Advanced Analysis of Algorithms - Homework III

K. Subramani LCSEE, West Virginia University, Morgantown, WV {ksmani@csee.wvu.edu}

1 Instructions

- 1. The homework is due on November 7.
- 2. Each question is worth 4 points.
- 3. Attempt as many problems as you can. You will be given partial credit, as per the policy discussed in class.

2 Problems

1. Greedy Algorithms

A matroid is an ordered pair M = (S, I) satisfying the following conditions:

- (a) S is a finite set.
- (b) I is a non-empty family of subsets of S, called the independent subsets of S, such that if B ∈ I and A ⊆ B, then A ∈ I.
- (c) If $A, B \in I$ and |A| < |B|, then there exists an element $x \in B A$, such that $A \cup \{x\} \in I$.

Matroids exhibit the greedy choice property.

- (a) Let M = (S, I) be a matroid. Argue that (S, I_k) is a matroid, where I_k is the set of all subsets of S of size at most k, where $k \leq |S|$.
- (b) Show that if (S, I) is a matroid, then so is (S, I'), where,

 $I' = \{A' : S - A' \text{ contains some maximal } A \in I\}$

(c) Let T denote an $m \times n$ matrix with entries in the set \Re (real numbers). Let S denote the set of columns of T. A set $A \subseteq S$ belongs to I, if and only if the columns in A are linearly independent. Argue that (S, I) is a matroid.

2. Dynamic Programming

- (a) In class, we discussed a table-filling algorithm for the matrix chain multiplication problem. We also showed that this algorithm runs in $O(n^3)$ time, where n is the number of matrices in the chain. Argue that the algorithm runs in $\Theta(n^3)$ time.
- (b) Suppose that we are given a directed acyclic graph $\mathbf{G} = \langle V, E \rangle$ with real-valued edge weights and two distinguished vertices s and t. Describe a dynamic programming approach for finding a longest weighted simple path from s to t. Establish the correctness of your algorithm and give an asymptotic bound on its running time.

3. Numerical problems

(a) Compute the product of the two matrices below, using Strassen's matrix multiplication algorithm.

$$\mathbf{X} = \begin{pmatrix} 9 & 3\\ 2 & -1 \end{pmatrix}, \quad \mathbf{Y} = \begin{pmatrix} 1 & 2\\ 2 & -1 \end{pmatrix}$$

(b) Compute the optimal parenthesization of the following matrix chain: $\langle A_{10\times 15} \cdot B_{15\times 9} \cdot C_{9\times 7} \cdot D_{7\times 10} \rangle$.

In both problems, you are required to show all the intermediate steps (and tables, if necessary).

4. Amortized Analysis

- (a) Assuming that a DECREMENT() operation is added to the binary counter example discussed in class. What is the cost of a sequence of n operations?
- (b) Assume that we have a potential function Φ , such that $\Phi(D_0) \neq 0$, but that $\Phi(D_i) \geq \Phi(D_0, \text{ for all } i \geq 1$. Argue that there exists a potential function Φ' , such that

i.
$$\Phi'(D_i \ge 0, \forall i \ge 1)$$

- ii. $\Phi'(D_0) = 0.$
- iii. The amortized costs under Φ' are the same as the amortized costs under Φ .
- (c) In class, we discussed a strategy for dynamic table insertion and deletion, where the load of the table is always between $\frac{1}{4}$ and 1. Consider the following strategy for table contraction: Shrink the table to $\frac{2}{3}^{rd}$ its size, when the load drops below $\frac{1}{3}$. Argue that the amortized cost of deleting an item from this table is bounded above by a constant.

5. Linear Programming

- (a) Solve the following problems using the Simplex procedure:
 - i.

$$\min z = 4 \cdot x_1 + 3 \cdot x_2$$

subject to
$$-x_1 + x_2 \leq 6$$
$$2 \cdot x_1 + x_2 \leq 20$$
$$x_1 + x_2 \leq 12$$
$$x_1, x_2 \geq 0$$

ii.

$$\max z = 2 \cdot x_1 + x_2$$

subject to
$$x_1 - x_2 \geq 8$$
$$2 \cdot x_1 + 3 \cdot x_2 \leq 24$$
$$2 \cdot x_1 + x_2 \leq 12$$
$$x_1, x_2 \geq 0$$

For each problem, identify the basis matrix B, the basic variables and the non-basic variables in each iteration.

(b) Let L denote the linear system A ⋅ x ≤ b, x ≥ 0, where A has dimensions m × n and b has dimensions m × 1.
Prove that either L is non-empty or (mutually exclusively) ∃y ∈ ℜ^m₊ y ⋅ A ≥ 0, y ⋅ b < 0.