Advanced Analysis of Algorithms - Homework IV

K. Subramani LCSEE, West Virginia University, Morgantown, WV {ksmani@csee.wvu.edu}

1 Instructions

- 1. The homework is due on December 6, in class.
- 2. Each question is worth 4 points.
- 3. Attempt as many problems as you can. You will be given partial credit, as per the policy discussed in class.

2 Problems

- (a) Let S denote a non-empty convex set of the space Eⁿ. A point u ∈ S is called an extreme point of S, if it cannot be written as a strict convex combination of two other points in S. In other words, there do not exist points r, t ∈ S, such that u = α ⋅ r + (1 − α) ⋅ t, where 0 < α < 1. Show that u is an extreme point of S, if and only if the set S − {u} is a convex set.
 - (b) Let S_1, S_2, \ldots, S_n denote *n* convex sets. Is the set $S' = \bigcup_{i=1}^n S_i$ convex? How about the set $S'' = \bigcap_{i=1}^n S_i$? An assertion of convexity requires a formal proof; an assertion of non-convexity requires a counterexample.
- 2. Consider a directed acylic graph $\mathbf{G} = \langle \mathbf{V}, \mathbf{E}, \mathbf{c} \rangle$. The function $\mathbf{c} : \mathbf{E} \to \mathcal{Z}_+$ associates a positive integer with edge $e_{ij} \in \mathbf{E}$ and it represents the capacity of that edge. Let $s, t \in \mathbf{V}$ denote two special vertices known as the *source vertex* and the *destination vertex* respectively. A product which is stored at *s* must be shipped to *t*, along the edges of the network. How would you determine the maximum amount of product that can be shipped from *s* to *t*, under the following assumptions:
 - (a) the amount of commodity on an edge of the network may never exceed the capacity of that edge,
 - (b) no vertex other than s and t may store the product.,
 - (c) the shipping is lossless, i.e., there is no loss in the transportation.
- 3. The Branch-And-Bound enumeration technique solves integer programs by solving linear programs. A very nice exposition is available here:

http://compalg.inf.elte.hu/~tony/Oktatas/SecondExpert/Chapter24-Branch-6April.
pdf.

Essentially, we use the linear programming relaxations to find good bounds, which permits the pruning of the search

tree. Solve the following integer program using Branch-And-Bound enumeration:

$\max z$	$= -x_1 + 4x_2$	
$\operatorname{subject}$ to		
$-10 \cdot x_1 + 20 \cdot x_2$	\leq	22
$5 \cdot x_1 + 10 \cdot x_2$	\leq	49
$8 \cdot x_1 - x_2$	\leq	36
x_1, x_2, x_3, x_4	\geq	0
	x_1, x_2, x_3, x_4 integer	

To solve this problem, you do need to know how to solve 2-dimensional linear programs. This can be done either graphically or through the SIMPLEX algorithm.

- 4. The Maximum Independent Subset (MIS) problem is defined as follows: Given an undirected graph $\mathbf{G} = \langle V, E \rangle$ and a target K, is there a set V' of vertices, such that $V' \subseteq V$, $|V'| \ge K$ and two vertices in V' are connected by an edge in G. In class, we mentioned the fact that the MIS problem is is **NP-complete**. What can you say about the complexity of the problem, if the graph has no cycles? If you claim that the problem is in **P**, then you should provide a polynomial time algorithm. On the other hand, if claim that the problem is **NP-complete**, then you must provide a reduction from an **NP-hard** problem to the MIS problem on trees.
- 5. (a) Let $S = \{a_1, a_2, \dots, a_n\}$ denote a finite set. Let C denote a collection of m subsets of S, i.e., $C = \{S_1, S_2, \dots, S_m\}$, where each $S_i \subseteq S$. We are interested in the following question: Is there a collection of subsets from C, such that the union of the sets in this collection is S and the cardinality of the collection is at most K? Is this query **NP-complete**?
 - (b) Let $S = \{a_1, a_2, \ldots, a_n\}$ denote a finite set. Let C denote a collection of m subsets of S, i.e., $C = \{S_1, S_2, \ldots, S_m\}$, where each $S_i \subseteq S$. We are interested in the following problem: Is there a partition of S into two subsets R and T, such that no set in C is completely contained in either R or T? Prove that this problem is **NP-complete**.