can be merged 0(log n) time.

Leftist trees (see [86]) are useful for this purpose. After each lmcp combination updat-

ing the queue structure requires O(logn) time. Hence, forming the lmcp tree this way

takes O(n log n) time. We simply record the level numbers of the nodes. The lmcp tree

obtained this way is proved to have the same cost as an optimal alphabetic tree but it

28 S. V. Nayarajl Theoretical Computer Science 188 (1997) l-44

need not be alphabetic because the leaves could have appeared in an order which is

not alphabetic.

3. From the lmcp tree, to construct the optimal alphabetic tree we require [141] only

linear-time. This requires only using the level numbers of the lmcp tree. This is done as

follows: When the level numbers 11) 11,. . . , I, are known we scan the sequence of level

numbers from left to right and locate the leftmost maximum level number, say Ii = q.

Then li+r = q also since the level sequence 11, 12,. . , I,, has the property that the max-

imum level numbers are always adjacent. We create the father of the pair with level q

and assign the father with the level q - 1. In other words, we replace the level sequence

II, 12,. . , l;- I, (4 - 1 1, lr+Z, 3 l,,.

Then we repeat the same process of combining maximum-level adjacent pairs to the

level sequence of n - 1 numbers. Finally, we create the root with level zero.

The proof of correctness of the Hu-Tucker algorithm as given in the original paper

[68] is quite involved so we sketch the ideas used.

We note that the algorithm consists of two major steps

1. combining the lmcps to get the the lmcp tree,

2. constructing an alphabetic tree using the lmcp tree level numbers.

The algorithm must satisfy the conditions

1. The level numbers of the lmcp tree must be realisable by an alphabetic tree.

2. The lmcp tree must be optimum within a class of trees that includes all alphabetic

trees.

The crux of the proof is in proving the second condition.

We note the equivalence of the Hu-Tucker and Garsia-Wachs algorithms in Section

4.3 and look at the simple proof of correctness of the Garsia-Wachs algorithm as given

by Kingston [78]. This gives another proof of correctness of the Hu-Tucker algorithm.

4.2. The Gursiu- Wuclzs algorithm

In the combination phase of the Hu-Tucker algorithm we successively combine

lmcps while the pair in consideration can be separated by many crossable nodes (nodes

obtained as a result of combinations). The Garsia-Wachs algorithm eliminates the

distinction between crossable and non-crossable nodes (nodes which have not resulted

due to a combination step) and arranges the weight sequence such that the lmcp is

always an adjacent pair. We note that in a sequence of non-crossable nodes an adjacent

pair (wi_1, w,) is a lmcp if and only if ~3-2 > w, and wj-r <wj+t Before describing

the Garsia-Wachs algorithm we give a definition (see [78]).

Definition 1. A pair of leaves CL_, , x, is right minimal if

1. I <i<n,

2. x,-l + xi-1 >x;_, + xi and

3. 3Lj_ 1 4- X, < xi_ i + ,G!, for all j > i.

Garsia-Wachs algorithm. The GarsiaaWachs algorithm also constructs initially a min-

imal tree T, quite similar to that of lmcp tree of Hu-Tucker. Once this is done, the

levels of the X, in re may be used to construct T, an optimal alphabetic tree as we

described earlier.

To construct the minimal tree the following two steps are repeated (for II - I times)

until only node remains.

I. Locate the rightmost right minimal pair of entries. Let that be x,-l, 2,.

2. Locate the first entry to the right of x, that is greater than or equal to x,_ I -t-x,. Let

that be x,.,/~_+I. Then the new list is al_ x,-_2,zi__r ,..., x,+~,(x~-~ +xi).r,.l,! I..... I,!.

An O(n logn) implementation of Garsia--Wachs algorithm was given by Garsia and

Wachs [43]. An algorithm requiring O(nlog~) comparisons is easily obtained. Given

31. ~2,. . . . x,) we first find the biggest i such that zi _l+ xi_ 1 2 x,_ t + %i. Next we locate

the first cl, with j > i such that 2, > xi _ L + xi, remove CX_ 1. r, and insert r,.. 1 + zi just

before x, (or at the end if such an zj does not exist). We repeat the above steps on the

new list of numbers. The first step can take O(n) as it involves scanning through the

list to find the rightmost rightminimal pair. Since xi-_2 < x, for ,j = i+ 1 to PI, the second

step using binary insertion requires only O(logti) comparisons. Since the search for the

next rightlninimal pair starts from where we left off. scan is O(n) time in total. Since

there at-e n -- 1 steps requiring O(log n) comparisons, therefore O(n log ~7) comparisons

are required for the whole algorithm. Garsia and Wachs [43] also describe an algorithm

due to Tarjan which requires only O(n log n) time, including data tnoves and pointer

manipulations using balanced trees.

The proof of correctness of the Garsia-Wachs algorithm as given by its inventors is

complicated. A simpler proof was found much later by Kingston [78]. We sketch the

main results that led to Kingston’s proof.

Definition 2. If 7’1,. . . , Tk are binary trees, we denote by F(Tt,. . . , Tt) the set of all

trees with k leaves, but with those leaves replaced by T,, . . , Tk from left to right. For

a fixed i. we define T, by a tree with one internal node having as left son; an external

node of weight ui_1, as right son an external node of weight X, and define

F = F(x~,....x~),

Fo = F(I,, . , x;_2, I-,, x~-~,. . , I%,?),

F’k = F(r,, . .,r;-?, x[+~,. * . 5 %+k, G, Xi-kk +. I, ~ . , x,, 1.

30 S. V. Nuyurujl Theoretical Computrr Science 188 (1997) IL44

Definition 3. The level of any leaf xi is denoted by hi. The root of 7” is a node x.X

of level JzY (R.~ = xi_, + xi). The weight of TfF,Fo or F, is

w(T) = 5 h$i (83)
I=1

and we define

MI(S) = yi&l w(r>

for any set S of trees. A tree T ES is called minimul for S if w(T) = w(S).

(84)

Definition 4. Let U E F(al,. . . , a,) and V E F(1;,, . . . , yn). Let hi be the level of xi in

U, and ki be the level of yi in V. U is a rearrangement of V (briefly U-V), if there

is a pe~utation (CT~ ,..., 0,) of (1,2 ,..., n) such that xj=yn,, hi=k, for l<i<n.

Informally, a rearrangement merely moves leaves around within a tree, without alter-

ing their level. Consequently, “ N ” is an equivalence relation, and U G V implies

w(U) = w(V).

The main theorem proved by Kingston [78] is the following:

Theorem 4.1. Let C(i_1, sli be the rightmost rightminimal pair, and let k>O be such

that

Xi+j < Eti-I + Xi for 1 d j < k and &+k+l 3 xi-1 + Xi.

Then W(F) = w(Fk) and every minimal tree j& Fk has a rearra~?~~m~nt in F.

We now state the lemmas leading to the proof of this theorem.

Lemma 4.2. Suppose we have a sequence of at least three nodes a,, ix,+ 1,. . . , q, such

thur

Xj-1 + gj<Mj + aj+l jbr a<j<b.

Then

Lemma 4.3. If ai_ I, xi is the rightmost rightminimal pair, then hi > hi+, . . . 2 h, in

every minimal tree.

Lemma 4.4. Zf xi_,, cli is the rightmost r~~jhtrnin~rn(~~ pair, then hi-t = hi in some

mini~nal free.

Lemma 4.5. Let ~l~+k+~ be the jirst entry to the right qf’ the rightmost rightminimal

pair xi_\, Q such that Xj+k+[>a~-1 + ‘xi. Then in some minimal tree T ,for which

S. V. Nagarajl Theoreticul Computer Science 188 / 19971 l-44 31

hi-1 I= hi, either

1. h ,+k = h, - 1; or

2. k,+k = h, und x,+k is a right child.

Lemma 4.6. Let T be u minimul tree sf F. Then there is N tree in T, such thut

w(Tk)dw(T).

LC!ItIIWi 4.7. Let Tk be any minimal tree ,fbr Fk. Then W(Tk) 3 w(F), and ij equu/itj,

holds, Tk has u rearrangement in F.

The proof of all these lemmas simply involve rotating (once or twice) or permuting

nodes at some level of the minimal tree to obtain a tree satisfying the claim of the

lemma.

4.3. Proof sf equivulence of the taco ulqorithms

The Garsia-Wachs algorithm can be considered as a modification of the Hu-Tucker

algorithm. The main observation made by Garsia and Wachs is that crossable nodes may

be moved past smaller nodes, regardless of whether the latter are crossable or not. This

follows from the fact that the smaller nodes will combine and become crossable before

the moved crossable node will be involved in an lmcp. By moving the newly formed

nodes carefully, they make sure that all the lmcp combinations are between adjacent

nodes, and hence no information about crossability of nodes needs to be maintained.

Hence intuitively we would expect the Garsia-Wachs and the Hu-Tucker algorithms

to produce the same intermediate tree. Finding the lmcp is the major activity while

inserting the elements is not in the Hu-Tucker algorithm. However, in the Garsiaa

Wachs algorithm adjacent nodes are compatible eventhough much time is spent in

inserting the elements. The equivalence of Garsia-Wachs and Hu-Tucker algorithms

proved formally, as given below is attributed by Hu [64] to Kuo. Consider the following

version of the Garsia-Wachs algorithm (see [64]) to construct the minimal tree.

Given a sequence of weights MI, x2?. . , r,,:

1. Find the leftmost minimal adjacent pair, Xj_r,r,

2. Combine a,_1 and “L~ as a single node with weight x,* = x,-t + 3,

3. Move #xi* to the left, skipping over all nodes with weight less than or equal to

a,*. Obtain the new working sequence of II - 1 nodes

XI,...rS(,,Mj*,X;+l,...,31j_2,~j+I,...,X,, where

Cl; > Xi* 3 lTlaX(C$+l, . ,3,-l). (85)

Repeat the process until we get only one node in the node sequence. This is the tree

which may be non-alphabetic but having the same cost as the optimal alphabetic tree on

the sequence of weights (c[r , . . , zn). Having obtained the level numbers of a minimal

tree we can construct an optimal alphabetic tree as described earlier.

32 S. V. Nagarajl Theoretical Computer Science 188 (1997) I-44

The two algorithms will obtain the same tree after their completion as shown below.

Consider the following two sequences (A) and (B)

(A) ~1,~2~...,~i~~j*,~i+l,...,~j-2,~j+I,.~~, a, where all the nodes are noncrossable

nodes.

(B) crl,a2,...,ai,ai+l,...,~jj_2,0Lj*,aj+l,..., a, where all the nodes are noncrossable

nodes except z,% which is a crossable node.

Note that (A) consists of n - 1 noncrossable nodes and is derived from a sequence of

12 noncrossable nodes after one combination of Garsia-Wachs and (B) consists of n - 2

non-crossable nodes and one crossable node and is derived from the same sequence

after one combination of Hu-Tucker. We will show that if we apply the Hu-Tucker

algorithm to both (A) and (B), they will give the same tree, i.e. all the combinations

will be identical. (If a node 0~~ combines with a,* of (A), the same node CQ, will

combine with LX,* in (B)).

In fact, we can show that the tree constructed by any number of combinations of

Garsia-Wachs followed by Hu-Tucker will give the same lmcp tree as defined in the

Hu-Tucker algorithm.

To show that (A) and (B) give the same tree T, we can make three observations

about merging of the lmcp in the sequence (B).

1. In the subsequence of nodes al,. . . ,cxi, Cli+l,. . . ,c+2 a node cannot be merged

before a node to its right is merged.

This is because Rj- 1 + Nj (= cc,*) is the leftmost minimal adjacent pair.

2. When Uj* is merged, Ui+i, . . , Ej-2 have all been merged (or merged with zjz+).

If this is not true, let XI be the rightmost node among (Xi+,, . . . , aj-2 which has not

been merged. From 1 all the nodes between LX[and OLj, have been merged and al

is compatible to any node compatible to the crossable node oLj* in (B) and XI < Mj*.

Hence Xi* cannot form an lmcp with another node.

3. When an lmcp is between a node in ~(1,. . , Mi and a node in ai+i,. . . , a, then Mj*

has been merged.

Let the lmcp be (x1,, (xY) where Q is either a node in c(i). . . , zi or a sum of at least

two nodes in ~1,. . , ai. Since Xj* = Mj-1 + Uj is the leftmost minimal adjacent pair

xl+C(2>a2+C(3>.">ai_l+cci (86)

therefore.

Lx] >a3 >M5 >... (87)

Thus one of the two adjacent nodes is larger than C(i. Thus aX > Xi >,Uj,. Let C+ be the

right node. From 1 when Olje is merged all the nodes between clY and oLjz+ have been

merged and aY _ Ej*. But R, > tli > Ctj*, this contradicts that (clX, zY) is a lmcp, if Mj*

has not been merged.

S. V. Nagarajl Theoretical Computer Science IX8 11997) 1~ 44 33

From the above three observations we can consider the sequences (A) and (B).

Before r,* in either is merged, from 3 the sequences (A) and (B) can do exactly the

same combinations since xl,. . ,x; are not involved and x,* is a crossable node in (B).

From 2 when r,* is merged in (B), all the nodes between z, and ylct are crossable

nodes. So the noncrossable node z,,* in (A) and the crossable node a,* in (B) are

compatible to the same set of nodes. After Zj* is merged&he sequences (A) and (B)

result in the same node sequence.

4.4. Fust d]orithms in speciul cuses

4.4. I. When the input is u valley sequence

Consider a weight sequence n’t, ~2,. , I+~-, , w,. . , M’,~, where

\V[>M’~>‘.‘>M/I~~~WJ~~~~+~~‘.’ <lb’,,. (89)

In other words, the weights are first decreasing and then increasing. Such a weight

sequence is called a valley sequence. As two special cases of a valley sequence, we

have

WI > M’? > > M’,,, (90)

w , < IV2 < . . < w,, (91)

The notion of ralle_r sequence was defined by Hu [64], who obtained the following

results.

Lemma 4.8. If the weight sequence is a vrzlley sequence, then the cost of the optimul

ulphtzbetic tree is the sume us the cost of‘ the optimum tree lvithout the ulphuhetic

construint.

Proof. Assume that the weight sequence is a valley sequence as defined above and

the lmcp is “‘j-t + Wj (or wj_2 +ny_t). Then w,_t*., is a crossable node and the next

minimum weight pair may be one of the following five pairs: wj-2 +~‘,+t , w, -3 +M‘,-2,

M’/i I + w’/+?, “t’,-2 + WY-l*.j3 MT,-l*,j + W/4ml.

In any case the node constructed say “‘A is a crossable node. In general, let w,~ <n’n

d d WG be crossable nodes created, while on the left we have wI > ~2 > > w, -:

and on the right we have IV,+, < GM?,,. Then the next lmcp (the only one) is one of

the following six pairs: ~-2 + ~~~1, It’,_) + l&‘/-2. W’j-1 + W/+2, W/-2 + WA, %%‘A + It’,-],

%‘A i- h)3.

So the next crossable node created, N u is again compatible with all the crossable

nodes created so far. In other words, the minimum weight compatible pair is always

the minimum weight pair. Hence the cost of the optimal alphabetic tree is the same as

Huffman’s tree. 0

Lemma 4.9. We cun construct un optimtrl alphabetic. tree .fiw a valley sequence in

O(n) time.

34 S. V. Nayarajl Theoretical Computer Science 188 (1997) 1-44

Proof. The proof is due to the result in Section 3.3. 0

4.4.2. When the weights are within u factor of two

Klawe and Mumey [SO, 1161 introduce a new technique for finding optimal alphabetic

trees. The input weights wi are first classified according to their order of magnitude,

base 2. They define a category of a node of weight w to be Llg(w)i. A maximal

length sequence in the worklist of weights with the same category is called a region.

By keeping a stack of regions and considering only regions whose adjacent regions

have a higher category, we can restrict most of our attention to the pairings occurring

within these regions. They call this as region-processing. Their idea is motivated by

the situation when the input weights are within a factor of two. In this case the optimal

alphabetic tree is the same as Huffman’s tree. Hence they use the result we described

in Section 3.3.

Theorem 4.10. There is a linear-time algorithm for jinding an optimal alphabetic tree

on u sequence of input weights which d@er at most by a factor of two.

Proof. 1. Initialise the worklist to contain the original input sequence. Note that all

the nodes are noncrossable.

2. Use a stack-based method to find lmcps and pair them off, removing each pair

of nodes from the worklist and placing the parent in a temporary list but not in the

worklist. These newly formed nodes are to be left out of the worklist because their

weights are greater than the weight of any of the original weights and hence need

not be considered in the search for lmcps. This process continues until there are zero

or one nodes left in the worklist the stack-based algorithm requires only O(n) time

because of the absence of crossable nodes in the worklist. If a single node x remains

(n is odd) scan through the temporary list of newly formed crossable nodes to find the

smallest node y. Pair x with y and replace y in the temporary list by its parent.

3. At this stage we have m = [n/2] crossable nodes in the temporary list. Moreover,

the new nodes are still within a factor of two, by the same argument as in the proof

of the Theorem 3.4. Now as all the nodes are crossable, the optimal alphabetic tree is

the same as Huffman tree for these nodes. As the weights are again within a factor of

two we can find the lmcp tree for these weights in O(n) time using the algorithm of

Section 4.1. 0

4.4.3. When the weights are exponentially separated

Klawe and Mumey [80, 1161 define an input weight sequence WI, ~2,. , w, to be

exponentially separated if there exists a constant C such that for all n,

I{i: [lgwi] = k}] <C for all kEZ.

They also give an O(n) algorithm for constructing an optimal alphabetic tree when the

input weights are exponentially separated. They use their idea of region processing for

this purpose. They observe that there are at most 2C nodes in any region processed.

S. V. Nuyarnjl Theoretical Computer Science IKH (19971 IL44 35

They also show that every region of size r can be processed in O(v) time and use

their region processing method to construct the lmcp tree in O(n) time. Given the level

numbers of the leaves of the lmcp tree we can construct an optimal alphabetic tree in

O(n) time as described in Section 4.1.

4.4.4. When the input wrights are mull integers

Recently, Larmore et al. [98] have obtained an O(~~,/logn) algorithm for the opti-

mal ~~lphabetic binary tree problem when the input weights are integers in the range

[O,no(‘)]. They also give an O(n logk) time algorithm for the general optimal alpha-

betic binary tree problem where the parameter k is bounded by the number of local

minima in the input sequence.

It has been shown by Klawe and Mumey [SO, 1161 that constructing the intermediate

lmcp tree produced by the Hu-Tucker-based algorithms in any model of computation

is at least as hard as sorting in that model. Given an unsorted list of II numbers we

can transform the problem of sorting the list into a problem of constructing a tree in

O(n) time. They show that from the ~nfo~ation recorded in the structure of the tree

produced we can compute the sorted order of numbers in O(n) time. This gives an

0(n log II) lower bound for constructing the lmcp tree in the comparison model. The

following lemma is used by them.

Their result is

Theorem 4.12. Sorting con br reduced to ,jndiny the Imcp tree in O(n) time.

Proof. Assume n is even, Let XI , . . . ,.u, be drawn from [2,4). Define the ~3; as above

and consider the behaviour of some lmcp combining algorithm on the input sequence

_VI,. . ‘ , ?‘2n. According to the previous lemma, after n imcps have been combined there

will be n nodes present in the node list. They will have weights ~1,. _ .x,,. Since these

nodes are all crossable, there will be only one lmcp present, the smallest pair of nodes

in (~-1 , , . ,_I-,,}. This pair will combine to form a new node having a weight of at least

4. The next lmcp will be the second smallest pair of nodes from {XI,. . ,A-,,} and so on.

Hence, the next n/2 lmcps found after the first yt lmcp combinations have occurred sort

{XI,...,x,1} by p airs (only consecutive pairs may need to be switched in order for the

list to be totally sorted). This information can be easily recovered from an lmcp tree

produced by any method of searching it depth-first, always searching the least weight

subtree first. We will encounter the nodes corresponding to {XI,. . . .x,} in fully sorted

36 S. V. Nagarajl Theoretical Computer Science I88 (1997) l-44

order (a node with weight xi will be the parent of leaf nodes with weights y2i-1 and

y*i). Hence, we can reduce sorting to find the lmcp tree in O(n) time. 0

4.6. Verifying optimal alphabetic trees

We mentioned in the last section that Huffman trees can be verified in O(n) time.

We noted that the best-known algorithms for constructing optimal alphabetic trees run

in O(n log n) time while we have only a 0(n) lower bound for this problem in the

decision tree model. It is will be interesting to see whether we can close the gap

between the lower bound and the upper bound. In this direction we note that if we are

able to construct an optimal binary search tree on a given set of keys, then we can test

whether a given binary search tree for that set of keys is optimal, simply by comparing

their costs. An appropriate traversal of the tree can be used to compute the costs in

O(n) time. Therefore, the problem of testing the optimality of a binary search tree

is linear-time transformable to the problem of constructing an optimal binary search

tree. Thus, a lower bound for the former is also a lower bound for the latter. Some

conditions on the weights, for a given alphabetic tree, to be optimal have been obtained

by Ramanan [137]. He shows that the optimality of very skewed trees (trees in which

the number of nodes in any level is bounded by some constant) can be tested in linear

time. He also shows that the optimality of well-balanced trees (trees in which the levels

of any two leaves is bounded by some constant) can also be tested in linear time. He

also considers a class of trees that is neither skewed nor well balanced and discusses

the difficulty involved in testing its optimality in linear time.

4.7. Other results

The known heuristics for constructing nearly optimal binary search trees can be used

for constructing nearly optimal alphabetic trees as the optimal alphabetic tree problem

is a special case of the optimal binary search tree problem [110, 111, 129, 1621. These

heuristics except Larmore’s (Larmore’s offers a tradeoff between speed and accuracy,

as mentioned earlier, by spending 0(n’.6) time it produces a binary search tree whose

weighted path length differs from the optimal by o(1)) produce trees which are within

an additive factor of about two from the optimal; however, the small additive factor

does not ensure a low multiplicative factor when the cost of the optimal alphabetic

tree is very small. Levcopoulos et al. [102] show that for an arbitrarily small, positive

real number G, they can construct an O(n) heuristic yielding an alphabetic tree whose

cost is within a factor of (1 + s) from the optimum.

5. Conclusions and directions for further research

We have looked at algorithms for optimal binary search trees, optimal alphabetic

trees and Huffman trees. The best-known algorithm for the general optimal binary

search tree problem is Knuth’s O(n’) time algorithm. For the general optimal alphabetic

S. K Nayarajl Theoretical Computer Science 188 (1997) I-44 37

tree problem, the best-known algorithms are the Garsia-Wachs and the Hu-Tucker

algorithms which have a time complexity of O(n log n). Huffman’s O(n log n) algorithm

to construct Huffman trees is optimal for the decision tree model. There are many

aspects of optimal binary search trees and their variants for which we would like to

obtain answers. We discuss some of the open problems in this area.

5.1. Optimal binary search trees

1. Is there any o(n2) time algorithm for the optimal binary search tree problem?

We have looked at Larmore’s subquadratic time algorithm for constructing an optimal

binary search tree, if there is no long sublist of low-frequency elements. It makes

use of subtree weight ratios of the optimal binary search trees. It may be the case

that we can use some other properties of optimal binary search trees to obtain a

subquadratic time algorithm for the general case. It may also be possible to improve

Knuth’s quadratic time dynamic programming algorithm. We should also note the recent

result of Karpinski et al. [74] in this direction.

2. Is there any o(n2) space algorithm for the optimal binary search tree problem?

We can find an optimal binary search tree using linear space and exponential time

by generating all possible binary search trees [1411. If we can avoid generating many

of these binary search trees by using properties of the optimal binary search trees

like monotonicity, subtree weight ratios, we might be able to get a subexponential

algorithm using O(n) space. Perhaps we can get an o(n2) space algorithm by keeping

only o(n2) entries of the Pi,j we compute in the dynamic programming algorithm. We

can recompute from scratch the P;,j’s we don’t remember. It will be worth exploring

whether such a technique would result in an o(n2) space, polynomial-time algorithm.

3. Does there exist a subquadratic algorithm for verifying the optimality of a binary

search tree?

We do know that the monotonicity of roots and the subtree weight ratio conditions

are necessary for a given binary search tree to be optimal. These conditions can be

verified in O(n) time. It is worth exploring other necessary and sufficient conditions

that enable us to verify in o(n*) time whether a given binary search tree is optimal. An

answer to this question will enable us to know whether we can close the gap between

constructing an optimal binary search tree and testing its optimality. We must also take

a note of the recent result of Karpinski et al. [74] as mentioned before.

4. Do the algorithms and properties of optimal binary search trees extend to optimal

multiway search trees?

5.2. Optimul alphabetic trees

1. Can we construct optimal alphabetic trees in o(n log n) time?

Existing O(n logn) algorithms construct first an lmcp tree. The lower bound result

of Klawe and Mumey for lmcp trees says that any algorithm for constructing an lmcp

tree will take R(n log n) time. Hence, we must follow a different approach to obtain

38 S. V. Nagarajl Theoretical Computer Science 188 (1997) 1-44

an o(n log n) algorithm. It is also possible that there is an n(n log n) lower bound for

constructing optimal alphabetic trees.

2. Can we verify the optimality of alphabetic trees in linear time?

Ramanan [1371 has given some necessary and sufficient conditions for the optimality

of an alphabetic tree. These conditions are verifiable in O(n) time for some special

cases. Some of the properties of optimal alphabetic trees proved enroute to the proof of

correctness of Garsia-Wachs algorithm for constructing optimal alphabetic trees may

be noted along with Ramanan’s conditions.

3. Does there exist algorithms similar to the Hu-Tucker or the Garsia-Wachs algo-

rithms for the optimal ternary tree problem?

For the binary case we combine lmcp pairs of nodes, therefore we may attempt

to combine triples of nodes. However, Hu [64] has observed that combining lmcp

triples does not give an optimal ternary tree. It may be the case that the Garsia-Wachs

algorithm may generalise, though both the algorithms are equivalent in the binary case.

5.3. HufSman trees

1. Is there an o(n log n) algorithm for constructing Huffman trees in a model where

we are allowed to compute the floor’s and ceiling’s of numbers?

We have an fl(n log n) lower bound on the time required for constructing Huffman

trees in the decision tree model. It is possible that we can construct Huffman trees in

o(n logn) time in models where we are allowed to compute the floor’s and ceilings of

numbers. In fact, the O(n) algorithms for the special case when the weights are within

a factor of two do compute floor’s and ceiling’s.

2. Dynamic Huffman codes

Knuth [87] gives an O(Z) algorithm to increase or decrease the weight of a node at a

level 1 of a Huffman tree by 1. This immediately gives an 0(Iw) algorithm to increase

or decrease the weight of a node at level I by w. To insert or delete a node of weight

w, this gives an O(Lw) algorithm where L is the maximum level of the tree. But his

result uses the fact that the tree is produced by Huffman’s algorithm. It is useful to

see whether this result can be extended for any optimal extended binary tree. Perhaps

the necessary and sufficient conditions we used for Huffman trees may be useful here.

The reader may consult the references for several other interesting problems related

to binary search trees.

Acknowledgements

The author is thankful to all those who helped him in preparing this article, es-

pecially Dr Venkatesh Raman of the Institute of Mathematical Sciences (email id:

vraman@imsc.emet.in) for his expert guidance, valuable suggestions, constant encour-

agement and continuous motivation that made it all possible.

S. V. Nngarqjl Theorrticd Computer Scicnw IX8 i 1997) l-44 3’)

References

[I] J. Abrahams. Parallelized Huffman and Hum Tucker searching, IEEE TUUIS. I@r,nz. Theory 40 (I994).

[2] EN. Adams, Another representation of binary tree traversal, I@w. Prowxsim~ Left. 2 (1973) 52-54.

[3] G.M. Adel’son-Vel’skii and E.M. Landis, An algorithm for the organization of information, Sorb. .Wc/f/r.

/Iok/. 3 (1962) 1259-1263.

[4] II. Ahlswede and I. Wegener, Seur& Problems (Wiley, New York, 1987).

[S] M. Aigner. Cwnhinutoriul Search (Wiley- Teubner, New York, 1988).

161 1-I. Akdag, Performances of an algorithm constructing a nearly optimal blnary tree, Ac,/tr Iufiwnr. 20

(lY83) l2lm 132.

[7] 13. Allen. On binary search trees, Research Report CS-77-27. Department of Computer Science.

IJnlversity of Waterloo, Waterloo, September 1977.

[8] H. Allen, On the costs of optimal and near-optimal binary search trees, Ac,trr I/lf&w~. I8 (1982)

255-263.

191 B. Allen and I. Munro, Self-organising binary search trees, in: Proc 17th .4rzn. IEEE S>wl~. 011

Forrr?tlf~tio~~.s of Coniputer Sciencr (1976) 166-l 72.

[IO] B. Allen and I. Munro, Self-organizing binary search trees, J ACM 25 (1978) 526-535.

[I I] .4. Andersson. C. Icking, R. Klein and T. Ottman. Binary search trees of almost optimal height. .Ac.ttr
hfiwm 28 (1990) 165-178.

[121 4. Andersson. A note on searching in a binary search tree. Softnrr~a-P~n~tic,r EyI)erkvzw 21 (I9Y I)
I125~1124.

1131 Ashok Subramanian, Design and analysis of algorithms, Tech. Report IISC-CSA-93-01 Dept. of

Computer Science, Indian Institute of Science, Bangalore, April 1993.

[141 P.J. Bayer, Improved bounds on the cost of optimal and balanced binary search trees. M. SC. The&

Massachusetts Institute of Technology. Cambridge, 1975.

[IS] J. Bell and G. Gupta. An evaluation of self-adjusting binary search tree techniques, Sofrn,orc-Pvtrc,//(,(,

E\-p~ricwc~ 23 (1993) 369-382.

[Ih] J.L. Bentley. Multidimensional binary search trees used for associative searching, Cornrw AC&I 18

(1975) 509-517.

[171 A. Berztiss. A taxonomy of binary tree traversals, BIT (1987).

[181 C. Blundo and R. de Prisco, New bounds on the expected length of one-to-one codes. IEEE Trtrrr\

I/+““‘. 7‘/1eorJ, 42 (1996) 246-249.

[191 W.H. Burge, An analysis of binary search trees formed from sequences of non-distinct keys. J .,lC:21

23 (1976) 451 454.

[20] R.M. Capocelli and A. de Santis, Improved bounds on the redundancy of Huffman codes. IBM Tech.

Report, RC- I4 I5 I. October 1988.

12 I] R.M. Capocelli and A. de Santis, A note on d-ary HuHinan codes, IEEE Tram It~/orm Thror~~ 37

(lY9l) 174-179.

[22] R.M. Capocclli and A. de Santis, New bounds on the redundancy of Huflman codes, IEEE Trtrrr,

IIlfom. Thcyl 37 (I99 I) 1095%1 104.

1231 R.M. Capocelli and A. de Santis. Variations on a theme by Gallager. in: J.A. Storer ed.. lr~7trqc~ trrd

Test Coqwrxsion (Kluwer, Dordrecht, 1992) I8 l-21 3.

[24] H. Chang and S. Sitharama lyengar, Eflicient algorithms to globally balance a binary search tree,
C‘orwr~. A C’RI 27 (1984) 695-702.

[25] R.P. Cheetham, B.J. Oomen and D.T.H. Ng, On using conditional rotation operations to adaptively

structure binary search trees, in: Proc. 2nd htrvnat. Co?/: OH Dotahase Theory, Lecture Notes in

Computer Science, Vol. 326 (Springer, Berlin, 1988) I61 -175.

1261 G. Chen. M.S. Yu and L.T. Liu, Two algorithms for constructing a binary tree from its traversals.

11?Jiw~z. Proc~. Left. 28 (1988) 297-299.

[27] D. Cohen and M.L. Fredman. Weighted binary trees for concurrent searching, J. Akgorithnts 20 (1096)

87-l 12.

[28] J. Cooper and S.G. Akl, Efficient selection on a binary tree, I/~/orm. Procrssim/ Let/ 23 (1986)
123-126.

[29] D. Coppersmith, M.M. Klawe and N.J. Pippenger, Alphabetic mmimax trees of degree at most /.

SIAM J. Conyxrf. 15 (1986) 189-192.

40 S. V. Nagarajl Theoretical Computer Science 188 (1997) 1-44

[30] J. Culberson, The effect of updates in binary search trees, in: Proc. 17th Ann. ACM Symp. on Theory

of Computing (1985) 6-8.

[3 l] J.C. Culberson and J.I. Munro, Analysis of the standard deletion algorithms in exact fit domain binary

search trees, Algorithmicu 5 (1990) 295-3 I I.
[32] W. Cunto and J.L. Gascon, Improving time and space efficiency in generalised binary search trees,

Acta Inform. 24 (1987) 583-594.

[33] A.C. Day, Balancing a binary tree, Comput. J. 19 (1976).

[34] L. Devroye, A note on the height of binary search trees, J. ACM 33 (1986) 489-498.

[35] L. Devroye and J.M. Robson, On the generation of random binary search trees, SIAM J. Comput.

24 (1995) 1141-l 156.

[36] L. Devroye and B. Reed, On the variance of the height of random binary search trees, SIAM J.

Comput. 24 (1995) 1157-I 162.

[37] M.C. Er, A new algorithm for generating binary trees using rotations, Comput. J. 32 (1989) 470-

473.

[38] Fenner and Loizou, A study of binary tree traversal algorithms and a tag-free threaded representation,

Internat. J. Comput. Math. 20 (1986).

[39] Filho, Optimal choice of discriminators in a balanced k-d binary search tree, Infirm. Processing Left.

13 (1981).

[40] AS. Fraenkel and S.T. Klein, Bounding the depth of search trees, Comput. J. 36 (1993) 668-678.

[41] M.R. Garey, Optimal binary identification procedures, SIAM J. Appl. Math. 23 (1972) 173-186.

[42] M.R. Garey, Optimal binary search trees with restricted maximal depth, SIAM J. Comput. 3 (1974)

101-I 10.

[43] A.M. Garsia and M.L. Wachs, A new algorithm for minimum cost binary trees, SIAM J. Comput. 6

(1977) 622-642.

[44] N. Gabrani and P. Shankar, A note on the reconstruction of a binary tree from its traversals, Inform.

Processing Left. 42 (1992) 117-I 19.

[45] R.G. Gallager, Variations on a theme of Huffman, IEEE Trans. Inform. Theory 24 (1978) 668-674.

[46] T.E. Gerasch, An insertion algorithm for a minimal internal path length binary search tree, Comm.

ACM 31 (1988) 579-585.

[47] E.N. Gilbert, Codes based on inaccurate source probabilities, IEEE Trans. Inform. Theory 17 (1971)

304-314.

[48] E.N. Gilbert and E.F. Moore, Variable length binary encodings, Bell System Tech. J. 38 (1959)

933-968.

[49] J. Glenn, Binary trees, Tech. Report DCS-TR86-127, Dept. of Computer Science, Dartmouth College,

Hanover, NH, 1986.

[50] S.W. Golomb, Sources which maximize the choice of a Huffman coding tree, Injixm. and Control 45

(1980) 263-272.

[51] D. Gries and J.L.A. van de Snepscheut, Inorder traversal of a binary tree and its inversion, in: E.W.

Dijkstra, ed., Formal Development of Programs nnd Proojb (Addison-Wesley, Reading, MA, 1990).

[52] L.J. Guibas, A principle of independence for binary tree searching, Acta Ifbrm. 4 (1974) 293-298.

[53] R. Guttler, K. Mehlhom and W. Scneider, Binary search trees: average and worst case behaviour,

Elektron. Infbrmat. Kybernet. 16 (1980) 41-61.

[54] E.N. Hanson, The interval skip list: a data structure for finding all intervals that overlap a point, Tech.

Report WSU-CS-91-01, Washington State University, 1991.

[55] E.N. Hanson and M. Chaabouni, The IBS-tree: A data structure for finding all intervals that overlap

a point, Tech. Report WSU-CS-90-11, Washington State University, 1990.

[56] F. Harary, E.M. Palmer and R.W. Robinson, Counting free binary trees admitting a given height, Tech.

Report UGA-CS-TR-90-001, University of Georgia, 1990.

[57] J.H. Hester and D.S. Hirschberg, Generation of optimal binary split trees, Tech. Report UCIIICS-

TR-85-13, Department of Information and Computer Science, University of California, Irvine, March

1985.
[58] T.N. Hibbard, Some combinatorial properties of certain trees with applications to sorting and searching,

J. ACM 9 (1962) 13-28.

[59] T. Hikita, Listing and counting subtrees of equal size of a binary tree, Inj?wm. Processing Left. 17

(1983) 225-229.

S. V. Nugarajl Theoretical Computer Science 188 (1997) 1 44 41

[60] D.S. Hirschberg, L.L. Larmore and M. Moldowitch, Subtree weight ratios for optimal binary search

trees, Tech. Report 86-02 ICS Dept. Unil. of Calif. Irvine, 1986.

[61] Y. Horibe, An improved bound for weight balanced trees, I~fbmz. and Control 34 (1977) 14% 151.

[62] Y. Horibe and T.O.H. Nemetz, On the max-entropy rule for a binary search tree, A~.ILI Infbn,l. I2

(1979) 63-72.

[63] T.C. Hu, A new proof of the T-C algorithm, SIAM J. Appl. Math. 25 (1973) X3-94.

[64] T.C. Hu, Con~hinatoriul Algorithms (Addison-Wesley, Reading, MA, 1982).

[65] T.C. Hu, D.J. Kleitman and J.K. Tamaki, Binary trees optimum under various criteria. SIAM J. Appl

Math. 37 (1979) 246-256.

[66] T.C. Hu and K.C. Tan, Least upper bound on the cost of optimal binary search trees, Acttr Iqfornr. 1
(1972) 307-310.

[67] T.C. Hu and K.C. Tan, Path lengths of binary search trees, SIAM J. Appl Math. 22 (I 972) 225-234.

[68] T.C. Hu and A.C. Tucker, Optimal computer search trees and variable length alphabetic codes. S1.4 !+I

J. Appl. Math. 21 (1971) 514-532.

[69] D.A. Huffman, A method for the construction of minimum redundancy codes. Proc,. IRE 40 (1952)

1098--l 101.

[70] A. Itai, Optimal alphabetic trees, SIAM J. Comput. 5 (1976) 9--18.

[7l] G. Jacobson, Succinct static data structures, Tech. Report CMU-CS-89-I I2 Dept. of Computer Science

Carnegie-Mellon University, January 1989.

[72] V. Kamakoti and C.P. Rangan, An optimal algorithm for reconstructing a binary tree, Ifl/orr?r

Proc~s.srny Lrtt. 42 (I 992) I 13-l 15.

[73] P.C. Karlton, S.H. Fuller, R.E. Scroggs and E.B. Kaehler, Performance of height-balanced trees. Comnl.

AC/\f 19 (1976)

[74] M. Karpinski. L.L. Larmore and W. Rytter, Sequential and parallel subquadratic work algorithms for

constructing approximately optimal binary search trees. In: Proc. 7/h Ann. ACM-SfA,V S!,rup. OH

Discrete Akgorithms (I 996) 36-4 I,

[75] G.O.H. Katona and T.O.H. Nemetz, H&man codes and self-information. IEEE Trmx Iuform T/rcwr~~

22 (1976)337-340.

[76] R. Kemp, Binary search trees constructed from nondistinct keys with/without specified probablllties.

Thewet. Cornput. Sci. 156 (1989) 181-203.

[77] A.C. Kilgour, Generalized nonrecursive traversal of binary trees. Softll,cl~r-Plc/c,tica E.~p~~icvrw I I
(1981) 1299%1306.

[78] J.H. Kingston, A new proof of the Garsia-Wachs algorithm, J. Al~goritkm 9 (1988) 129%l36.

[79] D.G. Kirkpatrick and M. Klawe. Alphabetic minimax trees, SIAM J. Comput. 14 (1985) 5 14-526.

[80] M. Klawe and B. Mumey, Upper and lower bounds on constructing alphabetic binary trees. in: Proc~.

4th Ann. ACM-SIAM Symp. on Discrete Algorithms (1993) 185-193.

[8 I] R. Klein and D. Wood, On the path length of binary trees, J. ACM 36 (I 989) 280-289.

[82] G.D. Knott. A balanced tree storage and retrieval algorithm, in: Proc,. ACM S~wp. 011 fnforrw ,Stomgc

and Retriecal (I97 I).

[83] G.D. Knott, A numbering system for binary trees, Co,nm. ACM 20 (1977) 113-l 15.

(841 D.E. Knuth, The Art of Computer Proqr~anvmng, Vol. I : Fundammtrrl Akgorithmv (Addison-Wesley.

Reading, MA, 1968).

[85] D.E. Knuth, Optimum binary search trees, Acta Z~form. 1 (1971) 14-25.

[86] D.E. Knuth. Tile Art of’ Cornpurer Progmnrn~ing, Vol. 3: Sortiny U/IL/ Setrrrhimg (Addison-Wesley,

Reading, MA, 1973).

[87~/ D.E. Knuth, Dynamic Huffman coding, J. Algorithw.~ 6 (1985) 163-180.

[88-i A.P. Korah and M.R. Kaimal, Dynamic optimal binary search tree. Internat. J. Fmmtl. C’mrrput. Ser.

1 (1990) 449-463.

[891 C.H.A. Koster and Th.P. van der Weide. Hauy search trees, Comput. J. 38 (1995) 691 -694.

[901 D.C. Kozen. Design and analysis q/algorithms (Springer, New York. 1992).

[9l 1 H.T. Kung and P.L. Lehman, Concurrent manipulation of binary search trees, ACM Trtmr Dotcrhtr.vt

Systems 5 (1980) 354-382.

[92] T.W. Lai and D. Wood, Adaptive heuristics for binary search trees and constant linkage cost, in: Proc,.

2nd Ann ACM-SIAM Symp. on Discrete Algorithms (1991) 28-30.

[93] C.E. Langenhop and W.E. Wright, Probabilities related to father-son distances in binary search trees.
SIAM J. Comput. 15 (1986) 520-530.

42 S. V. Nagarajl Theoretical Computer Science I88 (1997) l-44

[94] L.L. Larmore, A subquadratic algorithm for constructing approximately optimal binary search trees,

Tech. Report UCIliICS-TR-86-03, Department of Information and Computer Science, University of

California, Irvine, February 1986.

[95] L.L. Larmore, A subquadratic algorithm for constructing approximately optimal binary search trees,

J. Algorithms 8 (1987) 579-591.

[96] L.L. Larmore, Length limited coding and optimal height-limited binary trees, Tech. Report UCI//ICS-

TR-88-01, Dept. of Information and Computer Science, University of California, Irvine, March 1989.

[97] L.L. Larmore and D.S. Hirschberg, A fast algorithm for optimal length-limited Huffman codes,

J. ACM 37 (1990) 464-473.

[98] L.L. Larmore and T.M. Przytycka, The optimal alphabetic tree problem revisited, in: Proc. Internat.

Coil. on Automata Languages and Programming, ICALP 94 (1994).

[99] L.L. Larmore and T.M. Przytycka, Constructing Huffman trees in parallel, SIAM J. Comput. 24

(1995) 1163-1169.

[IOO] L.L. Larmore and T.M. Przytycka, A parallel algorithm for optimum height-limited alphabetic binary

trees, J. Parallel Distri. Comput. 35 (1996) 49-56.

[IOI] D.T. Lee and C.K. Wong, Worst case analysis for region and partial region searches in

multidimensional binary search trees and balanced quad trees, Acta Inform. 9 (1977) 23-29.

[IO21 C. Levcopoulos, A. Lingas and J. R. Sack, Heuristics for optimum binary search trees and minimum

weight triangulation problems, Theoret. Comput. Sci. 66 (1989) 181-203.

[103] J.M. Lucas, D.R. van Baronaigien and F. Ruskey, On rotations and the generation of binary trees,

J. Algorithms 15 (1993) 3433366.

[IO41 E. Makinen, Left distance binary tree representations, BIT 27 (1987) 1633169.

[105] E. Makinen, Constructing a binary tree from its traversals, BIT 29 (1989) 572-578.

[106] E. Makinen, A linear time and space algorithm for finding isomorphic subtrees of a binary tree, BIT

31 (1991).

[107] E. Makinen, A note on Gupta’s binary tree codings, Bull. EATCS 49 (1993).

[IO81 G. Markowsky, Best Huffman codes, Acta Inform. 16 (1981) 3633370.

[IO91 H.W. Martin and B.J. Or, A random binary tree generator, in: Proc. 17th Ann. ACM Computer

Science Conf, Louisville, KY (1989) 37-38.

[l lo] K. Mehlhom, Nearly optimal binary search trees, Acfu Inform. 5 (1975) 2877295.

[I 1 I] K. Mehlhom, A best possible bound for the weighted path length of binary search trees, SIAM

J. Comput. 6 (I 977) 2355239.

[1121 K. Mehlhom, Dynamic binary search, SIAM J. Comput. 8 (1979) 175-I 98.

[i 131 K. Mehlhom, Data structures and algorithms Vol. 1: Sorting und Searching, EATCS Monographs

on Theoretical Computer Science (Springer, Berlin, 1984).

[114] K. Mehlhom and A. Tsakalidis, Data Structures, in: J. van Leeuwen, ed., Handbook of Theoretical

Computer Science, Vol. A (Elsevier, Amsterdam, 1990) 303-341.

[I 151 A. Moitra and S. Sitharama lyengar, Derivation of a maximally parallel algorithm for balancing binary

search trees, Tech. Report TR 84-638, Dept. of Computer Science Cornell University, Ithaca, New

York, September 1984.

[116] B.M. Mumey, Some new results for constructing optimal alphabetic binary trees, M. SC. Thesis, Univ.

of British Columbia, Canada, 1992.

[I 171 J.I. Munro and P.V. Poblete, A discipline for robustness or storage reduction in binary search trees,

in: Proc. 2nd ACM SIGACT-SIGMOD Symp. on Principles of Database Systems (1983) 21-23.

[I 181 J.I. Munro and P.V. Poblete, Fault tolerance and storage reduction in binary search trees, Inform. and

Control 62 (1984) 210-218.

[119] J. Nievergelt, Binary search trees and file organisation, ACM Comput. Surveys 6 (1974) 1955207.

[120] J. Nievergelt and E.M. Riengold, Binary search trees of bounded balance, in: Proc. 4th Ann. ACM

Symp. on Theory of Computing (1972) l-3.
[I211 J. Nievergelt and E.M. Riengold, Binary search trees of bounded balance, SIAM J Comput. 21 (1973)

33-43.

[122] J. Nievergelt and C.K. Wong, Upper bounds for the total path length of binary trees, J. ACM 20

(1973) l-6.
[123] 0. Nurmi and E. Soisalon-Soininen, Uncoupling updating and rebalancing in chromatic binary search

trees, in: Proc. 10th ACM SIGACT-SZGART Symp. on Prinriples of Database Systems (1991)

2993 1.

S. V. Nagarajl Theoretical Computer Science 1X8 (1997) 1-44 43

[1241 S. Olariu, C. Overstreet and Z. Wen, An optima1 parallel algorithm to reconstruct a binary tree from its

traversals, in: Proc. Advances in Computing und Information-ICCI: Internat. Conf: on Computing

and Information, Lecture Notes in Computer Science, Vol. 497 (Springer, New York, 1991) 484-495

[I251 S. Olariu. C. Overstreet and 2. Wen, Reconstructing a binary tree from its traversals in doubly

logarithmic CREW time, .I. Parallel Distri. Comput. 27 (1995).

[1261 Ottmann and Wood, How to update a balanced binary tree with a constant number of rotations, in:

Proc. Scundinavian Workshop on Algorithm Theory, Lecture Notes in Computer Science (Springer,

New York. 1990).

[I271 J.M. Pallo, Enumerating ranking and unranking binary trees, Comput. J. 29 (1986).

[1281 P. V. Poblete and J. I. Munro, The analysis of a fringe heuristic for binary search trees. J ill~gorithmc

6 (1985) 336-350.

[I291 R. de Prisco and A. de Santis, On binary search trees, Inform. Proc. Lett. 45 (1993) 249-253.

[1301 R. de Prisco and A. de Santis, New lower bounds on the cost of binary search trees, Theoret. Comput.

Sci. 156 (1996) 315-325.

[1311 Ii. de Prisco and A. de Santis, On the redundancy achieved by Huffman codes, Ir@rm. Sci. 88 (1996)

131-148.

[I321 R. de Prisco. C. Parlati and G. Persiano, Minimal path length of binary trees, Theoret. Comput. SC,;

143 (1995) 1755188.

[I331 R. de Prisco and G. Persiano, Characteristic rnequalities for binary trees, InJorm Prow&q Let/. 53

(1995) 201-207.

[1341 .A. Proskurowski, On the generation of binary trees, J. ACM 27 (1980) l-2.

[I351 .4. Proskurowski and F. Ruskey, Binary tree gray codes. J. Algorithms 6 (1985) 225-238.

[I361 K.J. Raeihae and S.H. Zweben, An optimal insertion algorithm for one-sided height-balanced binary

search trees, Comm. ACM 22 (1979) 508-512.

[1371 P. Ramanan, Testing the optimality of alphabetic trees, Theoret. Comput. Sci. 93 (1992) 2799301.

[I381 Ramarao, O(log N) parallel algorithms for binary tree traversals, In: Proc. 22th Ann Alkwton Conf.

<on Commun. Control and Compur. (Allerton House, Monticello, IL, 1984).

[1391 J. Rissanen, Bounds for weighted balanced trees, IBM J. Rex Develop. (1973) 101-105.

[I401 F. Ruskey, Generating t-ary trees lexicographically, SIAM J. Comput. 7 (1978) 424439.

[1411 F. Ruskey and T.C. Hu. Generating binary trees lexicographically, SIAM J. Comput. 6 (1977) 745-

758.

[I421 A. de Santis and G. Persiano, Tight upper and lower bounds on the path length of binary trees, SIAM

J Comput 23 (1994) 12-23.

[1431 E.S. Schwartz, An optimum encoding with minimum longest code and total number of digits, In/arm.

anti Control 7 (1964) 3744.

[I441 E.S. Schwartz and B. Kallick, Generating a canonical prefix encoding, Comm. ACM 7 (1964)

166-169.

[1451 D.D. Sleator and R.E. Tarjan, Self-adjustmg binary search trees, J. ACM 32 (1985) 6522686.

[I461 M. Solomon and R.A. Finkel, A note on enumerating binary trees, J. ACM 27 (1980) 3-5.

[I471 D. Spuler, The optimal binary search tree for Andersson’s search algorithm, Acta @form. 30 (1993)

4055407.

[I481 A. E. Trojanowski, Ranking and listing algorithms for k-ary trees, SIAM J. Comput. 7 (1978) 492-

509.

[1491 Troutman and Karlinger, A note on subtrees rooted along the primary path of a binary tree. Di.wrte

Appl. Moth. Comb. Oper. Rex Compur. Sci. 42 (1993).

[1501 K. Unterauer, Dynamic weighted binary search trees, Acta Inform. 11 (1979) 341-362.

[I511 D.R. van Baronaigien, A loopless algorithm for generating binary tree sequences, Znfbrm Prowwing

Lett. 39 (1991) 189-194.

[1521 P. van Emde Boas, An O(n log log n) on-line algorithm for the insert-extract min problem, Tech. Report

TR 74-221, Dept. of Computer Science Cornell University, December 1974.

[1531 J.G. Vaucher, Pretty-printing of trees, Softwore-Practice E.uperience 10 (I 980) 553-56 I.
[I541 J. Vuillemin, A data structure for manipulating priority queues, Comm. ACM 21 (1978) 309-3 15.

[1551 W.A. Walker and CC. Gotlieb, A top-down algorithm for constructing nearly optimal lexicographic

trees, in: Graph Theory and Computing (Academic Press, New York, 1972) 303-323.

[I561 R.L. Wessner, Optimal alphabetic search trees with restricted maxima1 height, Ifbrm. Processing Le/t.

4 (I 976) 90-94.

44 S. K Nagarajl Theoretical Computer Science 188 (1997) 1-44

[157] R. Wilber, Lower bound for accessing binary search trees with rotations, in: Proc. 27th Ann. Sympo.

Found. Comput. Sci. (1986) 27-29.

[158] R. Wilber, Lower bounds for accessing binary search trees with rotations, SIAM J. Comput 18 (1989)

56-57.

[159] W.E. Wright, Binary search trees in secondary memory, Acta Inform. 15 (1981) 3-17.

[1601 F.F. Yao, Efficient dynamic programming using quadrangle inequalities, in: Proc. 12th Ann. ACM

Sympo. on Theory of Computing (1980) 429-435.

[161] F.F. Yao, Speed-up in dynamic programming, SIAM J. Alg. Discrete Math. 3 (1982) 532-540.

[162] R.W. Yeung, Alphabetic codes revisited, IEEE Trans. Ijbrm. Theory 37 (1991) 564-572.

[163] R.W. Yeung, Local redundancy and progressive bounds on the expected length of a Huffman code,

IEEE Trans. Inform. Theory 37 (199 1) 687-69 1.

[164] J.M. Yohe, Hu-Tucker minimum redundancy alphabetic coding method, Comm. ACM 15 (1972)

360-362.

