
Advanced Analysis of Algorithms - Homework II

K. Subramani
LCSEE,

West Virginia University,
Morgantown, WV

{ksmani@csee.wvu.edu}

1 Instructions
1. The homework is due on October 13, in class.

2. Each question is worth 4 points.

3. Attempt as many problems as you can. You will be given partial credit, as per the policy discussed in class.

2 Problems
1. Mathematics for Analysis

(a) Let X and Y denote two non-negative random variables.

i. Show that E[max(X,Y)] ≤ E[X] + E[Y].
ii. Assume that X can only assume the values 0 and 1. Prove that Var[X] = E[X] ·E[1−X].

(b) Solve the following recurrences:

i. T (n) = T (
√
n) + 1.

ii. T (n) = T (n
3) + T (2·n

3) + Θ(n).

In both cases, you may assume some constant value for T (1).

2. Divide and Conquer:

(a) Professor Krustowski claims to have discovered a new sorting algorithm. Given an array A of n numbers, his
algorithm breaks the array into 3 equal parts of size n

3 , viz., the first third, the middle third and the bottom third.
It then recursively sorts the first two-thirds of the array, the bottom two-thirds of the array and finally the first
two-thirds of the array again. Using mathematical induction, prove that the Professor has indeed discovered a
correct sorting algorithm. You may assume the following: The input size n is a power of 3. Additionally, the
algorithm sorts by brute-force, when n is exactly 3. Formulate a recurrence relation to describe the complexity
of Professor Krustowski’s algorithm and obtain tight asymptotic bounds.

(b) Design a divide-and-conquer algorithm to find the second smallest element in an unsorted array A[1 · ·n]. Your
algorithm should make at most (n + dlog ne) element to element comparisons.

3. Randomization:

(a) Let A1, A2, . . . , An denote a set of events. Argue that:

Pr∩ni=1Ai = Pr(A1) ·Pr(A2|A1) ·Pr(A3|A1 ∩A2) . . .Pr(An| ∩n−1i=1 Ai).

1

(b) Devise a Divide-and-Conquer procedure for computing the kth smallest element in an array of n integers.
Analyze the asymptotic time complexity of your algorithm. (Hint: Use the Partition procedure discussed in
class.) Your algorithm can be deterministic or randomized. For maximum points, your algorithm should run in
O(n) time.

4. Greedy:

(a) In the fractional knapsack problem, you are given n objects O = {o1, o2, . . . , on} with respective profits P =
{p1, p2, . . . , pn} and weights W = {w1, w2, . . . wn}. The goal is to pack these objects into a knapsack of
capacity M , while maximizing the profit of the items in the knapsack. You are permitted to choose any fraction
xi of object oi, i.e., 0 ≤ xi ≤ 1. Design a greedy algorithm for this problem. Provide a proof of correctness of
your algorithm and analyze its running time.

(b) In class, we discussed the coin-changing problem, where you required to make change for a target value using
the fewest number of coins. Assume that the available coins are in the denominations ci, i = 1, 2, . . . , k for
some c > 1 and some fixed k ≥ 1. Argue that the greedy algorithm provides the optimal solution in this case.

5. Dynamic Programming:

(a) In class we discussed the rod-cutting problem and I proposed a dynamic programming based solution. Maryam
wanted to solve the problem in top-down fashion. I derived the following equation for the number of callas to
CUT-ROD, if we followed Maryam’s suggestion:

T (0) = 1

T (n) = 1 +

n−i∑
j=0

T (j)

Find a closed form solution for T (n). Now consider a modification of the rod-cutting problem where there is
a fixed charge of c, each time you cut the rod. That is the revenue associated with a solution is the sum of the
prices of the individual pieces minus the costs of making the cuts. How would you modify the dynamic program
discussed in class to satisfy this additional constraint?

(b) Assume that you are given a collection A = {a1, a2, . . . , an} of n positive integers that add up to N . Design an
algorithm to check if there exists a set B ⊂ A, such that

∑
ai∈B ai =

∑
ai∈A−B ai? Argue the correctness of

your algorithm and analyze its running time.

2

	Instructions
	Problems

