Theoretical
Computer Science

ELSEVIER Theoretical Computer Science 188 (1997) 1-44

Tutorial
Optimal binary search trees
S.V. Nagaraj *
The Institute of Mathematical Sciences. CIT Campus Madras 600113, India

Received October 1996
Communicated by M. Nivat

Abstract

We consider the problem of building optimal binary search trees. The binary search tree is
a widely used data structure for information storage and retrieval. A binary search tree 7 for a
set of keys from a total order is a binary tree in which each node has a key value and all the
keys of the left subtree are less than the key at the root and all the keys of the right subtree arc
greater than the key at the root, this property holding recursively for the left and right subtrees
of the tree 7.

Suppose we are given n keys and the probabilities of accessing each key and those occurring
in the gap between two successive keys. The optimal binary search tree problem is to construct
a binary search tree on these n keys that minimizes the expected access time. One vartant of
this problem is when only the gaps have nonzero access probabilities, and is called the optimal
alphabetic tree problem. Another related problem is when there is no order between the keys
and there are probabilities associated only with the gaps and the objective is to build a binary
tree with minimum expected weighted path length from the root. This is called the  Huffiman
tree problem.

In this survey, we assess known results on the structural properties of the optimal trees,
algorithms and lower bounds to construct and to verify optimal trees and heuristics to construct
nearly optimal trees and other related results.

Keywords: Binary search tree; Data structures; Optimal binary search tree

1. Introduction

[.1. Motivation

The binary search tree is a widely used data-structure for information storage
and retrieval as it supports many dynamic-set operations including Search, Minimum,
Maximum, Predecessor, Successor, Insert and Delete.
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A binary tree is either empty or composed of a root node together with left and
right subtrees which are themselves binary trees. A binary search tree T for a set of
keys from a total order is a binary tree in which each node has a key value and all
the keys of the left subtree are less than the key at the root and all the keys of the
right subtree are greater than the key at the root, this property holding recursively for
the left and right subtrees of the tree 7.

Suppose we are given n keys K| <K, < --- <K, and 2n+ 1 probabilities fy, f2,...,
B 0o, 1.0ty With > i+ > oy = 1 where f; is the probability of accessing the key
K; and «; is the probability of accessing a key which lies between K; and K, with
o and a, having obvious interpretations. Consider a binary search tree for this set of
keys. Let b; be the number of edges on the path from the root to the interior node K;
and a; be the number of edges on the path from the root to the leaf (K}, K;1;). Then the
expected cost of accessing all the keys in the binary search tree is XZfi(b; + 1)+ 2w a;,
since the cost of accessing key K; is b; + 1, while for the gap (K;,K;,1) it is simply
a;. An optimal binary search tree for this set of keys is one which has the minimum
cost. The optimal binary search tree problem is to construct an optimal binary search
tree given the keys and their access probabilities.

A simple dynamic programming algorithm requiring O(#n*) time and O(#n®) space
was given by Gilbert and Moore [48] for the special case when only the f3;’s are zero.
This algorithm was extended by Knuth [86] to include the case when the f;’s are
also present. Knuth also improved the algorithm to run in O(n*) time by observing a
monotonicity property of the roots of the optimal binary search trees. Another solution
for the same problem was given by Yao [161] using her general method for speeding
up dynamic programming. This however had the same time and space complexities.
Knuth’s algorithm is the best known so far for the general optimal binary search tree
problem. Recently, Karpinski et al. [74] gave an algorithm with subquadratic expected
running time for the special case of the optimal binary search tree problem when the
a’s are zero. They also mention that they can obtain such a result for the general case.

We study known upper and lower bounds [86, 113,129,130, 162] on the cost of
optimal and nearly optimal binary search trees. For an optimal binary search tree T
with a subtree S(d) rooted at a depth d from the root of 7', we study the ratio of the
weight of S(d), to the weight of T and correct a result obtained by Hirschberg et al.
[60]. This result is used by Larmore [95] in his subquadratic algorithm for constructing
approximately optimal binary search trees.

Several heuristics for constructing binary search trees which have nearly the optimal
cost but requiring significantly less time and often less space than Knuth’s algorithm
have been proposed [95, 102,110, 111, 129, 162]. We explore some of these heuristics.

The optimal binary search tree problem when the f;’s are all zero is called the op-
timal alphabetic tree problem. An O(n?) time, O(n*) space algorithm for constructing
optimal alphabetic trees was first proposed by Hu and Tucker [68]. This was later im-
proved by Knuth [86]. The improved algorithm required only O(xnlog#n) time and O(n)
space and employed better data structures. The original proof of correctness [68] of the
Hu—Tucker algorithm as given by its inventors was extremely complicated and lengthy.
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A much simpler proof of correctness was given later by Hu [63] and Hu et al. [65].
Another O(nlogn) time, O(n) space algorithm was found by Garsia and Wachs [43].
The two algorithms were shown to be equivalent later [64]. The proof of correctness
of the Garsia~Wachs algorithm was simplified considerably much later by Kingston
[78]. We discuss this algorithm, its implementation and its proof of correctness.

It has been shown recently by Klawe and Mumey [80] that a class of techniques for
finding optimal alphabetic trees which includes all current methods vielding O(n logn)
algorithms are at least as hard as sorting in whatever model of computation is employed.
They introduce an idea for finding optimal alphabetic trees which they refer to as region
processing and use this method to produce O(n) algorithms for the case when all inputs
are within a constant factor of one another and when they are exponentially separated,
notions which they define. Linear-time algorithms for constructing optimal alphabetic
trees when the weights are within a factor of two or when the input is in sorted order
are known [64, 116]. We discuss these algorithms.

Another related problem is the well-known Huffinan rree problem where the external
node weights may appear in any order, not necessarily the alphabetic order. The Huff-
man trees and the alphabetic trees are used for data compression {85, 87]. An optimal
Ofnlogn) algorithm (under the comparison tree model) for constructing Huffman trees
was first proposed by Huffman [69]. We study the linear-time algorithms known for
the Huffman tree problem when the weights are within a factor of 2 or when the input
is in sorted order [64, 80, 113, 116]. We discuss the problem of verifying the optimality
of weighted extended binary trees and Huffman trees.

The main source of motivation in studying the optimal binary search tree problem are
the many unresolved problems [65, 80, 116, 137] associated with it. The most important
ones are the following:

1. What is the true complexity of the optimal binary search tree problem ?

In other words, is there an o(n?) time/space algorithm for the general case of the
optimal binary search tree problem ?

2. What is the true complexity of the optimal alphabetic tree problem ?

In other words, is there an o{nlogn) time algorithm for the optimal alphabetic tree
problem ?

3. Is there an o(n logn) algorithm for the Huffman tree problem in the general model
where we are allowed to compute floors and ceilings of numbers ?

4. How fast can we test whether a given binary search tree or alphabetic tree is
optimal ?

In an attempt to address these questions, we first study and survey important known
results on optimal binary search trees and related variants.

1.2. Notation

A binary tree is a finite set of vertices that is either empty or consists of a root
node together with two binary subtrees which are disjoint from each other, and from
the root, and are called the left and right subtree.
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An extended binary tree is a binary tree with external nodes attached to its leaf
nodes.

A binary search tree T for a set of keys from a total order is a binary tree in which
each node has a key value and all the keys of the left subtree are less than the key at
the root and all the keys of the right subtree are greater than the key at the root. This
property holding recursively for the left and right subtrees of the tree 7.

The level of any node in a binary tree is the number of internal nodes on the path
from the root to that node.

We measure the cost of searching for a key K in a binary search tree 7 by the
number of comparisons, Cr(K) needed to locate K or to determine that K is not in 7.
Assume that T contains keys K1, K5, ...,K,. The interval between the keys K; and K,
is denoted by (K, K;41). For 1 <i<n we define Cr(K;) = 14+ number of edges in the
path from the root of 7 to K;, and for 0<j<n and K; <K <K, define Cr(K) =
Cr((K;,Kjy1)) to be the number of edges in the path from the root of T to (K;,K; ).

It is possible to associate real numbers, or weights with the keys and the intervals
between the keys, of a binary search tree 7. We denote the weight of the key K; of
T by B for 1<i<n, and the weight of (K;,K;;1) by «; for 0<j<n. We define the
cost of a binary search tree T to be

c(r) = iICT(Ki B + zo Cr((K, K)oy
i= Jj=

The cost of a binary search tree is also called as its weighted path length.

The weight of a node r is denoted by w(r). The weight of a binary search tree T is
defined to be the sum of the weights of its internal and external nodes. If the weights
fi and a; of a binary search tree T satisfy the condition Y7, fi + >7_oa; = 1, these
weights are called probabilities.

Let (y1,...,7,) be a discrete probability distribution i.e. y; >0 and 2y, = 1. Then
H(y1,...oyn) = — 20 7i-1g(3:) is called the entropy of the distribution. It is denoted
by H.

For a binary search tree 7, we use the following notation when we discuss subtree
weight ratios:

root(T) the root of tree T
W(T) the weight of tree T
Tp,Tg  the left and right subtrees of T
Ti1,Tir  the left and right subtrees of roof(71)
Tre, Trr  the left and right subtrees of root(Tr)
Po  the weight of root(T)
P, Br  the weights of root(T1),root(Tr)

An optimal binary search tree, given a set of keys and the probabilities of accessing
them and the gaps is a binary search tree for that set which has the minimum cost.
The optimal binary search tree problem is to construct an optimal binary search tree.
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Given a sequence of n weights f1, f2,..., B, an alphabetic tree for this sequence of
weights is any binary tree whose leaves have these weights, such that as we traverse the
tree in inorder, the weights occur in the given (alphabetic) order. We can alternatively
think of these weights as gap probabilities given #n — | keys. An alphabetic tree having
the minimum cost for a given sequence of weights is called an optimal alphabetic
tree for that set of weights. The optimal alphabetic tree problem is to construct an
optimal alphabetic tree for a given sequence of weights. If we relax the condition that
the weights should be in alphabetic order then the optimal alphabetic tree problem is
called the Huffinan tree problem.

In the case of alphabetic trees and Huffman trees, the weight of an internal node is
defined bottom up recursively, as the sum of the weights of its children.

In any binary tree T, the abstract position of a node x is defined to be the bit list
of descent commands necessary to find x from the root. By positionr(x) we denote
the abstract position of x in 7.

We define u = ¢ to mean v is the inorder successor of u in some abstract binary
tree.

1.3. Overtiew

In Section 2, we study the general optimal binary search tree problem and solutions
to 1, including the classical dynamic programming algorithm. We look at Knuth’s
improved method using the monotonicity property of the roots of the optimal binary
search trees. We analyse bounds on the cost of optimal trees and look at subtree weight
ratios for optimal binary search trees. Finally, we consider heuristics for constructing
nearly optimal binary search trees.

In Section 3, we study the Huffman tree problem. We give the classical O(nlogn)
algorithm to construct Huffman trees. We note certain properties of Huflman trees and
look at O(n) algorithms to construct Huffman trees in some special cases. We discuss
the problem of verifying the optimality of weighted extended binary trees and Huffman
trees.

In Section 4, we study the optimal alphabetic tree problem. We look at the Hu—Tucker
and Garsia-Wachs algorithms for constructing optimal alphabetic trees. We also note
the equivalence of the two algorithms. We discuss algorithms for constructing opti-
mal alphabetic trees in some special cases. We also study the lower bound result for
constructing optimal alphabetic trees obtained by Klawe and Mumey.

In Section 5, we discuss open problems and directions for further research.

2. Optimal binary search trees

In this section, we study the general optimal binary search tree problem and solutions
to it, including the classical dynamic programming algorithm. We look at Knuth’s
improved method using the monotonicity property of the roots of the optimal binary
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search trees. We analyse bounds on the cost of optimal trees and look at subtree weight
ratios for optimal binary search trees. Finally, we consider heuristics for constructing
nearly optimal binary search trees.

2.1. The dynamic programming algorithm

2.1.1. The O(n*) dynamic programming algorithm

The number of different binary search trees on n nodes is the Catalan number viz.
(1/(n 4+ 1)] (2n”) ~ 4"/n\/mn. This gives an ((n) lower bound for the optimal binary
search tree problem in the decision tree model. However, an exhaustive search for the
optimum will result in an algorithm which is exponential in n. We can do much better
as seen below.

The first algorithm running in time polynomial in n was given for the special case
of optimal alphabetic trees by Gilbert and Moore [48] and required O(#®) time and
O(n?) space. This method was extended by Knuth [85] to include the more general
case where the successful and unsuccessful search probabilities are both taken into
account. The key fact that makes the optimal binary search tree problem amenable
to dynamic programming is that all the subtrees of an optimal tree are optimal (this
is the principle of optimality). If K; appears at the root then its left subtree is an
optimum solution for the probabilities ag, oy,...,2;— and fi,..., f;—, its right subtree
is an optimum solution for the probabilities o;,...,a, and f;.1,..., B,. Therefore, we
can get a bottom up algorithm for building an optimal binary search tree for a set
of probabilities (ay, ..., 0%, f1,...,0,). We can build up optimal trees 7;; for all the
probabilities a;,...,a; and fiyi1,...,; where i< starting from the smallest intervals
and working toward the largest.

Let P;; and W;; denote the weighted path length and the total weight of an optimal
binary search tree for all words K; < X <K, where i<j. Let R;; denote the index
of the root of this tree when 7 < j. The following formulae determine the cubic time
algorithm:

P,‘,i:VVi,i:“i fOI' O<l<n7 (1)

Wiy=W, -1+ B +u, @

Pij=Wj+ min (Pig_1 +Py;) for 0<i<j<n ®)
1<K/

Since we choose R;; from among j — i pairs for each i, j such that 0<<i < j<n the
algorithm runs in O(#*) time, as there are only (n41)(n+2)/2 choices of 0<i </ <n,
the space required being O(n?).

2.1.2. The monotonicity of roots and consequent O(n®) algorithm

Knuth [85] observed that the R;;’s satisfy the condition R;; | <R;; <Ry ;. We
will look at the proof in the next subsection. This condition means that we only have
to search all the indices between R; ;| and R;;; to compute R;;. The running time



S.V. Nagaraj! Theoretical Computer Science 188 (1997) 1-44 7

of the algorithm is therefore,

O(i 'Z' (Riv1j— Rij—1 + 1))

=0 j=0

which is O(Z::ol n) = O(n*). This is the best algorithm known so far for the general
optimal binary search tree problem. Karpinski et al. [74] recently gave an algorithm
with subquadratic expected running time for the special case when the 2’s are zero.
They also claim that they can obtain such a result for the general problem.

2.2. Properties of optimal binary seurch trees

In this subsection we look at certain properties of optimal binary search trees that
are helpful to obtain fast algorithms and to obtain nearly optimal binary search trees.

2.2.1. Monotonicity of the roots

As observed in the previous subsection, Knuth proved the monotonicity of the roots
in an optimal binary search tree. Yao [161] observed that the recurrence obtained for
the optimal binary search tree problem can be generalised to solve a larger class of
dynamic programming problems, using which she proved the monotonicity of the roots.
We look at her proof.

Let w(i,j) for 1 <i < j<n be real numbers and let (i, /) be defined by

(i, i)=0, (4)
e(ij)=w(i.j) + min (c(ik — 1)+ e(kj)  fori <. (5)
1<k
The recurrence of c¢(i,j) for optimal binary search trees is a special case of this
recurrence where we have w(i,/) =W, ; =o; + i1 + -+ f; + a5, c(i, j) = Py
If w satisfies
w(i, j) + w(i', jy<w(i j) + w(ij)) fori<i’ < j<j' (6)
it is said to satisfy Quadrangle inequality.
We use c;(i,j) to denote w(i,j) + c(i,k — 1)+ ¢(k,j) and define
R(i.i) =1, (7)
R(i,j)=max{k;ck(i,j) = c(i,j)} fori<j. (8)
Then R(i, ;) is the largest index where the minimum is achieved in the definition of
(i, J).
w is said to be monotone if w(i,j )<w(i’,j) for i<i’ <j<j'.
The following theorem (see [113]) proves the monotonicity of the roots.

Theorem 2.1. If w satisfies the quadrangle inequality and is monotone, then R(i, )<
R, j+DSR(G+ 1,7+ 1) for i<
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Note: 1t is easily seen that the w(i, ;) for the optimal binary search tree problem is
monotone and satisfies the quadrangle inequality in fact with equality.
We state a few lemmas (see [113]) leading to the proof of the theorem.

Lemma 2.2. If w satisfies the quadrangle inequality and is monotone, then the func-
tion ¢ defined above also satisfies the quadrangle inequality, ie. c(i,j) + c(i',j)<
c(i,j") + (i, j) for i<i' <j</J'.

Proof. We use induction on the length / = ;' — i to prove the result.
This inequality is trivially true if i = i/ or j = ;. This proves the quadrangle
inequality for ¢ for /<1. For the induction step we distinguish two cases i’ = j,

i'<j.
Case 1. i <i' =j < j'. In this case the quadrangle inequality for ¢ reduces to
c(i.j) + e ) ) <eli ). )

Let k = R(i,j'). We distinguish two symmetric subcases: k </, k> .
Case 1.1: k<j. We have

c(i,j) + c(j )< Wi j) + elik — 1) + ek, ) + (. j")
(by definition of ¢(i, f)) (10)
< w(i,j') + c(ik — 1) + ek, j) + c(j.j")
(by monotonicity of w) (1)
< w(i /) +e(ik = 1) + ek, j')
(by the induction hypothesis) (12)
= ¢(i,j')  (by definition of c(i, ;") and k). (13)

Case 1.2: k>j. As this case is symmetric to case 1.1 the proof is similar.

Case 2: i <i' <j<j'. Let y=R(7,j) and z=R(i,j'). We have to distinguish two
symmetric cases: z< y or z>y. We only consider the case z < y. We note that z< y <
by the definition of y and i/ <z by the definition of z. We have

e, ')+ c(i, j) (14)
<e (i, ) + ei ) (15)
=w(i',j ) +c(i,y — 1)+ c(y.j) +wi,j) + ci,z — 1)+ ¢(z, ) (16)

<w(i, ;Y +w(i' )+ i,y — D+ cli,z = 1) + ez, )) + c(3,])

(by the quadrangle inequality for w) 17)
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<w(i, j') +wll' ) + e’y = 1) +clicz = 1)+ e(wj) + ez, /")

(by the induction hypothesis)

(i.e. the quadrangle inequality for ¢ applied to z<y<j <) (18)
=c(i.j))+c(i’,j) (by the definition of y and z). (19)

This completes the induction step and proves the lemma. [

Proof of the main Theorem. The claim is trivially true when /= so we assume / < ;.
We will show R(i, /)< R(i,j + 1), the argument for R(i.j + 1)<R(i+ 1,j+ 1) follows
by symmetry. Since R(i,j) is the largest index where the minimum is assumed in the
definition of ¢(i,f), it is sufficient if we show

[ (L) <erli )] = [ewij + D<epij+ D] forall i < k<k'<j  (20)
We show a stronger inequality, for all i <k <k’ <

i j) — e j)<al,j+ 1) —ar (i j+ 1) (21)

c(i,j) + (i j+ D<o (i) + e, j + 1) (22)
or equivalently by expanding all the four terms using their definition
(k. j) + ek’ j+ D)< ek, j) + clh,j+ 1), (23)

This is just the quadrangle inequality for ¢ at k <k’ < j<j + 1.
As discussed earlier this result yields an O(n?) time algorithm for computing ¢(1.n)
and hence for the optimal binary search tree problem.

2.2.2. Bounds on the cost of optimal binary search trees
It is useful to obtain upper and lower bounds on the cost of optimal binary search
trees and their variants in terms of the access probabilities. Many useful bounds have
been obtained by methods of information theory [86, 110, 111, 113, 130, 162].
Mehlhorn [113] obtained a lower bound for the cost of any binary search tree 7
for the given set of keys, in particular for the optimum tree. It requires the following
result.

Lemma 2.3. Let ¢ be a real number such that 0<c<1. Let B[ = (1 —¢)/2)e
Sor 1<i<n, &4, = (1 —¢)/2)" for 0<j<n then f. 4,20 and X, + Zd; = 1 ie.
(0o, Bys-., B, 0n) is a probability distribution.

The proof of this lemma is by induction on #. By showing that it holds for the left
and right subtrees of the tree 7, we can show that it holds for the tree 7.

We now prove Mehthorn’s theorem (see [113]) which enables us to get a lower
bound on the weighted path length of any binary search tree.
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Theorem 2.4 (Lower bound on the weighted path length). Let B = X§; then

—dB
1. max{m,d S éR} <P,

2. H<P + Bllg(e) — 1 + lg(P/B)].

Proof. 1. Define [%,- and &; as in the previous lemma. Then

bi+1=1+(lg(B,) — lg(c))/ 1g(), (24)
a; =lg(d;)/ 1g(2), (25)
where ¢ = (1 — ¢)/2.
Now
P =3"Bi(b;i + 1)+ > oa, (26)
B gl
—B(llga> @(;Z&mw>+2m@wﬂ> 27)
lg(c) 1
>B<1 @@Q an)H 28
_ H - Blg(c/c)
T 1g(1/9) @)

where we have used a property of the entropy function, viz.,

Hmwwm:Hm+nmuww+m+nw< e ) (30)
ntr it

Setting d = 1g(¢/c) and observing that ¢/¢ = 2¢/(1 — ¢) is a surjective mapping from
0<c <1 onto the reals gives us the required result.

2. As there i1s no closed-form expression for the value of ¢ which minimises the
left-hand side of the first inequality we proved, numerical methods have to be used
to compute dp., in every single application. A good approximation for dp,, is d =
1g(P/2B). Tt yields

H < Plg2+2"%) +dB (31)
2B P
:P1g<2+?>+31 <ZB) (32)
<P (1 + (15;) 1g(e)> +B <lg <§) - 1)
(since lg(x)<(x — l)lg(e)) (33)
:P+B<lg(e)—1+lg <§>> d (34)

The special case d = 0 is also useful as it yields H/lg(3)<P, i.e. 0.63H <P. This
result is true for any binary search tree, in particular, it holds for the optimal binary
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search tree. Let C,p denote the weighted path length of an optimal binary search tree
then by the above result 0.63H <C,py. In fact, Mehlhorn [110] has shown that this
lower bound is sharp for infinitely many distributions. In the case of alphabetic trees
we get a much better result than the one implied by the above result. The following
result is attributed to Gilbert and Moore by Knuth (see [86]).

Theorem 2.5. The weighted path length of an optimal alphabetic tree with (a. . ... Ay )
as the gap probabilities, lies between H and H + 2.

Proof. To get the lower bound we use induction on n. Let Q) =3, ., % for some
k. If n >0 the weighted external path length is at least

T+ > %lg(@Qi/a)+ >0 i lg((l— 00)/x) (35)
0<i<h k<i<n
= > lg(l/%) + f(Q1) (36)
0<i<n
= H + f(O). (37)
where
SO =1+0 1g(Q1) + (1 = Qv)lg(l — O1). (38)

The function f(Q)) is nonnegative and it takes its minimum value of zero when
O = % hence the lower bound result follows.

To get the upper bound, Knuth [85] constructs code words C; of 0's and 1’s, using
the most significant ¢; + 1 binary digits of the function ), _,_, % 4 %;/2 expressed in
binary notation and shows that C; is never an initial substring of C; when i # /, and
hence that we can construct a binary search tree corresponding to these code words.
The weighted path length of the binary tree constructed by this procedure is

< 3 e+ Doy < > o2+ 1g(l/a)) =H + 2. D (39)

O<i<n 0<ign

Knuth [86] also mentions that the first part of the above proof may be extended to
show that the weighted path length of every weighted extended binary tree must be
greater than or equal to the entropy A of the probability distribution (2, 21,....%,).
He mentions that this fundamental result is due to Claude Shannon (see [86]). Hence,
we note the following:

Let C denote the cost of any weighted extended binary tree with gap probabilities
(20, %10 n e s %,) and Cuurr the cost of any Huffman tree, Cat the cost of an alphabetic
tree, Coat the cost of an optimal alphabetic tree on that set.

The cost of any tree on that set satisfies

(1) H<Churr <G, (40)
(2) H<Cyurr < Coar < H +2, (41)
(3) CoaT <Car. (42)
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Knuth [86] has generalised the above result to show that the cost of any binary
search tree on the set of access probabilities (ag,..., %, Bi1,..., ) 1s

<2-—oglglao) — 20 (B + o) lg(Bi + o). (43)
I<isn
Much better upper bounds are known for the cost of the optimal binary search trees.
Mehlhorn [110] showed that the cost of an optimal binary search tree on {(a,...,%,,
... Bp) with B+ Za; = 1is <2+1.44H. In fact, he exhibited a linear time heuris-
tic which constructs a binary search tree for a given distribution {%,..., % B1,..., fn)
having a cost <2+ 1.44H. Bayer [14] improved the upper bound to H + 2. Mehlhom
[111] also exhibited another linear time heuristic and showed that the upper bound
is 1+ > a + H and is best possible in the sense that if ¢; > f; + 23 o, + c3H
is an upper bound on the cost of an optimal binary search tree then ¢; 21, ¢ >1
and ¢3 =2 1. He proved this by exhibiting suitable probability distributions. Yeung [162]
has derived upper and lower bounds on the cost of optimal alphabetic trees. He also
mentions several other results about upper and lower bounds on the cost of Huffman
trees and optimal alphabetic trees. He proposes a linear time heuristic to construct an
alphabetic binary tree whose cost is

SH+2— fla) — flan) <H+2— 2 —
where f(x) = x(2 — lg(x) — [~ 1g(x)]). (44)

Improved bounds on the cost of optimal binary search trees and optimal alphabetic
trees were obtained by Roberto de Prisco and Alfredo de Santis {129, 130]. They
proposed a linear time heuristic that constructs a binary search tree whose cost satisfies
the condition Cop <C < H + 1 — o9 — %, + %max Where sy 18 the maximum value
among %, %,...,%,. This result improves on Mehlhorn’s upper bound on the cost of
optimal binary search trees and also improves on Yeung’s upper bound on the cost of
optimal alphabetic trees.

New lower bounds on the cost of binary search trees were obtained recently by
Prisco and Santis [130]. Their bounds were expressed in terms of the entropy H of
the probability distribution (%g,..., %, f1,..., ), the number of clements » and the
probability Q= Y7 | B that a search is successful. Their bounds exploit relations
between trees and codes. Mehlhorn’s lower bound of C>=H/lg3 is tight when the
entropy / is small. If further information on the probability distribution is given then
a better [4, 5] lower bound of C=H —lge — O(lglg(n+ 1) — 1) can be obtained. This
bound [130] has been shown to be better than Mehlhorn’s bound when H > 3.909 +
2.710Q 1glg(n+1)—2.710Q. Prisco and Santis [130] show that in fact C>2H+H IgH —
(H + 1)ig(H + 1). They show that this bound is better than Mehlhorn’s bound when
H >y where y =~ 14.4922. They also derive several other lower bounds which are a
function of H, Q and n or H and Q only. They show that the bounds C2H — 1 —
O(glg(n+ 1) — 1) and C=H + Q + HlogH — (H + 1)1g(H + 1) are better than
previously known bounds when the entropy, A is not very small.
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It is useful to obtain bounds on the cost of binary search trees produced by heuristics,
since we can compare them with the best-known upper bound on the cost of the optimal
binary search trees and determine how close, they are to the optimal cost.

2.2.3. Subtree weight ratios

Hirschberg et al. [60] obtained bounds for the ratio of the weight of a subtree S(d)
rooted at a depth ¢ from the root of an optimal binary search tree T, to the weight
of T. They call the maximum possible value of the ratio of weights as p(d). Their
work on this problem was motivated by Mehlhorn’s heuristic {113] for constructing
nearly optimal binary secarch trees. Mehlhorn showed that a tree, that is constructed
by equalising as much as possible the weights of the left and right subtrees, is nearly
optimal. Hirschberg et al. [60] consider the related problem: how skewed can an optimal
binary search trce be. Their resuit was used by Larmore [95] in his subquadratic
algorithm for constructing approximately optimal binary search trees.

The following theorem was proved by Hirschberg et al. [60]. We include their proof
and show why it is erroneous and also show later, how we can correct this error.

Theorem 2.6 (Erroneous: valid only if external node weights are zeroes). I/ T is an
optimal binary search tree, then the weight of the left or right subtree must he at

) . . .
most 5 the weight of the entire tree.

Proof. Suppose that W(7g) > (%)W(T). Root(Ty) has two subtrees, Tgp and Tig.
There are two possible cases:

1. The weight of Ty_ is greater than (%)W(T). Then make root(Try ) the new root
of T. using a double left rotation.

2. fr+W(Tgr) > (%)W(T). Then make root(Tr) the new root of 7, using a single
left rotation.

In cither case, the new tree has lower expected search time than 7', a contradiction
to the optimality of 7. By symmetry. the same argument holds for the left subtree
of T. [J

The proof as given above is valid if the optimal binary search trees considered have
no external node weights. However, if there are nonzero external node weights then
the proof may not be valid, since we may be trying to make an external node Tr or
Tr as the root node.

They also prove the following lemma by arguments similar to those used in the
previous theorem.

Lemma 2.7 (Erroneous: valid only if external node weights are zeroes). In un opt-
imal binary search tree,

1. /fo + W(TR)>max{W(TLL), W(TLR)}

2. ﬁ() —+ W(TL)Zmax{W(TRR), W(TR]_)}
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Their proof of this lemma also has the same error we observed before but holds for
the subtrees which have only internal nodes.
Their main theorem, which uses the above lemma is the following:

Theorem 2.8 (Erroneous: valid only if external node weights are zeroes). For  any
subtree S with its root at a distance d from the root of an optimal binary search tree
T, W{(SY/W(T)<2/F.3 where F, is the nth Fibonacci number (Fi=1, F=1, K=2).
Hence p(d)y<2/F 3.

By fixing the problem encountered at the leaf levels we get the following correct
theorem.

Theorem 2.9. Let T be an optimal binary search tree with a subtree S rooted at a
node at a distance d from the root. If S is rooted at an internal node, W(S)Y/W(T)<
1/Fy., and if it is rooted at an external node, then W(S)/W(T)<1/F;. Hence p(d)<
1/E.

Proof. We consider two cases: one when the root of the subtree § is an internal node
another when the root of the subtree S is an external node.

1. Let the root of the subtree S = T; be an internal node, say flo. We start at the root
of § and go up the path to the root of 7', one level at a time. At each step i, we are
at the root of a bigger subtree. Let us call this subtree as 7}, and let f; be the weight
of root(T;). T; has one subtree T;_; and another subtree V; which was not along the
path followed. Also let W(Ty) =W, =W(S) and W(T})= W,. Since every subtree of
an optimal tree is also optimal, we can use the previous lemma, observing that:

o+ W) = W(Ty), (45)
W(T,y = W(Ty)+ B2+ W(V), (46)
W(iz) =z W{Iy) + W(T), (47)

and in general
W(T)zW(Ti-) + W(Ti-2) Vdziz2. (48)

Solving this recurrence we get,

V=W(T)=W(Tz) 2 FuWo + Fyr W) (49)
= W + Fy_ W (50)
= Wo(Fy + Fy—y) (51)
::%Ef%—h (52)

Wy Ws 1

e 1 53

Wr  Wr  Fiq (33

since W > W,. This proves the first part of the theorem.
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2. When the root of S is an external node, we have

W(TH)ZW(Ti— )+ W(Ti—2) Ydziz3, (54)
| =W(TY=W(Ty)=F_\ Wy + Fy_2 W, (55)
2 Wy + Fy oW (56)
= F . (57)

So we get W(SYW(T)<1/F;. O

It is useful to obtain bounds on the subtree weight ratios of the optimal binary search
trees since they tell us how skewed an optimal binary search tree can be. It also gives
a necessary condition to check the optimality of a binary search tree.

2.3. Fast algorithm for a special case

2.3.1. Larmore’s subquadratic algorithm

Larmore [95] presented an algorithm for constructing optimal binary search trees.
Using subtree weight ratios, that requires subquadratic time if there is no long sublist
of very low frequency items. The time required by it is O(n'®) if the frequency of
each item is at least ¢/m for some constant ¢ > 0. He also presented a modification
which constructs a nearly optimal binary search tree in the general case. We discuss
this algorithm in the next subsection.

The following are his main results.

Theorem 2.10. Let [ <n be an inteyer, and let 0 < 2 <1 be a real number such
that W; ;= A for all i, j such that j—i > I. Then there is an algorithm that computes
an optimal binary search tree in O(n(l+ 4~ 2.2 logn)) time, where ¢p=1.618 is the
golden ratio.

Corollary 2.11. Suppose fB; + ;= ¢/n for all i, where ¢ > 0 is a constant. Then there
is an algorithm that computes an optimal binary search tree in O(n°(logn)") time,
where =1+ 1/(1 +log ¢)=1.59023 and =1 — 1/(1 + log ¢}~ 0.40977.

Larmore formulates the optimal binary search tree problem as a problem on a
weighted acyclic digraph. For any fixed integer ¢ >0, he shows how we can con-
struct a weighted acyclic digraph G, such that the minimum weight of any path in
G, from its source to its sink is the weighted path length Py, of the optimal binary
search tree for a set of » keys, (K|,...,K,). The edges and vertices of the graph G,
are defined as given below.

Let I ={weX*||w|<d}. We define G; =(Vj,E,), where

Vi={{K....,K,} x 29V U {source, sink}, (58)
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Ry ={((Ki,u),(Kiz1,0)) |u,v € 2D u = v}

U {(source,(K,v)) | v € 0%} U {((Ky,u),sink) | u € 1*}, (59)
Sa = {((Kpu), (K, 0)) [i < ji wyv € 2O w = vomax{ Jul,|v]} =d}

U {(source,(K;,v)) || v|=d} U {((K;,u),sink)||u|=d}, (60)
E;=R;US,. (61)

The members of R; are called regular edges, while the members of S; are called
special edges. The rank of each vertex is also defined:

rank(K;,,w) =i, (62)
rank(source) = 0, (63)
rank(sink) =n+ 1. (64)

Weights are placed both on the vertices and the edges as follows: for vertices
weight(source) = weight(sink) =0, (65)
weight(K;, w) = (Jw| + 1)8;, (66)

for the regular edges as

weight((Ki, u), (Ki+1,0)) = (max{|ul, [v|} + 1), (67)
weight(source, (K,0%)) = (k + 1), (68)
weight((K,, 1%), sink) = (k + 1), (69)

for the special edges as

weight((Ki,u),(K;,v)) = Pi; +(d + )W, ;, (70)
weight(source,(K;,v)) = Po; + (d + 1)W ;, (71)
weight((Ki, u),sink) = P; yy1 +(d + D)W 41, (72)

where P;; and W;; denote the path length and the total weight of all items strictly
between K; and K, when i < /.

The following lemmas show the relationship between the minimum weight path
problem for the graph G, and the optimal binary search tree problem.

Lemma 2.12. Let x be a path in G4 from source to sink. Then there is a binary search
tree T such that positiony(K;)=w; for each interior node (K;,w;) of y. Furthermore,
the weighted path length of T is the weight of .

Lemma 2.13. Let T be a search tree (not necessarily optimal), and let P be its
weighted path length. Let %y = {(K;,w;)|w; = positiont(K;), |wi| <d}. Then the ele-
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ments of ¥, are exactly the interior nodes of some path y in Gy from source to
sink. Furthermore, weight(y)}<P.

Lemma 2.14. Let Ty be an optimal binary search tree and let Poy be the weighied
path length of Toy. Then for any fixed d 20, FPoy equals the weight of u mininuumn
weight path in the graph G, from source to sink.

As the graph as defined above has n(29+" — 1) + 2 vertices, (n — 1)(29° > — 2d —
4)+2(d + 1) regular edges, and (29 — 1)(n —1)(n—2)+2(n— 1)(d + 1) special edges
which are not regular, it becomes necessary to take advantage of the special structure
of the graph.

For any d and for any vertex x of Gy, fs(x) is defined to be the least weight of
any path in G, from source to x. The weight of a path was defined as the sum of the
weights of the vertices and the edges of that path, the weight of the last vertex being
included. Hence, fy(sink)= Pyy. If no path exists from source to x, f;(x)=. For a
fixed integer /<n, let G, ; be the subgraph of G, consisting of all the vertices and
only edges of span not exceeding /. For any vertex x, let f;,(x)> fy(x) be the least
weight of any path in G, ; from source to x. The span of an edge is defined to be the
difference of the ranks of its end points.

Larmore gives a result that uses the lemma concerning subtree weight ratios that a
subtree 7;, of an optimal binary search tree 7' rooted at a depth d has weight less
than 2/F; 3. In view of our result concerning subtree weight ratios, his result must be
read as follows:

Lemma 2.15. If Wi ; > 1/F; for all pairs i, j such that j—i > 1. then Poy = fu (sink).

Larmore’s Algorithm

Choose d, !

Compute [, (K;,07) for all i

w e 4

while w # 19 do

begin
w — the inorder successor of w in ¢
Compute f;,(K;,w) for all {

end

Compute fy /(sink)

For any vertex v, fy (y)=weight(y)+min{ f4 (x)+ weight(x, y)} where the mini-
mum is taken over all the edges (x, ») of the graph G, ;. The classic minimum weight
path algorithm examines all edges. Larmore’s algorithm examines all regular edges,
but only a small subset of the special edges.

The first step of the algorithm is to find the smallest integers d, / such that /=
[2¢logn] and W;; > 1/F; (In Larmore’s paper [95] a value of 2/F,,3 is given, but
due to our correction we get the value 1/F; ) for all pairs i, j such that j — 7 > /. It
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requires O(n) time to determine whether a particular candidate value for d is suitable,
since it suffices to check W;,., for all i, and there are O(logn) values of d to check.
Thus, choosing d, ! requires O(nlogrn) time.

For any i, there is at most one edge to (K;,0¢) and that edge is from source. It
takes O(n) time to compute fy ;(K;,07) for all i.

Suppose that w # 0, and that f; ;(K;,u) has been computed for all u € ¥ such
that u is an inorder predecessor of v. Let w’ be the inorder predecessor of w in X(4),
Larmore defines an n x n matrix M as follows: M[j,i]= fq (K, W)+ P, ;+(d+1)W,;;
provided 0 < j —i</, and M[j,i]= oo otherwise. Then the minimum value in the ;th
row of M is precisely the minimum weight of any path in G, ; from source to (K;, w)
where the last edge of that path is a special edge. By the quadrangle inequality of
W and P, M is monotone, i.e. the column position of the minimum entry in each
row 1s an increasing function of the row. Hence, the minimum row values can be
found by using an O(nlogn) algorithm for finding the row minimums of a monotone
matrix. Each regular edge is then examined once to find lower values for fy (K;,w) if
any. The total time for the main loop of the algorithm is therefore O(27slogn). The
final step of computing f; ;(sink) requires examining each of the / + 4 edges to sink.
This step takes linear time. Therefore, the algorithm takes O(n! 4+ 2%nlogn) time if
Wi ;>1/F; for all i,j such that j —i > /.

Now given that W, ;> / for all pairs 7, such that j —i>/ we choose d such that
A>1/F;. Then ¢ >1// and therefore d > log(1/4)/(log ¢) where ¢ is the golden ratio,
$~1618. Hence, 2¢=27'g;%_p~Uoglog,2) _ ;—1loe;2  Therefore, O(nl +
291 logn) becomes O(nl 4+ 2~ '8 %nlogn) and the theorem follows.

2.4. Nearly optimal binary search trees

Knuth’s algorithm [86] for constructing optimal binary search trees requires O(n?)
space and runs in O(#n?) time. Quite often exact probabilities of accesses are not avail-
able. So nearly optimal trees that can be obtained faster will be useful. Many heuristics
[95,102,110, 111,129, 162] using the properties of the optimal binary search trees of
the previous subsection have been proposed for constructing trees which have nearly
the optimal cost but which can be constructed much more quickly. Many of these
heuristics run in linear time and require O(n) space. Several of these heuristics have
resulted in new upper and lower bounds on the cost of optimal trees as noted before
in the previous subsection.

2.4.1. The rootmax heuristic

A simple heuristic for constructing approximately optimal binary search trees is the
rootmax heuristic. The most frequently occurring key is chosen as the root and the
remaining keys are attached to the root node recursively. An O(#n) implementation of
this heuristic is possible. This is achieved by using a data structure called the “Treap”
[13,90]. A treap is a binary tree in which each node has two keys; the binary search
tree property is maintained in one and the heap property is maintained in the other.
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A tree constructed by rootmax heuristic has heap property on the weights and binary
search tree property on the keys. Hence using the O(n) algorithm to construct the treap
[13], we can build the tree by rootmax heuristic.

In this heuristic the gap probabilities are ignored; this could be disadvantageous in
some cases. This heuristic produces trees whose cost is very far from the optimal as can
be shown by the following reasoning. Suppose that we have n keys whose frequencies
are 1,2.3.....n. Let us assume for simplicity that n is of the form 2* — 1. The root
node is the node having the highest frequency, n. The rootmax heuristic produces a
left leaning search tree. The cost of this search tree is seen to be

" n(n+ 1)}n+2)

Sin—i+1)= g (73)
=t

The cost of the balanced search tree is seen to be
A gion M 5
Sz """%E + n” logn. (74)
i=1

Hence, the ratio of the cost of the search tree produced by the rootmax heuristic to
that of the optimal binary search tree is >#n/6logn.

2.4.2. Bisection heuristic

Mehlhorn [113] obtained a heuristic which builds a binary search tree, the weight
of whose left and right subtree are nearly the same. He showed that the cost of this
binary search tree is very close to the optimal.

Mehlhorn’s method uses a bisection on the set

i.e. the root k£ is chosen so that s;_ <% and s; > % The heuristic proceeds recursively
on the subsets {s;|i<k — 1} and {s;|i=k}. If binary search is used to find the k& at
each recursive step then the running time of the heuristic is O(n log n). If the search for
k is implemented using a combination of exponential and binary search, the running
time of the heuristic can be reduced to O(n). Mehlhorn [113] showed that the cost of

the binary search tree produced by this heuristic is <H + 1 4 Zu;.

i1
si= Y (ap+ Pp)+ Pi + /2 where Ogign},

p=0

2.4.3. Min-max heuristic

In this heuristic we choose the root so as to minimize the maximum of the weights
of the left and right subtree. The implementation and performance of this heuristic are
quite comparable to that of Mehlhorn’s heuristic.

2.4.4. Larmore’s heuristic

Larmore’s algorithm [95] for a special case can be modified to get a heuristic which
constructs an approximately optimal binary search tree for the general case. This heuris-
tic has one parameter, and exhibits a trade-off between speed and accuracy. It is possible
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to choose the parameter so that the time required by it is O(n'®) and the error is o(1).
This heuristic is the first subquadratic method to construct an approximately optimal
binary search tree, whose cost differs from that of the optimal by o(1), answering a
question of B. Allen [8].

Larmore’s heuristic is a modification of his algorithm for constructing an optimal
binary search tree in subquadratic time if there is no long sublist of low-frequency
elements, which we discussed in the previous subsection. The worst case for his algo-
rithm for constructing an optimal binary search tree is when there are a large number of
low-frequency elements. The main idea behind his heuristic is to delete these sublists
of low-frequency clements, and then to apply his algorithm to construct an optimal
binary search tree on the remaining elements. Then a complete balanced tree on the
low-frequency elements is formed and attached to the tree so constructed.

The variable parameter of this heuristic is a parameter r satisfying the inequality
0<r<l1. Let

=], (75)
(logn)k’w

L L e (76)

D:{l<i<n|a,—~1+ﬂ,—|—u,~<5}. (77)

Larmore uses his algorithm to construct an optimal binary search tree 7’ for the list
obtained by deleting both K; and (K, K;y) for all i in D. The deleted items are then
organised into an almost complete binary tree and attached to the tree 7”. Suppose D
is the disjoint union of the maximal runs, i.e. D=[ij.../7;]U--- U [in...jm], where
ixs1 > jx + 1. For each &, let 7T, be the almost complete binary search tree for the
keys strictly between K;, _; and K, |. A binary search tree T for all the keys is then
formed, by removing from T’ each external node (K, _|,K; ) and replacing it by 7}.

Larmore shows that the time complexity of his heuristic is O(n'*") where r is a
real number between zero and one. The special feature of this heuristic is the trade-off
between speed and accuracy it offers.

Let P, P’ be the costs of the trees 7 and 77, respectively, and let Py, be the cost
of the optimal binary search tree. Larmore shows that the accuracy offered by this
heuristic is

P—FPpy<P -~ P =0(né logn) = O(nl~r(1+log d))(lOg}’l)lHOg(/)).

Larmore obtained the following result.

Theorem 2.16. For any choice of real 0 < r < 1, there is an algorithm that computes
a binary search tree Typox in O(n'™") time such that

r —(I+1log ¢)
error = Papprox — Popr <11 ( og n) R

where Poy is the weighted path length of the optimal binary search tree, and Popprox
is the weighted path length of Tipprox.
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Corollary 2.17. For any choice of v > 1/(1+log ¢)=0.59023, the algorithm computes
a binary search tree whose weighted path length differs from that of the optimal
binary search tree by o(1), in time O(n' ™).

The corollary follows from the theorem since if » > 1/(1 4 log ¢) then

(lOg n)l+log ¢
K,r(l +log ¢)--1

=o(1). (78)

error = Pypprox — Popt <

2.5. Other results

We record a few other results known about optimal binary search trees.

The lcast upper bound on the cost of optimal binary search trees as a function of
the number of external nodes, given the total weight of the nodes to be one, was tfound
by Hu and Tan [66]. They showed that

{(g — D27 = nj2] 4+ q(n — 2071} (79)

n/2)’
where g = [lgn], is the least upper bound on the cost of any optimal binary search
tree built on »# external nodes and n — 1 internal nodes where the total weight of the
internal and external nodes is one.

Karpinski et al. [74] recently gave an algorithm with subquadratic expected running
time for the special case of the optimal binary search tree problem when the «’s are
all zero. They also claim that they can obtain such a result for the general case. Their
result is:

Lemma 2.18. Let probabilities p,..., p, be given where the p; are randomly per-
muted. Then there is an o(n*) algorithm that computes a binary search tree where
pi are the weights of internal nodes and external nodes have weight zero, which is
optimal with probability 1 —o(1). Furthermore, there is an algorithm which computes
an optimal binary search tree in expected time o(n*).

They also claim that they can obtain such a result for the general problem where
the external node weights are also given.

In the dynamic version of the optimal binary search tree problem where new keys
are added or existing keys are deleted, the access probabilities of the keys change is
an interesting problem we have not discussed. Mehlhorn [112] studied dynamic binary
search trees.

3. Huffman trees

In this section, we study the Huffman tree problem. We give the classic O(nlogn)
algorithm to construct Huffman trees. We note certain properties of Huffman trees and
look at O(n) algorithms to construct Huffman trees in some special cases. We discuss
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the problem of verifying the optimality of weighted extended binary trees and Huffman
trees.

3.1. The Huffman algorithm

Huffman [64, 69, 84] proposed an algorithm for constructing Huffman trees. The term
Huffman trees is generally reserved for the trees produced by the Huffman algorithm
although that algorithm may not produce all the trees having minimum weighted path
length. The algorithm given below is recursive.

The Huffman algorithm

Given a sequence of weights (wy, wa,...,w,), the algorithm produces a Huffman tree
on that sequence of weights.

HT(W], Wa,..., W,z)

1. If #=1 then create an external node of weight w; and stop.

2. Find the the two smallest values of the sequence say w;, w;

3. Call HT(wi,wa, ..., Wim [, Wi + W)y Wi, , Wim 1, Wil oo, Wy)

4. Replace an external node of weight w; + w; in the tree obtained in the previous
step by a tree with one internal node having an external node as its left-son with
weight w; and an external node with weight w; as its right-son.

Since we need to find the two smallest values at each step, a brute force method of
finding the two smallest values using a linear search will give an O(»?) time algorithm,
If we use a priority queue on the w;’s for this purpose then we can delete the w; and
w; and also insert the w; +w; in O(logn) time, so we get an O(n log n) implementation
for the Huffman algorithm.

The tree produced by Huffman’s algorithm is optimal. We can show this by induction
on n.

Given any binary tree with minimum weighted path length, if an internal node of
maximum path length has two sons which are not the smallest nodes, then we can
interchange the position of the two smallest nodes w; and w, with the sons of that
internal node without increasing the cost of the tree. We then merge the two smallest
weight nodes wy,wy to get an external node of weight w) + w;. In the resulting tree,
we have n — 1 leaves with weights w| + wa,ws,...,w,. By the induction hypothesis
this tree is optimal so the original tree is also optimal.

Schwartz [143] showed how we can construct a Huffman tree that is as well-balanced
as possible (has the smallest maximum depth) among all possible Huffman trees for a
given sequence of weights.

We can define t-ary trees just as we defined binary trees, where every internal node
has exactly ¢ sons and every external node has no sons. It is known (see [84]) that the
Huffman construction of combining the ¢ smallest weight nodes will give an optimum
t-ary tree, except that we have to add some zero weight nodes initially so that at every
later step we combine exactly ¢ weights. The zero weight nodes do not contribute to
the cost of the t-ary Huffman tree.



S.V. Nagaraj! Theoretical Computer Science 188 (1997) 1-44 23

3.2. Properties of Huffman trees

The following well-known result (see [84]) tells us when it is possible to construct
an extended binary tree given its level numbers.

Theorem 3.1. Given a set of integers [y, 15,...,1,20. it is possible to construct an
extended binary tree in which these numbers are the path lengths (distance from the
root, of the external nodes) in some order if and only if >, _, g”2”' =1

Proof. It is easily seen by induction on » that the condition above is necessary. Con-
versely, if >, ., 2=!"=1 we want to construct an extended binary tree with thesc
path lengths. If # =1 then /; =0 and the construction is trivial. Otherwise, we may
assume that the /’s are ordered so that

1]:/2:"':/q>[¢1+l>[q+22"'2111>O (80)

for some ¢ with 1 <g<n. Now,

20t = 5 ol (81)
I<i<n
q . .
=5 4+ an integer (so g is even). (82)
By induction on n there is a tree with path lengths 7, — 1,/3,...,/,; take such a trec

and replace one of the external nodes at level /; — 1 by a tree with one internal node
having two external nodes as its children, this gives us the required result. [

An interesting result by Schwartz and Kallick [144] is the following.

Theorem 3.2. Giten a sequence of n weights wy,wy,....w, such that w; <w,<

- €w, there is an extended binary tree on this sequence of weights such that it
minimises the weighted path length and for which the terminal nodes in inorder con-
tain the values wi, wa, ..., W,.

Proof. We note that we are using the term extended binary tree instead of Huffman tree
because there may be trees having the minimum weighted path length which are not
produced by Huffman’s construction. First we construct a tree by Huffman’s algorithm
for the sequence of weights wy,wa,....w,. [f w; <w;y, then [; > [, (or else the tree
would not be optimal). The construction given in the proof of the previous theorem
now gives us another tree with the same lengths and with the weights in the proper
sequence. [

It is not hard to show that there is an (nlogn) lower bound on the running time
of any algorithm for constructing a Huffman tree on a sequence of n weights, in the
decision tree model. Hence, the optimality of the Huffman algorithm in this model
follows. However, we shall see in the next subsection that by choosing a model of
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computation in which we can sort a sequence of numbers faster, we can construct
Huffman trees much faster.

3.3. Fast algorithms in special cases

3.3.1. When the weights are in sorted order
A linear-time algorithm for constructing a Huffman tree when the input weights are
in sorted order is known [113].

Theorem 3.3. Huffinan trees can be constructed in O(n) time if the weights are in
sorted order.

Proof. As we combine the two smallest weight nodes at each step, the weights of
the resulting new nodes also come in sorted order. Hence by maintaining two sorted
lists (one of external nodes and one of internal nodes), we need to check only three
elements to find the smallest weight pair.

In particular, if we are able to sort a sequence of n positive numbers in F(r) time
we can construct a Huffman tree on this sequence by just spending an extra O(x) time.
Hence if we are able to sort a sequence of n positive numbers in linear time, we can
construct a Huffman tree on that sequence in linear time. O

A corollary of this result is

Corollary 3.4. We can construct a Huffman tree corresponding to a valley sequence
in O(n) time where a valley sequence is a sequence of the type wy>w;y> - >w;_|
SW; Wiy ... Swy

3.3.2. When the weights are within a factor of two

It is known [116] that if the input weights are within a factor of two, we can
construct a Huffman tree on these weights in linear time.

We state the following theorem due to Klawe and Mumey [80, 116].

Theorem 3.5. Given a sequence of n nodes whose weights are within a factor of two,
after the first [(n + 1)/2] minimum weight pairs have been found and combined the
new sequence will consist of [n/2] nodes whose weights are again within a factor of
two.

We sketch the main ideas behind this result.

Let the initial sequence of # nodes be v|,v7,...,0, and let ¢ be a real number such
that ¢ <w(v;)<2c for i=1 to n. Whenever two nodes forming the minimal weight
pair are combined, the weight of the new node formed is greater than 2¢, so it will not
be involved in a minimal weight pair combination until there are no two nodes whose
weights are less than 2c. When » is odd, after (v — 1)/2 pairings have occurred, there
will be only one node left, whose weight is less than 2c¢, it is the largest weight node
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initially present. This forms a minimal weight pair with the smallest newly formed
node. When # is even, the largest weight node present in the original sequence merges
with another original node. Thus during the [(n + 1)/2]th pairing the largest weight
node present initially, forms a minimal weight pair. Klawe and Mumey [80, 116] show
that at this stage the weights will again be within a factor of two.

Klawe and Mumey [80, 116] extend this result to show that if we keep combining
minimum weight pairs, the resulting tree will be balanced with the leaves differing in
level by at most one. It will be seen that 2(n — 21#"}) smallest weights will be at level
[lgn] + 1 and the others are at level [lgn]. Thus the Huffman tree can be constructed
in linear-time. They also extend this result to optimal alphabetic trees, which we will
see in the next section.

3.4. Verifving Huffman trees

Though there is an Q(nlogn) lower bound for constructing Huffman trees in the
comparison model, it will be interesting to see whether we can verify whether a given
weighted extended binary tree is a Huffman tree in o(nlogn) time. We first develop
necessary conditions for a given weighted extended binary tree to be optimal, we then
show that these conditions can be tested in O(n) time.

Theorem 3.6. 4 weighted extended binary tree on a sequence of n weights wy,
Wa,.. . Wy is optimal only if for all levels |

1. The weight of any node at a level I is greater than or equal to the weight of
anv node at level 1+ 1.

2. For any three nodes a,b,c in level |, w(c)<<w(a) + w(b).

Proof. The first condition is necessary since otherwise we can interchange the position
of any two nodes violating this condition, and obtain a tree of cheaper cost. We now
show that the second condition is also necessary. Suppose it is not so, then at some
level /, there are three nodes a, b. ¢ such that w(c) > w(a)+w(b). Since the cost of the
tree does not change if we interchange weights at a given level, we can permute the
weights at the level / so that the nodes @ and b are siblings and recompute the weights
of the internal nodes. Now, the nodes of weight w(a) + w(bh) which is at level / — |
and w(c¢), do not satisfy the first condition (which is a necessary condition). Hence,
the second condition is also a necessary condition. [

Now though it appears that condition 2 implies condition 1, if an external node
appears in a level above the current level, condition 2 need not imply condition 1
for the external node. It is easy to show that the above necessary conditions can be
verified in O(n) time.

Theorem 3.7. Given a weighted extended binary tree, we can test the conditions given
in the previous theorem in O(n) time.
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Proof. For every level /, compute the two smallest weights a;,b; and the maximum
weight ¢;. Then for every level [,

1. Check if a; =2 ¢4 and

2.ifa; +br=¢
If at any level / either of the two conditions are not satisfied then we know that the
tree is not optimal due to our previous theorem.

It is not hard to show that the running time of the above algorithm, if we use
linear-time algorithms for selection, is O(n) where # is the number of nodes in the
tree because at any level we have to spend time proportional to the number of nodes
in that level. O

It is known [87] that a binary tree on the weights (wy,...,w,) is a Huffman tree if
it satisfies the following properties:
1. The n external nodes have been assigned the weights (wy,...,w,) in some order,

and each internal node has been assigned a weight equal to the sum of the weights of
its two children.

2. The 2n—1 nodes (external and internal) can be arranged in a sequence yy,..., V2,1
such that if x; is the weight of node y; we have x; < .- <x2,_1, and such that nodes
Yaj—1 and y; are siblings (children of the same parent), for 1<;<n, where this
common parent node does not precede y»,—1 and y,; in the sequence.

Knuth [87] shows by induction that such a tree is one that Huffman’s algorithm
might construct.

Ramanan [137] showed that the necessary conditions we derived for a given weighted
extended binary tree to be optimal are in fact sufficient when applied to a complete
binary tree. Ramanan [137] mentions that it is possible to check whether a given tree
is a Huffman tree in linear-time by using his conditions for the optimality of alphabetic
trees.

It would be interesting to devise a linear-time algorithm for verifying the optimality
of a weighted extended binary tree using our necessary conditions and also Knuth’s
[87] and Ramanan’s [137] conditions for Huffman trees.

4. Optimal alphabetic trees

In this section, we study the optimal alphabetic tree problem. We look at the
O(nlogn) Hu-Tucker and Garsia—Wachs algorithms for constructing optimal alpha-
betic trees. We also note the equivalence of the two algorithms. We discuss algorithms
for constructing optimal alphabetic trees in some special cases. We also study the lower
bound result for constructing optimal alphabetic trees obtained by Klawe and Mumey.

4.1. The Hu-Tucker algorithm

The Hu—Tucker algorithm [64] and their variants begin by building an intermediate
tree (called the Imcp tree) on the input weight sequence. The levels of the leaves
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in this intermediate tree are recorded and then they are used to build an alphabetic
tree where each leaf is at the same level as in the lmcp tree. Thus, the cost of the
alphabetic tree is the same as that of the intermediate (possibly nonalphabetic) tree.
The intermediate tree is proved to have optimal cost in a class of trees which con-
tains all the alphabetic trees, so it follows that the alphabetic tree constructed is indeed
optimal.

The Hu-Tucker algorithm begins with a list of leaf nodes containing the weights
Wi Wa, ..., w,, in order. This list is called the worklist and is used to determine how the
nodes combine to form the intermediate tree. Nodes in the worklist are designated either
as crossable or noncrossable. This affects the way the nodes may pair off. Initially all
nodes are noncrossable. When the nodes are paired ofl, the resulting internal parent
node is designated crossable. The weight of the parent node is assigned the sum of the
weights of its children. The nodes that are paired off are removed from the worklist
and the new parent node occupies the position of its left child. We say that two nodes
in the list are compatible if they are adjacent in the worklist or if all the nodes which
separate them are crossable nodes. We will use the symbol », to refer to a node
the worklist and w, its weight. We denote /, for the level of that node. We define an
order on the nodes in the worklist by v, <v, if w, <w. or if w, = w, and ¢, is to the
left of v, in the list. A compatible pair of nodes (t,,ts) is said to be local minimum
compatible pair (Imcp) if and only if

1. vy <ty for all nodes v, compatible with node v,

2. v, <v, for all nodes v, compatible with node v;.

To obtain the Imcp tree, we keep combining the minimum compatible pairs accord-
ing to Hu and Tucker [68], any local minimum compatible pairs according to Hu [63].
In fact, it was shown later [64] that we can combine the Imcps in any order since the
Imcp tree 1s unique. We state the Hu—Tucker algorithm.

Hu-Tucker algorithm

1. Given the initial sequence of nodes v),t,,...,t, form n priority queues, onc for
each node; consisting of all nodes compatible to the given node.

2. Since all the nodes are compatible within a given priority queue the two smallest
nodes at the top of the queue will be the only candidates for being an Imcp.

To find an Imcp we can use a stack-based method. Beginning with the leftmost queue,
maintain a pointer to the current queue being considered. By checking neighbouring
nodes we can determine in constant time whether or not the current pair is an Imcp. If
it is so, we combine the two nodes and place the resulting node in the place previously
occupied by the leftmost node; otherwise move the pointer backward.

Combining two nodes will result in the merger of several queues. We must choose
a data structure for representing the queues so that they can be merged O(logn) time.
Leftist trees (see [86]) are useful for this purpose. After each Imcp combination updat-
ing the queue structure requires O(log n) time. Hence, forming the Imcp tree this way
takes O(nlogn) time. We simply record the level numbers of the nodes. The Imcp tree
obtained this way is proved to have the same cost as an optimal alphabetic tree but it
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need not be alphabetic because the leaves could have appeared in an order which is
not alphabetic.

3. From the Imcp tree, to construct the optimal alphabetic tree we require [141] only
linear-time. This requires only using the level numbers of the Imcp tree. This is done as
follows: When the level numbers 7y, /3,...,1, are known we scan the sequence of level
numbers from left to right and locate the leftmost maximum level number, say /;=gq.
Then [, =g also since the level sequence /1, /3,...,/, has the property that the max-
imum level numbers are always adjacent. We create the father of the pair with level ¢
and assign the father with the level ¢— 1. In other words, we replace the level sequence

117129"~>1i-19q7q’[f+2""7ln
by
l],lz,...,l,'_l,(q - 1),1[+2,...,1,,.

Then we repeat the same process of combining maximum-level adjacent pairs to the
level sequence of n — 1 numbers. Finally, we create the root with level zero.

The proof of correctness of the Hu—Tucker algorithm as given in the original paper
[68] is quite involved so we sketch the ideas used.

We note that the algorithm consists of two major steps

1. combining the Imcps to get the the Imcp tree,

2. constructing an alphabetic tree using the Imcp tree level numbers.

The algorithm must satisfy the conditions

1. The level numbers of the Imcp tree must be realisable by an alphabetic tree.

2. The lmcp tree must be optimum within a class of trees that includes all alphabetic
trees.

The crux of the proof is in proving the second condition.

We note the equivalence of the Hu-Tucker and Garsia—Wachs algorithms in Section
4.3 and look at the simple proof of correctness of the Garsia-Wachs algorithm as given
by Kingston [78]. This gives another proof of correctness of the Hu-Tucker algorithm.

4.2. The Garsia—Wachs algorithm

In the combination phase of the Hu-Tucker algorithm we successively combine
Imcps while the pair in consideration can be separated by many crossable nodes (nodes
obtained as a result of combinations). The Garsia—Wachs algorithm eliminates the
distinction between crossable and non-crossable nodes (nodes which have not resulted
due to a combination step) and arranges the weight sequence such that the Imcp is
always an adjacent pair. We note that in a sequence of non-crossable nodes an adjacent
pair (w;_1,w;) is a lmep if and only if w;_, >w; and w;_; <w,,. Before describing
the Garsia—Wachs algorithm we give a definition (see [78]).

Definition 1. A pair of leaves a;_|,%; is right minimal if
1. 1 <i<n,
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2.9 o+ %o =%+ and
3w+ <ay + oy for all j>i

Garsia—Wachs algorithm. The Garsia-Wachs algorithm also constructs initially a min-
imal tree Ty quite similar to that of Imcp tree of Hu-Tucker. Once this is done. the
levels of the % in Ty may be used to construct 7. an optimal alphabetic tree as we
described earlier.

To construct the minimal tree the following two steps are repeated (for #n — | times)
until only node remains.

l. Locate the rightmost right minimal pair of entries. Let that be o, 2.

2. Locate the first entry to the right of »; that is greater than or equal to %;_| +;. Let
that be o, ,,;. Then the new HSt IS oy, 2 Ziqae oo Ziaga (0t 2 0 Kk v o e Xy

4.2.1. Implementation

An O(nlogn) implementation of Garsia~Wachs algorithm was given by Garsia and
Wachs [43]. An algorithm requiring O(nlogn) comparisons is easily obtained. Given
Ay %z, . .. % we first find the biggest 7 such that o, 2+ 2, 2% + 2. Next we locate
the first «; with j > i such that #; > _; + o;, remove o;_;, % and insert o, + % just
before x; (or at the end if such an %; does not exist). We repeat the above steps on the
new list of numbers. The first step can take O(n) as it involves scanning through the
list to find the rightmost rightminimal pair. Since ;.. <x; for j=i-+1 to n, the second
step using binary insertion requires only O(logn) comparisons. Since the search for the
next rightminimal pair starts from where we left off, scan is O(n) time in total. Since
there are # — 1 steps requiring O(logn) comparisons, therefore O(xlogn) comparisons
are required for the whole algorithm. Garsta and Wachs [43] also describe an algorithm
due to Tarjan which requires only O(nlogn) time, including data moves and pointer
manipulations using balanced trees.

4.2.2. Proof of correctness

The proof of correctness of the Garsia—Wachs algorithm as given by its inventors is
complicated. A simpler proof was found much later by Kingston [78]. We sketch the
main results that led to Kingston’s proof.

Definition 2. If 7y,...,7; are binary trees, we denote by F(7y,...,T;) the set of all
trees with & leaves, but with those leaves replaced by T7y,...,7; from left to right. For
a fixed 7, we define 7, by a tree with one internal node having as left son; an external
node of weight %;,_,, as right son an external node of weight %, and define

F:F(;’X),...,xn),
F() = F(,xlv-'-ﬁ[xl‘vza Thfxl'-“]a"'exn)*

Fro= F(o, oo 02, By e ooy iy Dn Bkl v v s % )
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Definition 3. The level of any leaf %; is denoted by A;. The root of T, is a node 2,
of level h, (e =o;—1 + %;). The weight of TEF, Fp or Fy is

w(T) =73 ho (83)
i=1

and we define

w(S) = r})ex? w(T) (84)
for any set S of trees. A tree T €S is called minimal for § if w(T)=w(S).
Definition 4. Let U ¢ F(uy,...,0,) and ¥V € F(yy,...,y,). Let k; be the level of o in
U, and k; be the level of y; in ¥. U is a rearrangement of V (briefly U~V), if there
is a permutation (g1,...,0,) of (1,2,...,n) such that o, =7v,, ki=k, for 1<i<n,
Informally, a rearrangement merely moves leaves around within a tree, without alter-

ing their level. Consequently, “ ~ ” is an equivalence relation, and U = ¥V implies
w(U) = w(V).

The main theorem proved by Kingston [78] is the following:
Theorem 4.1. Let o;_y,u; be the rightmost rightminimal pair, and let k=0 be such
that
Yy <oy +oy Jor V<j<k and opp i Z 0 + %.

Then w(F)=w(Fy) and every minimal tree for F; has a rearrangement in F.
We now state the lemmas leading to the proof of this theorem.

Lemma 4.2, Suppose we have a sequence of at least three nodes t,, 0,1y, . .., % such
that

o1+ o <oy + o for a<j<b.
Then
hazhei 2 - Zhyy.

Lemma 4.3. If o1, % is the rightmost rightminimal pair, then h;zh. ... =h, in
every minimal tree.

Lemma 4.4. If %;_,0; is the rightmost rightminimal paiv, then h,_,=h; in some
minimal tree.

Lemma 4.5, Let o, be the first entry to the right of the rightmost rightminimal
pair oy, o such that %ypv 2oy + 4. Then in some minimal tree T for which
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h,-,] = h,‘, either
1. hiy =h; — 1; or
2. kivg =hi and 2,y is a right child,

Lemma 4.6. Let T be a minimal tree of F. Then there is a tree in Ty such that
w(T)sw(T).

Lemma 4.7. Let Ty be any minimal tree for Fy. Then w(Ty)=w(F), and if equality
holds, T, has a rearrangement in F.

The proof of all these lemmas simply involve rotating (once or twice) or permuting
nodes at some level of the minimal tree to obtain a tree satisfying the claim of the
lemma.

4.3. Proof of equivalence of the two algorithms

The Garsia-Wachs algorithm can be considered as a modification of the Hu-Tucker
algorithm. The main observation made by Garsia and Wachs is that crossable nodes may
be moved past smaller nodes, regardless of whether the latter are crossable or not. This
follows from the fact that the smaller nodes will combine and become crossable before
the moved crossable node will be involved in an Imcp. By moving the newly formed
nodes carefully, they make sure that all the lmcp combinations are between adjacent
nodes, and hence no information about crossability of nodes needs to be maintained.
Hence intuitively we would expect the Garsia—Wachs and the Hu-Tucker algorithms
to produce the same intermediate tree. Finding the Imcp is the major activity while
inserting the elements is not in the Hu-Tucker algorithm. However, in the Garsia—
Wachs algorithm adjacent nodes are compatible eventhough much time is spent in
inserting the elements. The equivalence of Garsia—Wachs and Hu-Tucker algorithms
proved formally, as given below is attributed by Hu [64] to Kuo. Consider the following
version of the Garsia—Wachs algorithm (see [64]) to construct the minimal tree.

Given a sequence of weights oy, %,...,0,:

1. Find the leftmost minimal adjacent pair, a;_, %,

2. Combine ;| and %; as a single node with weight o, = ;| + o;

3. Move «;, to the left, skipping over all nodes with weight less than or equal to
;5. Obtain the new working sequence of n — 1 nodes

Hlsonn s Wy Ly kg (e vy B2, Ojg g, ., %y, WheTE
& > Ajy ZMAX(Aig1,. .., 0 2). (85)

Repeat the process until we get only one node in the node sequence. This is the tree
which may be non-alphabetic but having the same cost as the optimal alphabetic tree on
the sequence of weights (a,...,%,). Having obtained the level numbers of a minimal
tree we can construct an optimal alphabetic tree as described earlier.
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The two algorithms will obtain the same tree after their completion as shown below.
Consider the following two sequences (A) and (B)

(A) o, 00,0, iy Oy O 155 %2, B4 1, .., &, Where all the nodes are noncrossable
nodes.
(B) o1, 0,y 0y 01,5 02, 0y, Xy 1, .., %, Where all the nodes are noncrossable

nodes except «;, which is a crossable node.

Note that (A) consists of »— 1 noncrossable nodes and is derived from a sequence of
n noncrossable nodes after one combination of Garsia~Wachs and (B) consists of #—2
non-crossable nodes and one crossable node and is derived from the same sequence
after one combination of Hu-Tucker. We will show that if we apply the Hu-Tucker
algorithm to both (A) and (B), they will give the same tree, i.e. all the combinations
will be identical. (If a node o, combines with a;, of (A), the same node o, will
combine with o, in (B)).

In fact, we can show that the tree constructed by any number of combinations of
Garsia—Wachs followed by Hu-Tucker will give the same Imcp tree as defined in the
Hu-Tucker algorithm.,

To show that (A) and (B) give the same tree 7, we can make three observations
about merging of the Imcp in the sequence (B).

1. In the subsequence of nodes ay,...,%, o 1,...,%—2 a node cannot be merged
before a node to its right is merged.

This is because a;_) + ; (= a;,) is the leftmost minimal adjacent pair.

2. When a;, is merged, ®;1,...,0;_2 have all been merged (or merged with o, ).
If this is not true, let o; be the rightmost node among o;,,...,2;_» which has not
been merged. From 1 all the nodes between o; and o, have been merged and o
is compatible to any node compatible to the crossable node ;. in (B) and o; <o*.
Hence a;, cannot form an Imcp with another node.

3. When an lmcp is between a node in ay,...,; and a node in & q,..., %, then o
has been merged.
Let the Imcp be (2, ,) where a, is either a node in «y,...,%; or a sum of at least
two nodes in 2y,...,a;. Since o = a;_; + o; is the leftmost minimal adjacent pair
A+ 0 >0 F o3> >0 (86)
therefore,
o >03 > 05> (87)
and
0y > olg > 0lg > - - - (88)

Thus one of the two adjacent nodes is larger than «;. Thus o, > a; = o;.. Let a, be the
right node. From 1 when «;, is merged all the nodes between o, and «;, have been
merged and o, = o, But a,>a; >aj,, this contradicts that (o, «,) is a lmcp, if oy
has not been merged.
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From the above three observations we can consider the sequences (A) and (B).
Before u;, in either is merged, from 3 the sequences (A) and (B) can do exactly the
same combinations since %;,...,%; are not involved and %, is a crossable node in (B).
From 2 when «;, is merged in (B), all the nodes between %; and 2;., are crossable
nodes. So the noncrossable node %;. in (A) and the crossable node o, in (B) are
compatible to the same set of nodes. After x;, is merged,the sequences (A} and (B)
result in the same node sequence.

4.4. Fast algorithms in special cases

4.4.1. When the input is a valley sequence
Consider a weight sequence wy,wy,...,w;_,w,....,w,, where

WS> Wy > > SW WL S Wy (89)

In other words, the weights are first decreasing and then increasing. Such a weight
sequence is called a valley sequence. As two special cases of a valley sequence, we
have

W > Wy > > Wy, (90)
wySwr < - Swy. (91)

The notion of valley sequence was defined by Hu [64], who obtained the following
results.

Lemma 4.8. If the weight sequence is a valley sequence, then the cost of the optimal
alphabetic tree is the same as the cost of the optimum tree without the alphabetic
constraint.

Proof. Assume that the weight sequence is a valley sequence as defined above and
the Imep is w;_y +w; (or w;—> +w;_;). Then w;_y,; is a crossable node and the next
minimum weight pair may be one of the following five pairs: w;_> 4wy, wj_3+w,;_,
Wil T W2y Wi T Wimtajs Wimlej F Wit

In any case the node constructed say wy 1s a crossable node. In general, let wy <wpg
< -+ <wg be crossable nodes created, while on the left we have wy > w2 > - > w; >
and on the right we have w;, | < --- <w,. Then the next Imcp (the only one) is one of
the following six pairs: w;_, +wj\, W_3+W, 2, Wiy + W2, Wj_2 +Wa, Wa +W,_1,
Wwa + Wg.

So the next crossable node created, wy is again compatible with all the crossable
nodes created so far. In other words, the minimum weight compatible pair is always
the minimum weight pair. Hence the cost of the optimal alphabetic tree is the same as
Huffman’s tree. [

Lemma 4.9. We can construct an optimal alphabetic tree for a valley sequence in
O(n) time.
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Proof. The proof is due to the result in Section 3.3. [

4.4.2. When the weights are within a factor of two

Klawe and Mumey [80, 116] introduce a new technique for finding optimal alphabetic
trees. The input weights w; are first classified according to their order of magnitude,
base 2. They define a category of a node of weight w to be |lg(w)|. A maximal
length sequence in the worklist of weights with the same category is called a region.
By keeping a stack of regions and considering only regions whose adjacent regions
have a higher category, we can restrict most of our attention to the pairings occurring
within these regions. They call this as region-processing. Their idea is motivated by
the situation when the input weights are within a factor of two. In this case the optimal
alphabetic tree is the same as Huffman’s tree. Hence they use the result we described
in Section 3.3.

Theorem 4.10. There is a linear-time algorithm for finding an optimal alphabetic tree
on a sequence of input weights which differ at most by a factor of two.

Proof. 1. Initialise the worklist to contain the original input sequence. Note that all
the nodes are noncrossable.

2. Use a stack-based method to find Imcps and pair them off, removing each pair
of nodes from the worklist and placing the parent in a temporary list but not in the
worklist. These newly formed nodes are to be left out of the worklist because their
weights are greater than the weight of any of the original weights and hence need
not be considered in the search for lImcps. This process continues until there are zero
or one nodes left in the worklist the stack-based algorithm requires only O(n) time
because of the absence of crossable nodes in the worklist. If a single node x remains
(n is odd) scan through the temporary list of newly formed crossable nodes to find the
smallest node y. Pair x with y and replace y in the temporary list by its parent.

3. At this stage we have m = [n/2] crossable nodes in the temporary list. Moreover,
the new nodes are still within a factor of two, by the same argument as in the proof
of the Theorem 3.4. Now as all the nodes are crossable, the optimal alphabetic tree is
the same as Huffman tree for these nodes. As the weights are again within a factor of
two we can find the Imcp tree for these weights in O(n) time using the algorithm of
Section 4.1. O

4.4.3. When the weights are exponentially separated
Klawe and Mumey [80, 116] define an input weight sequence wy,wy,...,w, to be
exponentially separated if there exists a constant C such that for all n,

[{i: [lgw;]1 =k}| < C forall keZ

They also give an O(n) algorithm for constructing an optimal alphabetic tree when the
input weights are exponentially separated. They use their idea of region processing for
this purpose. They observe that there are at most 2C nodes in any region processed.
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They also show that every region of size r can be processed in O(r) time and use
their region processing method to construct the Imep tree in O(n) time. Given the level
numbers of the leaves of the Imep tree we can construct an optimal alphabetic tree in
O(n) time as described in Section 4.1,

4.4.4. When the input weights are small integers

Recently, Larmore et al. [98] have obtained an Ofn \/@) algorithm for the opti-
mal alphabetic binary tree problem when the input weights are integers in the range
[0,n%1]. They also give an O(nlogk) time algorithm for the general optimal alpha-
betic binary tree problem where the parameter & is bounded by the number of local
minima in the input sequence.

4.5. Lower bound for constructing Imcp trees

It has been shown by Klawe and Mumey [80, 116] that constructing the intermediate
Imcp tree produced by the Hu-Tucker-based algorithms in any model of computation
is at least as hard as sorting in that model. Given an unsorted list of » numbers we
can transform the problem of sorting the list into a problem of constructing a tree in
O(n) time. They show that from the information recorded in the structure of the tree
produced we can compute the sorted order of numbers in O(n} time. This gives an
Q(nlogn) lower bound for constructing the Imcp tree in the comparison model. The
following lemma is used by them.

Lemma 4.11. Let xy,x3,...,x, be distinct real numbers drawn from [2.4). Let v =
%x[,-;z} + 1, for i=1 to 2n If (y1,...,va) is given as input to any lmcp finding
algorithm, the set of the first n Imcps found, disregarding order, will be {(vy, v2).
(V35 ¥4)s o s (V2n—1. Yau )}

Their result is
Theorem 4.12. Sorting can be reduced to finding the Imep tree in O(n) time.

Proof. Assume n is even, Let x,,...,x, be drawn from [2,4). Define the y; as above
and consider the behaviour of some Imcp combining algorithm on the input sequence
¥i,..., V2n. According to the previous lemma, after » Imcps have been combined there
will be n nodes present in the node list. They will have weights xi,...,x,. Since these
nodes are all crossable, there will be only one Imcp present, the smallest pair of nodes
in {xy,...,x,}. This pair will combine to form a new node having a weight of at least
4. The next Imcp will be the second smallest pair of nodes from {x;,...,x,} and so on.
Hence, the next #/2 Imeps found after the first # Imcp combinations have occurred sort
{x1,...,x,} by pairs (only consecutive pairs may need to be switched in order for the
list to be totally sorted). This information can be easily recovered from an lmcp tree
produced by any method of searching it depth-first, always searching the least weight
subtree first. We will encounter the nodes corresponding to {xi,....x,} in fully sorted
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order (a node with weight x; will be the parent of leaf nodes with weights y,;_; and
;). Hence, we can reduce sorting to find the Imcp tree in O(n) time. [J

4.6. Verifving optimal alphabetic trees

We mentioned in the last section that Huffman trees can be verified in O(n) time.
We noted that the best-known algorithms for constructing optimal alphabetic trees run
in O(nlogn) time while we have only a 2(n) lower bound for this problem in the
decision tree model. It is will be interesting to see whether we can close the gap
between the lower bound and the upper bound. In this direction we note that if we are
able to construct an optimal binary search tree on a given set of keys, then we can test
whether a given binary search tree for that set of keys is optimal, simply by comparing
their costs. An appropriate traversal of the tree can be used to compute the costs in
O(n) time. Therefore, the problem of testing the optimality of a binary search tree
is linear-time transformable to the problem of constructing an optimal binary search
tree. Thus, a lower bound for the former is also a lower bound for the latter. Some
conditions on the weights, for a given alphabetic tree, to be optimal have been obtained
by Ramanan [137]. He shows that the optimality of very skewed trees (trees in which
the number of nodes in any level is bounded by some constant) can be tested in linear
time. He also shows that the optimality of well-balanced trees (trees in which the levels
of any two leaves is bounded by some constant) can also be tested in linear time. He
also considers a class of trees that is neither skewed nor well balanced and discusses
the difficulty involved in testing its optimality in linear time.

4.7. Other results

The known heuristics for constructing nearly optimal binary search trees can be used
for constructing nearly optimal alphabetic trees as the optimal alphabetic tree problem
is a special case of the optimal binary search tree problem [110, 111, 129, 162]. These
heuristics except Larmore’s (Larmore’s offers a tradeoff between speed and accuracy,
as mentioned earlier, by spending O(n'®) time it produces a binary search tree whose
weighted path length differs from the optimal by o(1)) produce trees which are within
an additive factor of about two from the optimal; however, the small additive factor
does not ensure a low multiplicative factor when the cost of the optimal alphabetic
tree is very small. Levcopoulos et al. [102] show that for an arbitrarily small, positive
real number &, they can construct an O(#) heuristic yielding an alphabetic tree whose
cost is within a factor of (1 + ¢) from the optimum.

5. Conclusions and directions for further research

We have looked at algorithms for optimal binary search trees, optimal alphabetic
trees and Huffman trees. The best-known algorithm for the general optimal binary
search tree problem is Knuth’s O(n?) time algorithm. For the general optimal alphabetic
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tree problem, the best-known algorithms are the Garsia—Wachs and the Hu-Tucker
algorithms which have a time complexity of O(rlog ). Huffman’s O(nlog#n) algorithm
to construct Huffman trees is optimal for the decision tree model. There are many
aspects of optimal binary search trees and their variants for which we would like to
obtain answers. We discuss some of the open problems in this area.

5.1. Optimal binary search trees

1. Is there any o(n?) time algorithm for the optimal binary search tree problem?
We have looked at Larmore’s subquadratic time algorithm for constructing an optimal
binary search tree, if there is no long sublist of low-frequency elements. It makes
use of subtree weight ratios of the optimal binary search trees. It may be the case
that we can use some other properties of optimal binary search trees to obtain a
subquadratic time algorithm for the general case. It may also be possible to improve
Knuth’s quadratic time dynamic programming algorithm. We should also note the recent
result of Karpinski et al. [74] in this direction.

2. Is there any o(n®) space algorithm for the optimal binary search tree problem?
We can find an optimal binary search tree using linear space and exponential time
by generating all possible binary search trees [141]. If we can avoid generating many
of these binary search trees by using properties of the optimal binary search trees
like monotonicity, subtree weight ratios, we might be able to get a subexponential
algorithm using O(n) space. Perhaps we can get an o(n?) space algorithm by keeping
only o(n?) entries of the P;; we compute in the dynamic programming algorithm. We
can recompute from scratch the P;;’s we don’t remember. It will be worth exploring
whether such a technique would result in an o(n?) space, polynomial-time algorithm.

3. Does there exist a subquadratic algorithm for verifying the optimality of a binary
search tree?

We do know that the monotonicity of roots and the subtree weight ratio conditions
are necessary for a given binary search tree to be optimal. These conditions can be
verified in O(n) time. It is worth exploring other necessary and sufficient conditions
that enable us to verify in o(sn?) time whether a given binary search tree is optimal. An
answer to this question will enable us to know whether we can close the gap between
constructing an optimal binary search tree and testing its optimality. We must also take
a note of the recent result of Karpinski et al. [74] as mentioned before.

4. Do the algorithms and properties of optimal binary search trees extend to optimal
multiway search trees?

5.2. Optimal alphabetic trees

1. Can we construct optimal alphabetic trees in o(nlogn) time?

Existing O(nlogn) algorithms construct first an lmcp tree. The lower bound result
of Klawe and Mumey for Imcp trees says that any algorithm for constructing an Imcp
tree will take (¥(nlogn) time. Hence, we must follow a different approach to obtain



38 S.V. Nagaraj] Theoretical Computer Science 188 (1997) 1-44

an o(nlogn) algorithm. It is also possible that there is an (X(nlogn) lower bound for
constructing optimal alphabetic trees.

2. Can we verify the optimality of alphabetic trees in linear time?

Ramanan [137] has given some necessary and sufficient conditions for the optimality
of an alphabetic tree. These conditions are verifiable in O(#n) time for some special
cases. Some of the properties of optimal alphabetic trees proved enroute to the proof of
correctness of Garsia—Wachs algorithm for constructing optimal alphabetic trees may
be noted along with Ramanan’s conditions.

3. Does there exist algorithms similar to the Hu-Tucker or the Garsia~Wachs algo-
rithms for the optimal ternary tree problem?

For the binary case we combine lmcp pairs of nodes, therefore we may attempt
to combine triples of nodes. However, Hu [64] has observed that combining Imcp
triples does not give an optimal ternary tree. It may be the case that the Garsia—Wachs
algorithm may generalise, though both the algorithms are equivalent in the binary case.

5.3. Huffman trees

1. Is there an o(nlogn) algorithm for constructing Huffman trees in a model where
we are allowed to compute the floor’s and ceiling’s of numbers?
We have an ((nlogn) lower bound on the time required for constructing Huffman
trees in the decision tree model. It is possible that we can construct Huffman trees in
o(nlogn) time in models where we are allowed to compute the floor’s and ceilings of
numbers. In fact, the O(n) algorithms for the special case when the weights are within
a factor of two do compute floor’s and ceiling’s.

2. Dynamic Huffman codes

Knuth [87] gives an O(/) algorithm to increase or decrease the weight of a node at a
level ! of a Huffman tree by 1. This immediately gives an O(/w) algorithm to increase
or decrease the weight of a node at level / by w. To insert or delete a node of weight
w, this gives an O(Lw) algorithm where L is the maximum level of the tree. But his
result uses the fact that the tree is produced by Huffman’s algorithm. It is useful to
see whether this result can be extended for any optimal extended binary tree. Perhaps
the necessary and sufficient conditions we used for Huffman trees may be useful here.

The reader may consult the references for several other interesting problems related
to binary search trees.
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