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Problems of Chapter 1

1.1 Battle of the Bismarck Sea
(a) See the following diagram, with payoffs: Imamura,Kenney.
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(b) Diagram as in (a) but without the dashed line. Backward induction: after
S Kenney chooses S, and after N Kenny chooses N . Therefore, Imamura
chooses N , which is followed by N of Kenney.
(c) See the following diagram, with payoffs: Kenney,Imamura.
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Backward induction: after S Imamura chooses N and after N Imamura
chooses S or N . Hence, Kenney chooses N .
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1.2 Variant of Matching Pennies
If x = −1 then there are saddlepoints at i = j = 1 and at i = 2, j = 1. If
x < −1 then there is a saddlepoint at i = 2, j = 1. If x > −1 then there is no
saddlepoint.

1.3 Mixed Strategies
(a) The maximum in the first column is 3, but this is not minimal in its row.
The maximum in the second column is 4, but this is not minimal in its row
either.
(b) With probability p on T and 1−p on B, we should have that the expected
payoff to player 1 is independent of whether player 2 plays L or R, hence
3p+(1−p) = 2p+4(1−p), hence p = 3/4, so the mixed strategy is (3/4, 1/4).
(c) Analogous to (b): if player 2 plays L with probability q, then we must
have 3q + 2(1 − q) = q + 4(1 − q), hence (q, 1 − q) = (1/2, 1/2).
(d) By playing (3/4, 1/4) player 1 obtains 10/4 = 2.5 for sure (independent of
what player 2 does). Similarly, by playing (1/2, 1/2), player 2 is sure to pay
2.5. So 2.5 is the value of this game. Given a rational opponent, no player can
hope to do better by playing differently.

1.4 Sequential Cournot

1
u

q1 ≥ 0 2
u

q2 ≥ 0
u q1(2 − 3q1 − 3q2), q2(2 − 3q1 − 3q2)

(a) See picture. (b) Given q1 ≥ 0, player 2’s best reply (profit maximizing
quantity) is obtained by maximizing q2(2−3q1−3q2) with respect to q2, which
yields q2 = 1/3−(1/2)q1. Hence, player 1 maximizes q1(2−3q1−1+(3/2)q1) =
q1(1− (3/2)q1), which yields q1 = 1/3 and, thus, q2 = 1/3− (1/2)(1/3) = 1/6.

1.5 Three Cooperating Cities
(a) The vector of contributions according to the ordering 1,2,3 is (0, 90, 130).
For the ordering 1,3,2, it is (v({1}), v(N) − v({1, 3}), v({1, 3}) − v({1})) =
(0, 120, 100). Similarly, for 2,1,3 we obtain (90, 0, 130), for 2,3,1 it is (100, 0, 120),
for 3,1,2 it is (100, 120, 0), and for 3,2,1 it is (100, 120, 0). The average of these
six vectors is (65, 75, 80), which is indeed the Shaply value as given in the
text. Observe that 65, 75, 80 ≥ 0, 65 + 75 ≥ 90, 65 + 80 ≥ 100, 75 + 80 ≥ 120,
and 65 + 75 + 80 = 220. So the Shapley value is in the core of the game.
(b) The argument for the nucleolus (562

3 , 76 2
3 , 86 2

3 ) is analogous.

1.6 Glove Game
(a) If (x1, x2, x3) is in the core of the glove game, then x1 + x3 ≥ 1. Since
x1 + x2 + x3 = 1 and all coordinates are nonnegative, we have x2 = 0. In
the same way we derive x1 = 0. Hence x3 = 1, so that (x1, x2, x3) = (0, 0, 1).
Indeed, (0, 0, 1) is in the core of the glove game, so that it is the unique vector
in the core of this game.
(b) Since the Shapley value is (1/6, 1/6, 4/6) (can be computed similarly as
in Problem 1.5), it follows from (a) that the Shapley value of this game is not
in the core.
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1.7 Dentist Appointments
(a) A vector (x1, x2, x3) is in the core of the dentist game if and only if the
following constraints are satisfied: x1 ≥ 2, x2 ≥ 5, x3 ≥ 4, x1 + x2 ≥ 14,
x1 + x3 ≥ 18, x2 + x3 ≥ 9, x1 + x2 + x3 = 24. By making a picture it can be
seen that the core is the convex hull of the vectors (15, 5, 4), (14, 6, 4), (8, 6, 10),
and (9, 5, 10), i.e., the quadrangle with these vectors as vertices, plus its inside
(cf. Chap. 9). The Shapley value (91

2 , 6
1
2 , 8) is not in the core of this game:

9 1
2 + 8 = 171

2 < 18. The Shapley value can be computed as in Problem 1.5.
The vectors associated with the orderings 1,2,3; 1,3,2; 2,1,3; 2,3,1; 3,1,2; and
3,2,1, are now respectively: (2, 12, 10), (2, 6, 16), (9, 5, 10), (15, 5, 4), (14, 6, 4),
and (15, 5, 4). Taking the average yields (91

2 , 6
1
2 , 8).

(b) The nucleolus (111
2 , 5

1
2 , 7) is in the core of the game, as follows easily by

checking the core constraints.

1.8 Nash Bargaining
(a) The problem to solve is max0≤α≤1 α

√
1 − α. Obviously, the solution must

be interior: 0 < α < 1. The first derivative is
√

1 − α − α/(2
√

1 − α), and
setting this equal to 0 yields

√
1 − α− α

2
√

1 − α
= 0

hence (multiply by 2
√

1 − α)

2(1 − α) − α = 0

hence α = 2/3. The second derivative is

−1/(2
√

1 − α) −
(
2
√

1 − α+ α/(
√

1 − α)
)
/4(1 − α) ,

which is negative. So we have a maximum indeed.
(b) The problem to solve is now max0≤α≤1(2α−α2)(1−α). The derivative of
this function is 3α2 − 6α+ 2, which is equal to zero for α = 1− (1/3)

√
3 (the

other root is larger than 1). At this value, the second derivative is negative.
So the Nash bargaining solution in terms of utilities is (2/3, (1/3)

√
3), and in

terms of distribution of the good it is (1 − (1/3)
√

3, (1/3)
√

3).

1.9 Variant of Glove Game
v(S) = min{|S ∩L|, |S ∩R|}, where L is the set of left-hand players and R is
the set of right-hand players. In words: a coalition S can make a number of
glove pairs equal to the minimum of the numbers of left-hand and right-hand
gloves its members possess.

Problems of Chapter 2

2.1 Solving Matrix Games
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(a) The optimal strategies are (5/11, 6/11) for player 1 and (5/11, 6/11) for
player 2. The value of the game is 30/11. In the original game the optimal
strategies are (5/11, 6/11, 0) for player 1 and (5/11, 6/11, 0) for player 2.
(b) Columns 1 and 4 are strictly dominated by column 3. After deletion of
these columns we are left with the game




−1 0
0 0
0 −1


 .

For an arbitrary strategy q = (q, 1 − q) the payoffs to player 1 of the three
rows are given by

e1Aq = −q
e2Aq = 0

e3Aq = q − 1 .

By making a diagram with 0 ≤ q ≤ 1 on the horizontal axis, we see that the
maximum payments that player 2 has to make are equal to 0 for any value
of q. Hence, any (q, 1 − q) is a minimax strategy for player 2 in this game,
and the value of the game is 0. For player 1, putting any probability on the
first row or the third row guarantees less than 0. Hence, the unique maximin
strategy is (0, 1, 0). The minimax strategies in the original game are equal to
(0, q, 1 − q, 0) for any 0 ≤ q ≤ 1.

Alternatively, one can start with observing that the game has two saddle-
points, namely (2, 2) and (2, 3). So the value is 0. After eliminating columns
1 and 4 it is then straightforward to determine the maximin and minimax
strategies: for player 1, only the second row guarantees a payoff of 0, whereas
for player 2 both remaining columns (and mixtures) guarantee a payment of
at most 0.
(c) In this game the second column is strictly dominated by the third one.
Solving the remaining game as in (b) yields: the value of the game is 1,
the unique minimax strategy is (1/2, 0, 1/2), and the maximin strategies are:
(p, (1 − p)/2, (1 − p)/2) for 0 ≤ p ≤ 1.
(d) In this game the last two rows are strictly dominated by the mixed strategy
that puts probability 1/2 on each of the first two rows. The remaining 2 × 3-
game can be solved by plotting the payoffs from the three columns as functions
of 0 ≤ p ≤ 1, where p is the probability put by player 1 on the first row. The
three lines in the resulting diagram all cross through the point (1/2, 9). This
is also the highest point of the lower envelope, so that the value of the game is
9 and player 1’s maximin strategy is (1/2, 1/2, 0, 0) (expressed in the original
game). The minimax strategies are all (q1, q2, q3) that give an expected payoff
of 9. Hence, they are all solutions of the system: 16q1 + 12q2 + 2q3 = 9,
2q1 + 6q2 + 16q3 = 9, q1 + q2 + q3 = 1, q1, q2, q3 ≥ 0. This results in the set
{(α, (7 − 14α)/10, (3 + 4α)/10) ∈ R3 | 0 ≤ α ≤ 1/2}.
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(e) In this game the first column is strictly dominated by (e.g.) putting prob-
ability 9/20 on the second column and 11/20 on the third column. The re-
maining game, consisting of the last three columns, is a 2 × 3 game. This
game can be solved graphically. The value is 8/5. The unique maximin strat-
egy is (2/5, 3/5) and the unique minimax strategy (in the original game) is
(0, 4/5, 1/5, 0).
(f) In this game the first row is strictly dominated by the third row, and
the first column by the second column. The remaining 2 × 2 game can be
solved graphically. As an alternative, observe that player 2 would possibly
put positive probability on the second column in the remaining game only if
player 1 plays the first row in that game with probability 1; however, player 1
would not do that if player 2 puts probability on the second column. Hence,
player 2 plays the first column in the remaining game with probability 1, and
player 1 can play any strategy in this game. Consequently, in the original
game the value is equal to 1, player 2 has a unique minimax strategy namely
(0, 1, 0), and the set of maximin strategies is {(0, p, 1 − p) | 0 ≤ p ≤ 1}.
2.2 Saddlepoints
(a) By the definition of a saddlepoint, akl ≥ ail ≥ aij ≥ akj ≥ akl. Hence, all
inequalities must be equalities, so akl = aij .
(b) First, a11 ≤ a14 ≤ a44. Since, by (a), a11 = a44 it follows that a14 = a11 =
a44. But then a14 is also minimal in its row and maximal in its column, hence
there is a saddlepoint at (1, 4). In the same way one shows that there is a
saddlepoint at (4, 1).
(c) In light of (b) these saddlepoints have to be in the same row or in the
same column. E.g., take a 4 × 4-matrix A with a11 = a12 = a13 = 1, a14 = 2,
and aij = 0 otherwise.

2.3 Maximin Rows and Minimax Columns
(a) The maximin row is the second row; the first and second columns are
minimax columns. From this we can conclude that the value of the game
must be between 1 and 3, i.e., 1 ≤ v(A) ≤ 3.
(b) All payoffs in the second column are larger than 12

7 , the value of the
game. This implies that in a minimax strategy with positive probability on the
second column, the combination of the first and third column must guarantee
a payment below 12

7 , but then player 2 would be better off transferring the
probability put on the second column to the other columns. (Alternatively,
the second column is strictly dominated by for instance 7/12 times the first
column plus 5/12 times the third column.)
(c) The game can be further reduced by eliminating the second and fourth
rows. The resulting 2 × 2 game is easily solved. In A, the unique maximin
strategy is ( 4

7 , 0,
3
7 , 0) and the unique minimax strategy is (4

7 , 0,
3
7 ).

2.4 Subgames of Matrix Games
(a) Both rows are maximin. The second column is minimax. This implies
0 ≤ v(A) ≤ 2.
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(b) The values of the 2× 2 games are, respectively: 5/3, 3, 15/7, 8/5, 2, 20/9.
Since player 2 can choose which columns to play, the value of A must be equal
to the minimum of these numbers, which is v(A4) = 8/5.
(c) The unique minimax strategy is (0, 4/5, 1/5, 0) and the unique maximin
strategy is (2/5, 3/5).

2.5 Rock-Paper-Scissors
The associated matrix game is:




R P S

R 0 −1 1
P 1 0 −1
S −1 1 0


 .

From considerations of symmetry, the optimal strategies are guessed to be
(1/3, 1/3, 1/3) for each. It is easy to compute that, independent of player
2’s strategy, playing (1/3, 1/3, 1/3) yields to player 1 an expected payoff of
0. By the same reasoning, player 2 expects to pay at most 0 by playing
(1/3, 1/3, 1/3), independent of the strategy of player 1. Hence, the value of
the game is 0 and (1/3, 1/3, 1/3) is an optimal strategy for both.

Check that any other strategy for player 1 does not guarantee at least 0.
For instance, suppose that p1 ≥ p2 ≥ p3 for some strategy p ∈ ∆3, with at
least one inequality strict. If player 2 plays the second column the payoff to
player 1 is −p1 + p3 < 0, so that p cannot be optimal.

Similarly for player 2. Hence, the optimal strategies are unique.

Problems of Chapter 3

3.1 Some Applications
(a) Let Smith be the row player and Brown the column player, then the
bimatrix game is:

( L S

L 2, 2 −1,−1
S −1,−1 1, 1

)
.

The Nash equilibria are: (L,L), (S, S), and ((2/5, 3/5), (2/5, 3/5)).
(b) Let the government be the row player and the pauper the column player.
The bimatrix game is:

( work not

aid 3, 2 −1, 3
not −1, 1 0, 0

)
.

The unique Nash equilibrium is: ((1/2, 1/2), (1/5, 4/5)).
(c) Let worker 1 be the row player and worker 2 the column player. The
bimatrix game is:
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( apply to firm 1 apply to firm 2

apply to firm 1 w1

2 ,
w1

2 w1, w2

apply to firm 2 w2, w1
w2

2 ,
w2

2

)
.

There are two pure Nash equilibria, namely where both workers apply to dif-
ferent firms, and one mixed Nash equilibrium, namely:
(((2w1 − w2)/(w1 + w2), (2w2 − w1)/(w1 + w2)), ((2w1 − w2)/(w1 + w2),
(2w2 − w1)/(w1 + w2))). This can be seen by plotting the best replies in
a diagram, or by arguing that each player must be indifferent between his two
pure strategies.
(d) The bimatrix game is:

( A NA

A 40, 40 60, 30
NA 30, 60 50, 50

)
.

This is a prisoners’ dilemma, Nash equilibrium: (A,A).
(e) The bimatrix game is:




(3, 0, 0) (2, 1, 0) (1, 1, 1)

(3, 0, 0) 3/2, 3/2 1, 2 1, 2
(2, 1, 0) 2, 1 3/2, 3/2 3/2, 3/2
(1, 1, 1) 2, 1 3/2, 3/2 3/2, 3/2


 .

The first row and the first column are strictly dominated. Hence, the set of
all Nash equilibria is: {((0, p, 1 − p), (0, q, 1 − q)) | 0 ≤ p ≤ 1, 0 ≤ q ≤ 1}.
(f) The bimatrix game is:




(3, 0, 0) (2, 1, 0) (1, 1, 1)

(3, 0, 0) a, a 1,
√

2 1,
√

2
(2, 1, 0)

√
2, 1 a, a a, a

(1, 1, 1)
√

2, 1 a, a b, b


 ,

where a = 1
2 (1 +

√
2) and b = 9

20 (1 +
√

2) + 1
20

√
3. The first row and the first

column are strictly dominated. The set of all Nash equilibria is: {((0, p, 1 −
p), (0, q, 1 − q)) | 0 ≤ p, q ≤ 1, p = 1 or q = 1}.
3.2 Matrix Games
(a) You should find the same solution, namely (5/11, 6/11) for player 1 and
(5/11, 6/11) for player 2, as the unique Nash equilibrium.
(b) If player 2 plays a minimax strategy then 2’s payoff is at least −v, where
v is the value of the game. Hence, any strategy that gives player 1 at least v
is a best reply. So a maximin strategy is a best reply. Similarly, a minimax
strategy is a best reply against a maximin strategy, so any pair consisting of
a maximin and a minimax strategy is a Nash equilibrium.
Conversely, in a Nash equilibrium the payoffs must be (v,−v) otherwise one
of the players could improve by playing an optimal (maximin or minimax)
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strategy. But then player 1’s strategy must be a maximin strategy since oth-
erwise player 2 would have a better reply, and player 2’s strategy must be a
minimax strategy since otherwise player 1 would have a better reply.
(c) The appropriate definition for player 2 would be: a maximin strategy for
player 2 in B, since now B represents the payoffs to player 2, and not what
player 2 has to pay to player 1.
The Nash equilibrium of Problem 3.1(b), for instance, does not consist of
maximin strategies of the players. The maximin strategy of player 1 in A is
(1/5, 4/5), which is not part of a (the) Nash equilibrium. The maximin strat-
egy of player 2 (!) in B is (1, 0), which is not part of a (the) Nash equilibrium.

3.3 Strict Domination
(a) Z is strictly dominated by W .
(b) Put probability α on W and 1 − α on Y . Then it should hold that 6α +
2(1 − α) > 4 and 5α+ 8(1 − α) > 6. Simplifying yields 1/2 < α < 2/3.
(c) In view of (b) and (c) we are left with the game

( W Y

T 6, 6 1, 2
B 4, 5 2, 8

)
,

which three Nash equilibria: ((1, 0), (1, 0)), ((0, 1), (0, 1)), and ((3/7, 4/7),
(1/3, 2/3)). Hence the original game has the three Nash equilibria ((1, 0),
(1, 0, 0, 0)), ((0, 1), (0, 0, 1, 0)), and ((3/7, 4/7), (1/3, 0, 2/3, 0)).

3.4 Iterated Elimination (1)
(a) There are many different ways, e.g.: first Z then X (or conversely), then
C or D (or conversely), then W , then A. One can also start with C or D,
then W , X, or Z.
(b) By (a), the unique equilibrium is (B, Y ).

3.5 Iterated Elimination (2)
First delete the third row and next the second column. Solve the remaining
2×2 game, which has three Nash equilibria. The Nash equilibria in the original
game are ((1/3, 2/3, 0), (2/3, 0, 1/3)), ((0, 1, 0), (1, 0, 0)), and ((1, 0, 0), (0, 0, 1)).

3.6 Weakly Dominated Strategies
(a) The unique pure Nash equilibrium of this game is (B, Y ). We can
delete B and Y and obtain a 2 × 2 game with unique Nash equilibrium
((1/2, 1/2), (1/2, 1/2)), hence ((1/2, 0, 1/2), (1/2, 0, 1/2)) in the original game.
(b) Consecutive deletion of Z, C, A results in the Nash equilibria (B,X) and
(B, Y ). Consecutive deletion of C, Y , B, Z results in the Nash equilibrium
(A,X).

3.7 A Parameter Game
For a > 2: {((1, 0), (1, 0))}.
For a = 2: {((1, 0), (1, 0))} ∪ {((p, 1 − p), (0, 1)) | 0 ≤ p ≤ 1

2}.
For a < 2: {(( 1

2 ,
1
2 ), ( 2−a

3−a ,
1

3−a ))} ∪ {((1, 0), (1, 0)), ((0, 1), (0, 1))}.
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3.8 Equalizing Property of Mixed Equilibrium Strategies
(a) Check by substitution.
(b) Suppose the expected payoff (computed by using q∗) of row i played with
positive probability (p∗i ) in a Nash equilibrium (p∗,q∗), hence the number
eiAq∗, would not be maximal. Then player 1 would improve by adding the
probability p∗i to some row j with higher expected payoff ejAq∗ > eiAq∗,
and in this way increase his payoff, a contradiction. A similar argument can
be made for player 2 and the columns.

3.9 Voting
(a,b,c) Set the total number of voters equal to 10 (in order to avoid fractions).
Then the bimatrix game and best replies are given by:




0 1 2 3 4 5

0 5, 5 1, 9 2, 8 3, 7 4, 6 5, 5
1 9, 1 5, 5 3, 7 4, 6 5, 5 6, 4
2 8, 2 7, 3 5, 5 5, 5 6, 4 7, 3
3 7, 3 6, 4 5, 5 5, 5 7, 3 8, 4
4 6, 4 5, 5 4, 6 3, 7 5, 5 9, 1
5 5, 5 4, 6 3, 7 4, 8 1, 9 5, 5




So the game has four Nash equilibria in pure strategies.
(d) Now we have:




0 2 4

1 9, 1 3, 7 5, 5
3 7, 3 5, 5 7, 3
5 5, 5 3, 7 1, 9




So there is a unique Nash equilibrium in pure strategies.
(e) In both games, subtract 5 from all payoffs. The value is 0 in each case,
and the pure Nash equilibrium strategies are the pure optimal strategies.

3.10 Guessing Numbers
(a) Suppose player 2 plays each pure strategy with equal probability 1

K . Then
the expected payoff to player 1 is the same for every pure strategy, namely
1
K . Hence any mixed strategy of player 1 is a best reply, in particular the
strategy in which player 1 plays every pure strategy with probability 1

K . The
argument for player 2 is similar.
(b) Suppose, in a Nash equilibrium, player 1 plays some numbers with zero
probability. Then any best reply of player 2 would put positive probability
only on those numbers. Then, in turn, in any best reply player 1 would put
positive probability only on those numbers, a contradiction.
(c) Suppose, in a Nash equilibrium, player 2 plays some numbers with zero
probability. Then in any best reply player 1 would zero probability on those
numbers. But then, in any best reply, player 2 would but positive probability
only on those numbers, a contradiction.
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(d) Suppose player 1 would play some pure strategy with probability less than
1
K . A best reply of player 2 would be to play a pure strategy on which player
1 puts minimal probability, resulting in player 2 paying less than 1

K . But then
player 1 can improve by playing each pure strategy with equal probability, see
(a). By an analogous argument for player 2, we obtain that the equilibrium
in (a) is the unique Nash equilibrium.
(e) The value of this game is 1

K , and the unique optimal strategy for each
player is to choose every number with equal probability.

3.11 Bimatrix Games
(a) For instance the game

(
1, 1 1, 0
0, 1 1, 1

)
.

The best reply curve of player 1 consists of the lower and right edges of the
square, the best reply curve of player 2 consists of the upper and left edges.
(b) e < a, b < d, c < g, h < f . The unique Nash equilibrium is

(
(

f − h

f − h+ d− b
,

d− b

f − h+ d− b
), (

g − c

g − c+ a− e
,

a− e

g − c+ a− e
)

)
.

Problems of Chapter 4

4.1 Counting strategies
White has 20 possible opening moves, and therefore also 20 possible strategies.
Black can choose from 20 moves after each opening move of White. Hence
Black has 20 × 20 × . . .× 20 = 2020 different strategies.

4.2 Extensive versus strategic form
For the game with perfect information, start with a decision node of player
1 (the root of the tree) and let player 1 have two actions/strategies. Player 2
observes these actions and at each of his two decision nodes has two actions.
So player 2 has four strategies.
For the game with imperfect information, start with player 2 and let player
2 have four actions/strategies. Next, player 1 moves, but player 1 does not
observe the move of player 2. So player 1 has one, nontrivial, information set
with four nodes, and two actions at this information set. Consequently, player
1 has two strategies.

4.3 Entry deterrence
(a) The strategic form is:

( C F

E 40, 50 −10, 0
O 0, 100 0, 100

)
.
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(b) The Nash equilibria in pure strategies are: (E,C) and (O,F ). The back-
ward induction (or subgame perfect) equilibrium is (E,C). The equilibrium
(O,F ) is based on the ‘incredible threat’ that the incumbent would actually
fight after entry of the entrant: this is not in the own interest of the incumbent.

4.4 Choosing objects
(a) Player 1 starts with four possible actions. After each action, player 2 has
three possible actions. After that, player 1 has each time two possible actions.
(b) Player 1 has 4 × 212 possible strategies. Player 2 has 34 strategies. [If
strategies where player 1 makes moves excluded by own earlier actions are
eliminated, then player 1 has only 4 × 23 = 32 different strategies.]
(c) In any subgame perfect equilibrium the game is played as follows: player 1
picks O3, then player 2 picks O2 or O1, and finally player 1 picks O4. These are
the (two) subgame perfect equilibrium outcomes of the game. Due to ties (of
player 2) there is more than one subgame perfect equilibrium, namely eight
in total. All subgame perfect equilibria result in the same distribution of the
objects.
(d) Consider the following strategies. Player 1 first picks O4 and, at his second
turn, the best of the remaining objects. Player 2 has the following strategy:
pick O3 if player 1 has picked O4, and pick O4 in the other three cases.

4.5 A Bidding Game
(a) The game starts with a decision node of player 1, at which this player has
five possible actions: P, M, bid 1, bid 2, and bid 3. If player 1 plays P the
game ends with payoffs (0, 2). If player 1 player M then the game ends with
payoffs (1, 1). After the other three actions, player 2 continues.

If player 1 has bid 1, then player 2 has four possible actions: P, M, bid 2,
and bid 3. (i) If player 2 plays P then the game ends with payoffs (1, 0). (ii)
If player 2 plays M then the game ends with payoffs (1/2, 1/2). (iii) If player
2 bids 2, then player 1 continues with three possible actions: P, M, and bid
3. If player 1 plays P then the game ends with payoffs (0, 0). If player 1 plays
M then the game ends with payoffs (0, 0). If player 1 bids 3, then player 2
continues with P or M. If player 2 plays P then the game ends with payoffs
(−1, 0). if player 2 plays M then the game ends with payoffs (−1/2,−1/2).
(iv) If player 2 bids 3, then player 1 continues with P or M. If player 1 plays
P then the game ends with payoffs (0,−1). If player 1 plays M then the game
ends with payoffs (−1/2,−1/2).

If player 1 has bid 2, then player 2 has three possible actions: P, M, and
bid 3. (i) If player 2 plays P then the game ends with payoffs (0, 0). (ii) If
player 2 plays M, then the game ends with payoffs (0, 0). (iii) If player 2 bids
3, then player 1 continues with P or M. If player 1 plays P then the game
ends with payoffs (0,−1). If player 1 plays M then the game ends with payoffs
(−1/2,−1/2).

If player 1 has bid 3, then player 2 can only play P, resulting in payoffs
(−1, 0), or M, resulting in (−1/2,−1/2).
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(b) Player 1 has 5×3×2×2 = 60 different strategies. Player 2 has 3×3×2×2 =
36 different strategies.
(c) Due to ties, there are four different subgame perfect equilibria. They all
result in the same outcome, namely player 1 playing M at the first decision
node.
(d) Any strategy combination where player 1 plays M at the first decision
node is a Nash equilibrium and vice versa. Hence, the outcome of any Nash
equilibrium is the same as in any subgame perfect Nash equilibrium.

4.6 An extensive form game
The strategic form is:




l r

L 2, 0 0, 1
M 0, 1 3, 0
R 2, 2 2, 2


 .

There is a unique pure strategy Nash equilibrium, namely (R, l). This is also
subgame perfect, trivially, since the only subgame is the entire game. Let the
belief of player 2 that player 1 has played L be equal to α. Then l is optimal
for player 2 if 1 − α ≥ α, i.e., if α ≤ 1/2. So for these beliefs, (R, l) is also
perfect Bayesian.

4.7 Another extensive form game
The strategic form is:




l m r

L 1, 3 1, 2 4, 0
M 4, 2 0, 2 3, 3
R 2, 4 2, 4 2, 4


 .

The unique Nash equilibrium (in pure strategies) is (R,m). Since there is
only one subgame, namely the entire game, this equilibrium is also subgame
perfect. Denote the belief of player 2 that player 1 has played L by α. Then m
is optimal if 2 ≥ 3α+2(1−α) = 2+α and 2 ≥ 3(1−α) = 3−3α. Clearly, these
inequalities cannot both hold, so this equilibrium is not perfect Bayesian.

4.8 Still Another Extensive Form Game
(a) This is the following bimatrix game:




l r

RA 4, 4 4, 4
RB 4, 4 4, 4
DA 2, 2 3, 0
DB 0, 0 6, 6


 .

(b) (RA, l), (RB, l), (DB, r).
(c) The pure strategy Nash equilibria in the subgame starting with player 2’s
decision node are (A, l) and (B, r). Thus, the subgame perfect Nash equilibria
are (RA, l) and (DB, r).
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(d) (DB, r) with α = 0 (by Bayesian consistency) is a perfect Bayesian equi-
librium. (RA, l) with α = 1 (by Bayesian consistency, since player 2 plays l)
is also a perfect Bayesian equilibrium.

4.9 A centipede game
(a) The subgame perfect equilibrium tells each player to stop at any decision
node. So the associated outcome is that player 1 stops immediately, resulting
in the payoffs (2, 0).
(b) Consider any other Nash equilibrium. If the play of the game proceeds
to the last decision node (of player 2, in this case), then player 2 should stop
(otherwise player 2 can improve). But then player 1 should have stopped at
the before last decision node. Hence, the play of the game must stop earlier.
But then the last player who has continued could have improved by stopping.
Hence, the play of the game must have stopped immediately.
To exhibit a non-subgame perfect Nash equilibrium, assume that player 1
always stops, and that player 2 also always stops except at his second decision
node. Check that this is a Nash equilibrium. In general, any pair of strategies
where each player stops at his first decision node, is a Nash equilibrium. [One
can also write down the strategic form, which is an 8 × 8 bimatrix game.]

4.10 Finitely Repeated Prisoners’ Dilemma
(a) There are five subgames, including the entire game. Each player has 2 ×
24 = 32 strategies. [One can also restrict attention to 8 strategies per player,
by not considering the possibilities precluded by an own action at stage 1.]
(b) By working backward, it follows that the players play D at the second
stage (independent of what has been played at the first stage), and also D at
the first stage. Even if the game is played k > 2 times the players still always
play D in a subgame perfect equilibrium.

4.11 A Twice Repeated 2 × 2 Bimatrix Game
(a) The unique subgame perfect Nash equilibrium is where player 1 always
plays B and player 2 always R. This is true for any finite repetition of the
game.
(b) Player 1: play B at the first stage; if (B,L) was played at the first stage
play B at the second stage, otherwise play T at the second stage. Player 2:
play L at the first stage and play R at the second stage.

4.12 Twice Repeated 3 × 3 Bimatrix Games
(a) There are ten subgames, including the entire game. Each player has 310

strategies.
(b) Player 1: play T at the first stage. Player 2: play L at the first stage.
Second stage play is given by the following diagram:




L M R

T B,R C,R C,R
C B,M B,R B,R
B B,M B,R B,R


 .
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For instance, if first stage play results in (C,L), then player 1 plays B and
player 2 plays M at stage 2. Verify that this defines a subgame perfect equi-
librium in which (T,L) is played at the second stage. (Other solutions are
possible, as long as players 1 and 2 are punished for unilateral deviations at
stage 1.)
(c) Player 1: play B at the first stage. Player 2: play R at the first stage.
Second stage play is given by the following diagram:




L M R

T T,L T,L C,M
C T,L T,L T, L
B T,L T,L T, L


 .

Problems of Chapter 5

5.1 Battle-of-the-Sexes
The extensive form of this game starts with a chance move, drawing the type
combinations y1y2, y1n2, n1y2, n1n2 with probabilities 1/3, 1/3, 1/6, 1/6,
respectively. Next we can model player 1’s moves. Player 1 has two information
sets, one following y1y2 and y1n2, and the other one following n1y2 and n1n2.
Each information set of player 1 has, thus, two nodes. At each node player
1 has two moves, namely F and B. Next, also player 2 has two information
sets, one following all moves following the type combinations y1y2 and n1y2,
and the other one following all moves following the type combinations y1n2

and n1n2. Each information set has, thus, four nodes. At each of these nodes
player 2 has two possible moves, namely B and F . Finally, there are sixteen
end nodes, with payoffs according to Fig. 5.3.

The strategic form is a 4 × 4 bimatrix game. List the strategies of the
players as in the text. We can then compute the expected payoffs. E.g., if the
first row corresponds to strategy FF of player 1 and strategies FF , FB, BF ,
and BB of player 2, then the payoffs are, respectively, 1/6 times (8, 3), (6, 9),
(6, 0), and (4, 6).

The (pure strategy) Nash equilibria are (FF, FB) and (BF,BB).

5.2 A Static Game of Incomplete Information
There are three pure strategy Nash equilibria: (TT,L), (TB,R), and (BB,R).
(The first letter in a strategy of player 1 applies to Game 1, the second letter
to Game 2.)

5.3 Another Static Game of Incomplete Information
(a) p(t1t2) = 9/13, p(t1t

′
2) = 0, p(t′1t2) = 3/13, p(t′1t

′
2) = 1/13. A pictorially

easy way to find these is to write down a matrix:

( t2 t′2
t1 · ·
t2 · ·

)
.
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The probabilities of the four type combinations are going to be the entries
of this matrix. Clearly, we have a 0 at entry (t1, t

′
2), and we can put an x at

entry (t′1, t
′
2). Then by using the given conditional probabilities we obtain:

( t2 t′2
t1 9x 0
t2 3x x

)
.

Then use the equation 9x+ 3x+ x+ 0 = 1 to find x = 1/13.
(b) The unique pure strategy Nash equilibrium is: t1 and t′1 play B, t2 and t′2
play R. The analysis is simplified by starting with the observation that type
t1 will always play B, since T is strictly dominated.

5.4 Job-Market Signaling
(a,b) We provide the extensive form for the numerical specification of the
game in part (b):

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

l

l

h

h

l′

l′

h′

h′

E

E

N

N

L

H

Chance

2/5

3/5

0, 0

2, 2

4, 0

6, 4

3, 5

6, 2

4, 0

6, 4

[1 − α]

[α]

F F

[1 − β]

[β]

The strategic form is:




hh′ hl′ lh′ ll′

EE 18, 14 18, 14 8, 0 8, 0
EN 30, 14 21, 23 26, 6 17, 15
NE 18, 14 14, 6 12, 8 8, 0
NN 30, 14 17, 15 30, 14 17, 15


 · 1

5
.

The Nash equilibria in pure strategies are (EN, hl′) and (NN, ll′). The first
one is perfect Bayesian (separating) with α = 1 and β = 0. The second one is
not perfect Bayesian, since h strictly dominates l, i.e., there is no belief (no
value of α) that makes l following E optimal. Thus, the IC does not apply.

5.5 A Joint Venture
(a) This is a game of incomplete information but not a signaling game.
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(b) The strategic form is:




H L

hh 45, 45 31 1
2 , 51 1

2
hl 37 1

2 , 31 1
2 36, 50

lh 59, 45 45 1
2 , 51 1

2
ll 51 1

2 , 31 1
2 50, 50


 .

Hardware is the row player, the first letter corresponds to defective parts.
Software is the column player. There is a unique Nash equilibrium (even in
mixed strategies: apply iterated elimination of strictly dominated strategies),
namely (ll, L). This is trivially subgame perfect and perfect Bayesian.

5.6 Entry Deterrence
For x ≤ 100 the strategy combination where the entrant always enters and the
incumbent colludes is a (pooling) perfect Bayesian equilibrium. For x ≥ 50,
the combination where the entrant always stays out and the incumbent fights
is a (pooling) perfect Bayesian equilibrium if the incumbent believes that, if
the entrant enters, then fighting yields 0 with probability at most 1 − 50

x .
IC only applies to the second equilibrium where the entrant always stays out.
Clearly both types, by entering, can get a payoff higher than their equilibrium
payoff 0, so that IC puts no restrictions on the belief of the incumbent: the
equilibrium survives IC.

5.7 The Beer-Quiche Game
(b) There are two pooling perfect Bayesian equilibria. In the first one, player
1 always eats quiche, and player 2 duels if and only if player 1 drinks beer;
in that case, he believes that player 1 is weak with probability at least 1/2.
This equilibrium does not survive the intuitive criterion since a weak player 1
could never benefit (compared to the equilibrium payoff) from drinking beer.

In the second one, player 1 always drinks beer, and player 2 duels if and
only if player 1 eats quiche; in that case, he believes that player 1 is weak with
probability at least 1/2. This equilibrium does survive the intuitive criterion
for α = 1: a weak player 1 could possibly benefit from eating quiche.

5.8 Issuing Stock
(a) The extensive form of this signaling game is as follows (we only write
the payoffs for the manager, since the payoffs of the existing shareholder are
identical):
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H
H

H
H

HH

good state

bad state

O

E

E

N

N

A

N

A

N

Chance

a

a

M
M+E (a+ b+ E)

a

M
M+E (a+ b+ E)

a

1/2

1/2

(b) There is a pooling equilibrium in which the manager never proposes to
issue new stock, and such a proposal would not be approved of by the existing
shareholders since they believe that this proposal signals a good state with
high enough probability. [The background of this is that a new stock issue
would dilute the value of the stock of the existing shareholders in a good state
of the world, see the original article Myers and Majluf (1984) for details.] This
equilibrium (just about) survives the intuitive criterion.

There is also a separating equilibrium in which a stock issue is proposed
in the bad state but not in the good state. If a stock issue is proposed, then
it is approved of.

Finally, there is a separating equilibrium in which a stock issue is proposed
in the good state but not in the bad state. If a stock issue is proposed, then
it is not approved of.
(c) In this case, a stock issue proposal would always be approved of, so the
‘bad news effect’ of a stock issue vanishes. The reason is that the investment
opportunity is now much more attractive.

5.9 More Signaling Games
(a) The perfect Bayesian equilibria are (LL, ud′) for α = 1/2 and β ≤ 2/3
and (LL, uu′) for α = 1/2 and β ≥ 2/3. In this case, type t obtains 2 in
equilibrium and can get at most 1 by deviating to R. Type t̃ obtains 4 in
equilibrium and can get at most 2 by deviating to R. IC would require both
β = 0 and 1 − β = 0, which is clearly impossible, and therefore IC does not
apply.
(b) There is a unique pooling perfect Bayesian equilibrium. Both types of
player 1 play R; player 2 plays d after R and u after L, with belief α ≥ 1

3 .
This equilibrium does not survive IC.
(c) Observe that after D player 2 always plays l, and that t1 always plays D.
There are two strategy combinations that are perfect Bayesian: i) t2 plays D,
t3 plays U , after U player 2 plays r; ii) player 1 always plays D, after U player
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2 plays l and believes that type t3 has a probability of at most 1/2. The latter
equilibrium does not survive IC.

Problems of Chapter 6

6.1 Cournot with Asymmetric Costs
To avoid corner solutions assume 0 ≤ c1, c2 < a and a ≥ 2c1−c2, a ≥ 2c2−c1.
Then the best reply functions are: β1(q2) = (a − c1 − q2)/2 if q2 ≤ a − c1
and β1(q2) = 0 otherwise, and β2(q1) = (a − c2 − q1)/2 if q1 ≤ a − c2 and
β2(q1) = 0 otherwise. The point of intersection is q1 = (a − 2c1 + c2)/3,
q2 = (a− 2c2 + c1)/3, which is the Nash equilibrium.

6.2 Cournot Oligopoly
(b) The reaction function of player i is: βi(q1, . . . , qi−1, qi+1, . . . , qn) = (a−c−∑
j 6=i qj)/2 if

∑
j 6=i qj ≤ a−c, and βi(q1, . . . , qi−1, qi+1, . . . , qn) = 0 otherwise.

(c) One should compute the point of intersection of the n reaction func-
tions. This amounts to solving a system of n linear equations in n unknowns
q1, . . . , qn. Alternatively, one may guess that there is a solution q1 = q2 =
. . . = qn. Then q1 = (a − c − (n − 1)q1)/2, resulting in q1 = (a − c)/(n + 1).
Hence, each firm producing (a−c)/(n+1) is a Nash equilibrium. If the number
of firms becomes large then this amount converges to 0, which is no surprise
since demand is bounded by a.
(d) To show that this equilibrium is unique, it is sufficient to show that the
determinant of the coefficient matrix associated with the system of n linear
equations in n unknowns (the reaction functions) is unequal to zero.

6.3 Quantity Competition with Heterogenous Goods
(a) Πi(q1, q2) = qipi(q1, q2) − cqi for i = 1, 2.
(b) β1(q2) = (5−2q2−c)/6 (or 0 if this expression becomes negative), β2(q1) =
(4.5 − 1.5q1 − c)/6 (or 0 if this expression becomes negative). In equilibrium:
q1 = (21 − 4c)/33, q2 = (13 − 3c)/22, p1 = (21 + 7c)/11, p2 = (39 + 13c)/22.
The profits are (21 − 4c)2/363 for firm 1 and 3(13 − 3c)2/484 for firm 2.
(c) q1 = (57 − 10c)/95, q2 = (38 − 10c)/95, p1 = (228 + 50c)/95, p2 =
(228 + 45c)/95.
(d) q1 = max{1− 1

2p1+ 1
3p2, 0}, q2 = max{1− 1

2p2+ 1
4p1}. The profit functions

are now Π1(p1, p2) = p1q1 − cq1 and Π2(p1, p2) = p2q2 − cq2, with q1 and q2
as given.
(e) β1(p2) = 1 + 1

2c + 1
3p2 and β2(p1) = 1 + 1

2c + 1
4p1. The equilibrium is

p1 = (16 + 8c)/11 , p2 = (30 + 15c)/22. Note that these prices are different
from the ones in (c). The corresponding quantities are q1 = (16 − 3c)/22 and
q2 = (30 − 7c)/44. The profit for firm 1 is (16 − 3c)2/242 and for firm 2 it
is (30 − 7c)2/968. These profits are lower than under quantity competition,
cf. (b) – price competition is more severe than quantity competition.
(f) These are the same prices and quantities as under (c).
(g) See the answers to (e) and (f).
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6.4 A Numerical Example of Cournot Competition with Incomplete Informa-
tion
q1 = 18/48, qH = 9/48, qL = 15/48. In the complete information case with low
cost we have q1 = q2 = 16/48, with high cost it is q1 = 20/48 and q2 = 8/48.
Note that the low cost firm ‘suffers’ from incomplete information since firm
1 attaches some positive probability to firm 2 having high cost and therefore
has higher supply. For the high cost firm the situation is reversed: it ‘benefits’
from incomplete information.

6.5 Cournot Competition with Two-Sided Incomplete Information
Similar to (6.3) we derive:

qℓ = qℓ(qH , qL) =
a− cℓ − ϑqH − (1 − ϑ)qL

2
,

qh = qh(qH , qL) =
a− ch − ϑqH − (1 − ϑ)qL

2
,

qL = qL(qh, qℓ) =
a− cL − πqh − (1 − π)qℓ

2
,

qH = qH(qh, qℓ) =
a− cH − πqh − (1 − π)qℓ

2
.

Here, qℓ and qh correspond to the low and high cost types of firm 1 and qL,
and qH correspond to the low and high cost types of firm 2. The (Bayesian)
Nash equilibrium follows by solving these four equations in the four unknown
quantities.

6.6 Incomplete Information about Demand
The reaction functions are q1 = (1/2)(ϑaH + (1 − ϑ)aL − c − ϑqH − (1 −
ϑ)qL), qH = (1/2)(aH − c − q1), qL = (1/2)(aL − c − q1). The equilibrium
is: q1 = (ϑaH + (1 − ϑ)aL − c)/3, qH = (aH − c)/3 + ((1 − ϑ)/6)(aH − aL),
qL = (aL − c)/3 − (ϑ/6)(aH − aL). (Assume that all these quantities are
positive.)

6.7 Variations on Two-Person Bertrand
(a) If c1 < c2 then there is no Nash equilibrium. (Write down the reaction
functions or – easier – consider different cases.)
(b) (i) There are two equilibria: p1 = p2 = 2 and p1 = p2 = 3. (ii) There are
again two equilibria: p1 = p2 = 2 and p1 = 2, p2 = 3.

6.8 Bertrand with More Than Two Firms
A strategy combination is a Nash equilibrium if and only if at least two firms
charge a price of c and the other firms charge prices higher than c.

6.9 Variations on Stackelberg
(a) The reaction function of firm 2 is β2(q1) = (1/2)(a−c2−q1) in the relevant
range. Hence, firm 1 as a leader maximizes q1(a− q1− c1− (1/2)(a− c2− q1)).
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This yields q1 = (1/2)(a−2c1 + c2) and, thus, q2 = (1/4)(a+2c1−3c2). With
firm 2 as a leader we have q2 = (1/2)(a−2c2+c1) and q1 = (1/4)(a+2c2−3c1).
(b) The leader in the Stackelberg game can always play the Cournot quantity:
since the follower plays the best reply, this results in the Cournot outcome.
Hence, the Stackelberg equilibrium – where the leader maximizes – can only
give a higher payoff. (This argument holds for an arbitrary game where one
player moves first and the other player moves next, having observed the move
of the first player.)
(c) qi = (1/2i)(a − c) for i = 1, 2, . . . , n is the subgame perfect equilibrium
outcome, which can be found by backward induction.

6.10 First-Price Sealed-Bid Auction
(a) Player 1 wins and obtains v1 − v2 ≥ 0. For player 1, bidding higher only
reduces payoff, bidding lower and lose the auction reduces payoff to 0. The
other players can only change their payoffs by bidding higher than v2 and
winning the auction, but this results in a negative payoff.
(b) Suppose that in some Nash equilibrium player i wins with valuation vi <
v1. Then the winning bid bi must be at most vi otherwise player i makes a
negative profit and therefore can improve by bidding (e.g.) vi. But then player
1 can improve by bidding higher than bi (and win) but lower than v1 (and
make positive profit).

Other Nash equilibria: (v1, v1, 0, 0, . . . , 0), (b, b, b, . . . , b) with v1 ≥ b ≥ v2,
etc.
(c) Bidding b ≥ vi is weakly dominated by (e.g.) bidding vi/2, for every
i = 1, . . . , n. Bidding 0 < b < vi is not weakly dominated, which can be seen
as follows. Consider some other b′. If b′ > b then b gives higher payoff if all
other players bid 0. If b′ < b then b gives higher payoff if all other players bid
between b′ and b.
(d) If not, then there would be a Nash equilibrium in which – in view of (c)
– all players bid below their valuations. By (b) a player with the highest
valuation wins the auction, so this must be player 1 if each player bids below
his true valuation. But then player 1 can improve if b1 ≥ v2 and player 2 can
improve if b1 < v2.

6.11 Second-Price Sealed-Bid Auction
(d) Also (v1, 0 . . . , 0) is a Nash equilibrium.
(e) The equilibria are: {(b1, b2) | b2 ≥ v1, 0 ≤ b1 ≤ v2} ∪ {(b1, b2) | b1 ≥
v2, b2 ≤ b1}.
6.12 Third-Price Sealed-Bid Auction
(a) Let bi < vi. If bi is winning then vi is also winning and the price to be paid
is the same. If bi is losing then the payoff from this bid is zero, whereas the
payoff from bidding vi is zero or positive. This shows that vi weakly dominates
any lower bid.
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If bi > vi, then, if bi is winning, vi is losing, and the third highest bid
is below vi, then bi gives positive payoff while vi gives zero payoff. Hence, vi
does not weakly dominate any higher bid.
(b) Suppose v1 > v2 > v3 > . . . , then bidder 2 could improve by bidding
higher than v1.
(c) Everybody bidding the highest valuation v1 is a Nash equilibrium. Also
everybody bidding the second highest valuation v2 is a Nash equilibrium.
(There are many more!)

6.13 n-Player First-Price Sealed-Bid with Incomplete Information
Suppose every player j 6= i plays s∗j . If player i’s type is vi and he bids bi (which
can be assumed to be at most 1− 1/n since no other bidder bids higher than
this) then the probability of winning the auction is equal to the probability
that very bid bj , j 6= i, is at most bi (including equality since this happens with
zero probability). In turn, this is equal to the probability that vj ≤ n/(n−1)bi
for every j 6= i. Since the players’s valuations are independently drawn from
the uniform distribution, the probability that player i wins the auction is
equal to ((n/(n − 1))bi)

n−1, hence player i should maximize the expression
(vi − bi)((n/(n− 1))bi)

n−1, resulting in bi = (1 − 1/n)vi.

6.14 Double Auction
(a) Given the strategy of the seller (who asks x or 1) it can never be better to
offer a price above x or below x if vb ≥ x. If vb < x then offering 0 is clearly
a best reply. A similar argument holds for the seller.
(b) Observe that trade does not occur if vs > vb. Suppose vb ≥ vs. Then trade
takes place if and only if the buyer offers x and the seller asks x. This is the
case when vb ≥ x and vs ≤ x. Hence we compute the probability

Prob[vs ≤ x ≤ vb|vs ≤ vb]

which is equal to 2x(1 − x). Note that this is maximal for x = 1/2, and then
it is equal to 1/2.
(c) Suppose the seller plays ps(vs) = as + csvs. We use (6.8) to determine the
best reply of the buyer. Then E[ps|ps ≤ pb] = as + csE[vs|as + csvs ≤ pb] =
as + cs[(1/2)(pb − as)/cs] = (as + pb)/2. Now (6.8) becomes

max
pb∈[0,1]

[
vb −

1

2

{
pb +

(as + pb)

2

}]
pb − as
cs

.

Solving this problem yields pb = (2/3)vb + (1/3)as.
Similarly, assuming that the buyer plays a strategy pb(vb) = ab + cbvb, we

obtain that the seller solves the problem

max
ps∈[0,1]

[
1

2

{
ps +

(ps + ab + cb)

2

}
− vs

]
ab + cb − ps

cb
.

Solving this problem yields ps = (2/3)vs + (1/3)(ab + cb).
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Combining both results yields pb = (2/3)vb+1/12 and ps = (2/3)vs+1/4.
(d) Observe that no trade occurs if vs > vb. Suppose vs ≤ vb. Then trade
occurs when pb ≥ ps, which is equivalent to vb ≥ vs + (1/4). Hence, the
(conditional) probability of this is 9/16. Observe that this is larger than the
maximal probability in (b).

6.15 Mixed Strategies and Objective Uncertainty
(a) ((1/2, 1/2), (2/5, 3/5)).
(b) Consider the bimatrix game

( L R

T 4 + α, 1 1, 3
B 1, 2 3, β

)
,

where α and β are drawn from the uniform distribution over the interval [0, x].
We search for a Bayesian Nash equilibrium of the following form. Player 1
plays T if α ≥ a and B otherwise; player 2 plays L if β ≤ b and R otherwise;
a, b ∈ [0, x]. By a computation completely analogous to the one in the text we
obtain a = (1/2)(x−5+

√
25 + x2), b = (2/5)(x+5−

√
25 + x2). By applying

l’Hôpital’s rule, we derive limx→0 a/x = 1/2 and limx→0 b/x = 2/5.

6.16 Variations on Finite Horizon Bargaining
(a) Adapt Table 6.1 for the various cases.
(b) The subgame perfect equilibrium outcome is: player 1 proposes (1 − δ2 +
δ1δ2, δ2 − δ1δ2) at t = 0 and player 2 accepts.
(c) The subgame perfect equilibrium outcome in shares of the good is: player
1 proposes (1 − δ22 + δ1δ

2
2 , δ

2
2 − δ1δ

2
2) at t = 0 and player 2 accepts.

(d) The subgame perfect equilibrium outcome is: player 1 proposes (1 − δ +
δ2− . . .+δT−1−δT s1, δ−δ2 + . . .−δT−1+δT s1) at t = 0 and player 2 accepts.
(e) The limits are (1/(1 + δ), δ(1 + δ)), independent of s.
(f) Consider the following strategies. Player 1 always proposes s and accepts
a proposal (x1, x2) by player 2 if and only if x1 ≥ s1. Player 2 always proposes
s and accepts a proposal (x1, x2) by player 1 if and only if x2 ≥ s2. These
strategies are a Nash equilibrium and result in s.

6.17 Variations on Infinite Horizon Bargaining
(a) Conditions (6.10) are replaced by x∗2 = δ2y

∗
2 and y∗1 = δ1x

∗
1. This implies

x∗1 = (1 − δ2)/(1 − δ1δ2) and y∗1 = (δ1 − δ1δ2)/(1 − δ1δ2). In the strategies
(σ∗

1) and (σ∗
2), replace δ by δ1 and δ2, respectively. The equilibrium outcome

is that player 1’s proposal x∗ at t = 0 is accepted.
(b) Nothing essential changes. Player 2’s proposal y∗ is accepted at t = 0.
(c) Nothing changes compared to the situation in the text, since s is only
obtained at t = ∞.
(d) In utilities, a Pareto optimal proposal (z1, z2) satisfies z2 =

√
1 − z1 (make

picture). Hence, in a subgame perfect equilibrium as in the text we have√
1 − x∗1 = x∗2 = δy∗2 = δ

√
1 − y∗1 = δ

√
1 − δx∗1. Solving the equation yields

x∗1 = (1+δ)/(1+δ+δ2). In terms of distribution of the good, this means that
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player 1 is going to receive this amount – since his utility is equal to his share
– and player 2 is going to receive 1 − (1 + δ)/(1 + δ + δ2) = δ2/(1 + δ + δ2),
with utility

√
δ2/(1 + δ + δ2) .

(e) Let p denote the probability that the game ends. Then p is also the
probability that the game ends given that it does not end at t = 0. Hence,
p = (1 − δ) + δ p, so that p = 1.

6.18 A Principal-Agent Game
(a) This is a game of complete information. The employer starts and has an
infinite number of actions available, namely any pair (wL, wH) of nonnegative
wages. After each of these actions, the worker has three possible actions: reject,
resulting in 0 for the employer and 2 for the worker; accept and exert high
effort, resulting in the (expected) payoffs of 10.8 − 0.8wH − 0.2wL for the
employer and 0.8wH + 0.2wL − 3 for the worker; accept and exert low effort,
resulting in the (expected) payoffs of 7.2 − 0.2wH − 0.8wL for the employer
and 0.2wH + 0.8wL for the worker. The actions of the employer are also his
strategies. A strategy for the worker is a function (wL, wH) 7→ {reject (r),
accept and exert high effort (h), accept and exert low effort (l)}.
(b) The subgame perfect equilibrium can be found by backward induction.
Strategy h is optimal for the worker if it is at least as good as r, i.e., 8wH +
2wL ≥ 50, and at least as good as l, i.e., wH − wL ≥ 5. Subject to these to
constraints, the employer maximizes the expected payoff 10.8−0.8wH−0.2wL.
Clearly, the maximum is obtained for any pair (wH , wL) with 8wH+2wL = 50
and wH − wL ≥ 5. The associated profit is 10.8 − 5 = 5.8.

Strategy l is optimal for the worker if it is at least as good as r, i.e., 2wH+
8wL ≥ 20, and at least as good as h, i.e., wH − wL ≤ 5. Subject to these to
constraints, the employer maximizes the expected payoff 7.2−0.2wH−0.8wL.
Clearly, the maximum is obtained for any pair (wH , wL) with 2wH+8wL = 20
and wH − wL ≤ 5. The associated profit is 7.2 − 2 = 5.2.

Hence, it is optimal for the employer to induce high effort by a wage
combination (wH , wL) with 8wH + 2wL = 50 and wH − wL ≥ 5. These are
the equilibrium strategies of the employer; the worker chooses optimally, and
in particular h following any equilibrium strategy of the employer.

6.19 The Market for Lemons
(b) There are many subgame perfect equilibria: the buyer offers p ≤ 5000 and
the seller accepts any price of at least 5000 if the car is bad and of at least
15000 if the car is good. All these equilibria result in expected payoff of zero
for both. There are no other subgame perfect equilibria.

6.20 Corporate Investment and Capital Structure
(b) Suppose the investor’s belief that π = L after observing s is equal to q.
Then the investor accepts s if and only if

s[qL+ (1 − q)H +R] ≥ I(1 + r) . (∗)

The entrepreneur prefers to receive the investment if and only if
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s ≤ R/(π +R) , (∗∗)

for π ∈ {L,H}.
In a pooling equilibrium, q = p. Note that (∗∗) is more difficult to satisfy

for π = H than for π = L. Thus, (∗) and (∗∗) imply that a pooling equilibrium
exists only if

I(1 + r)

pL+ (1 − p)H +R
≤ R

H +R
.

A separating equilibrium always exists. The low-profit type offers s =
I(1 + r)/(L + R), which the investor accepts, and the high-profit type offers
s < I(1 + r)/(H +R), which the investor rejects.

6.21 A Poker Game
(a) The strategic form of this game is as follows:

( aa aq ka kq

believe −1, 1 −1/3, 1/3 −2/3, 2/3 0, 0
show 2/3,−2/3 1/3,−1/3 0, 0 −1/3, 1/3

)
.

Here, ‘believe’ and ‘show’ are the strategies of player I. The first letter in any
strategy of player II is what player II says if the dealt card is a King, the
second letter is what II says if the dealt card is a Queen – if the dealt card is
an Ace player II has no choice.
(b) Player I has a unique optimal (maximin) strategy, namely (1/3, 2/3). Also
player 2 has a unique optimal (minimax) strategy, namely (0, 0, 1/3, 2/3). The
value of the game is −2/9.

6.22 A Hotelling Location Problem
(a) x1 = x2 = 1

2 .
(b) E.g. x1 = 1

3 , x2 = x3 = 2
3 .

(c) x1 = x2 = 1
2 .

(d) For n = 3 there are no Nash equilibria (consider all possible cases). For
n = 4 a Nash equilibrium is: x1 = x2 = 1

4 , x3 = x4 = 3
4 .

6.23 Median Voting
(a) The strategy set of each player is the interval [0, 30]. If each player i plays
xi, then the payoff to each player i is −|((x1 + . . .+ xn)/n) − ti|.

Such a game typically may have a Nash equilibrium where players 1 up to
k propose 0 and players k + 1 up to n propose 30, for some 0 ≤ k ≤ n. Such
a strategy combination is a Nash equilibrium if the average is above tk and
below tk+1. If such a configuration does not exist, then start with an arbitrary
k and assume, without loss of generality, that the average is below tk. If, by
changing player k’s proposal to 30, the average is still below tk, then continue
with this new configuration, consider player k − 1, and repeat the argument.
If, however, the average by k proposing 30 would be above tk, then let player
k propose a temperature that makes the average equal to tk: then we have a
Nash equilibrium again.
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(b) The payoff to player i is now −|med(x1, . . . , xn) − ti|, where med(·) de-
notes the median. For each player, proposing a temperature different from his
true ideal temperature either leaves the median unchanged or moves the me-
dian farther away from the ideal temperature, whatever the proposals of the
other players. Hence, proposing one’s ideal temperature is a weakly dominant
strategy.

There are many other Nash equilibria. E.g., everyone proposing the same
temperature is always a Nash equilibrium, since no player can change the
median (i.e., the commonly proposed temperature) unilaterally.

6.24 The Uniform Rule
(a) In general, this game has no Nash equilibrium: if, in some strategy com-
bination a player gets less [more] than his ideal amount, he can improve by
reporting a higher [lower amount]. In specific cases an equilibrium may exist.
E.g. if

∑n
i=1 ti = M then reporting truthfully is a Nash equilibrium.

(b) M = 4 : (1, 3/2, 3/2), M = 5 : (1, 2, 2), M = 5.5 : (1, 2, 5/2), M = 6 :
(1, 2, 3), M = 7 : (2, 2, 3), M = 8 : (5/2, 5/2, 3), M = 9 : (3, 3, 3).
(c) If player i reports ti and receives si > ti then, apparently the total reported
quantity is above M and thus, player i can only further increase (hence,
worsen) his share by reporting a different quantity. If player i reports ti and
receives si < ti then, apparently the total reported quantity is below M and
thus, player i can only further decrease (hence, worsen) his share by reporting
a different quantity.

There exist other Nash equilibria, but they do not give different outcomes
(shares). E.g., ifM >

∑n
j=1 tj , then player 1 could just as well report 0 instead

of t1.

6.25 Reporting a Crime
(a) The Nash equilibria in pure strategies are those pure strategy combinations
where exactly one person calls the police. There are n of these, and none is
symmetric.
(b) If each person plays C with probability 0 < p < 1, then each person must
be indifferent between playing C and N , hence v − c = (1 − p)n−1 · 0 + [1 −
(1 − p)n−1] · v. This yields p = 1 − (c/v)

1/(n−1)
.

(c) The probability of the crime being reported in this equilibrium is 1− (1−
p)n = 1 − (c/v)

n/(n−1)
. This converges to 1 − (c/v) for n going to infinity.

Observe that both p and the the probability of the crime being reported
decrease if n becomes larger.

6.26 Firm Concentration
Let, in equilibrium, n firms locate downtown and m firms in the suburbs, with
m+n = 10. Then a downtown firm does not want to deviate, so 5n−n2+50 ≥
48 − (m + 1) = 37 + n. This implies n ∈ {0, . . . , 6}. Similarly, a suburb firm
does not want to deviate, so 48−m = 48− (10−n) ≥ 5(n+1)− (n+1)2 +50.
This implies n ∈ {6, . . . , 10}. Hence n = 6 and m = 4.
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6.27 Tragedy of the Commons
(d) Suppose, to the contrary, G∗ ≤ G∗∗. Then v(G∗) ≥ v(G∗∗) since v′ < 0,
and 0 > v′(G∗) ≥ v′(G∗∗) since v′′ < 0. Also, G∗/n < G∗∗. Hence

v(G∗) + (1/n)G∗v′(G∗) − c > v(G∗∗) +G∗∗v′(G∗∗) − c ,

a contradiction since both sides should be zero.

Problems of Chapter 7

7.1 Nash and Subgame Perfect Equilibrium in a Repeated Game (1)
(a) The unique Nash equilibrium is (U,R); v(A) = 1 and the minimax strategy
in A is R; v(−B) = −1 and the maximin strategy in −B is D.
(b) Only (1, 5), independent of δ.
(c) All payoff pairs in the convex hull of the points (2, 3), (1, 5), and (0, 1)
which have both coordinates strictly larger than (1, 1).
(d) Player 1 plays always U but after a deviation switches to D forever. Player
2 always plays L but after a deviation switches to R forever. We need δ ≥ 1

2 ,
to keep player 2 from deviating to R.

7.2 Nash and Subgame Perfect Equilibrium in a Repeated Game (2)
(a) The limiting average payoffs (2, 1), (1, 2), and (2/3, 2/3), resulting from
playing, respectively, the Nash equilibria (U,L), (D,R), and ((2/3, 1/3),
(1/3, 2/3)) at every stage; and all payoffs (x1, x2) with x1, x2 > 2/3.
(b) v(A) = 2/3 and −v(−B) = 2/3. Hence, all payoffs (x1, x2) with x1, x2 >
2/3.
(c) The players play (U,L) at even times and (D,R) at odd times. Since at
each time they play a Nash equilibrium of the stage game, no trigger strategies
(describing punishment after a deviation) are needed.
(d) The players play (U,L) at t = 0, 3, 6, . . .; (D,L) at t = 1, 4, 7, . . .; and
(D,R) at t = 2, 5, 8, . . .. After a deviation player 1 plays (2/3, 1/3) forever and
player 2 plays (1/3, 2/3) forever. To make this a subgame perfect equilibrium,
we need 2 + (2/3)δ/(1− δ) ≤ (0 + 1 · δ+ 2 · δ2)/(1− δ3) to avoid deviation by
player 1 and 2+(2/3)δ/(1− δ) ≤ (0+2 · δ+1 · δ2)/(1− δ3) to avoid deviation
by player 2. The first inequality gives the lower bound on δ.

7.3 Nash and Subgame Perfect Equilibrium in a Repeated Game (3)
(a) The stage game has a unique Nash equilibrium, namely ((1/2, 1/2),
(2/3), (1/3)) with payoffs (14/3, 1). Hence these payoffs as well as all pay-
off pairs in the convex hull of (3, 2), (8, 0), (4, 0), and (6, 2) strictly larger
than (14/3, 1), can be obtained as limit average payoffs in a subgame perfect
equilibrium of G∞(δ).
(b) v(A) = 4 since (D,L) is a saddlepoint in A. The minimax strategy of
player 2 is L. The value of −B is −1 and the maximin strategy of player 1
is (1/2, 1/2). The associated payoffs in G are (4, 1). Hence all payoff pairs in
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the convex hull of (3, 2), (8, 0), (4, 0), and (6, 2) strictly larger for than (4, 1),
can be obtained as limit average payoffs in a Nash equilibrium of G∞(δ).
(c) A Nash equilibrium is obtained by letting the players play (U,L) at even
times and (D,R) at odd times. After any deviation the players switch to
playing (D,L) forever. Player 1 has an incentive to deviate at even times, say
at t = 0. To avoid this we need 4 + 4δ/(1 − δ) ≤ 3/(1 − δ2) + 6δ/(1 − δ2),
which holds exactly if δ ≥ 1/2. Player 2 never has an incentive to deviate (so
we do not need a trigger strategy for player 1 in this case, but we could let
player 1 play (1/2, 1/2) instead of D after a deviation). This equilibrium is
subgame perfect for no value of δ: in a subgame after a deviation, (D,L) (or
((1/2, 1/2), L)) is played forever, which is not a Nash equilibrium.

7.4 Subgame Perfect Equilibrium in a Repeated Game
(a) (M,C) and (B,R).
(b) (1, 1) and all payoff pairs in the convex hull of the nine payoff pairs in G
strictly larger than 1 for both players.
(c) Alternate between (T,L) and (M,C). After any deviation, player 1
switches to B and player 2 to R forever. At even moments, say at t = 0,
player 1 has an incentive to deviate to M . This is avoided if 8 + δ/(1 − δ) ≤
6/(1 − δ2) + 4δ/(1 − δ2), which holds if δ is at least (approximately) 0.36.
Also at t = 0, player 2 has an incentive to deviate to C. This is avoided if
7 + δ/(1 − δ) ≤ 4/(1 − δ2) + 6δ/(1 − δ2), which holds if δ is at least (approx-
imately) 0.40. Hence, 0.40 is approximately the lower bound on δ for which
this is a subgame perfect equilibrium.

7.5 The Strategies Tr∗1 and Tr∗2
An optimal moment for player 1 to deviate would be t = 1. We then have the
inequality

40 +
40δ

1 − δ
≤ 30 + 30δ + 60δ2 + 40δ3 + 50δ4

1 − δ5
.

An optimal moment for player 2 to deviate would be t = 3. The associated
inequality is

40 +
40δ

1 − δ
≤ 30 + 40δ + 50δ2 + 60δ3 + 60δ4

1 − δ5
.

7.6 Repeated Cournot and Bertrand
(a) Each player offers half of the monopoly quantity (half of (a − c)/2) at
each time, but if a deviation from this occurs, then each player offers the
Cournot quantity (a − c)/3 forever. The relevant restriction on δ is given by
(1/8) ≥ (9/16)(1 − δ) + (1/9)δ, which yields δ ≥ 9/17.
(b) In this case, each player asks the monopoly price (a+ c)/2 at each time; if
a deviation from this occurs, each player switches to the Bertrand equilibrium
price p = c forever. The relevant restriction on δ is given by 1/4 ≤ (1/8)/(1−
δ), which gives δ ≥ 1/2.

7.7 Repeated Duopoly
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(a) q2 = max{10 − (1/3)p1 − (2/3)p2, 0}.
(b) For firm 1, maximize p1(10− (2/3)p1 − (1/3)p2). This yields p1 = 15/2−
(1/4)p2. Similarly, the reaction function of firm 2 is p2 = 15/2− (1/4)p1. This
yields the Nash equilibrium p1 = p2 = 6 with profit 24 for each.
(c) Joint profit is maximized at p1 = p2 = 5. At these prices, each firm has
profit 25.
(d) Ask prices p1 = p2 = 5, but after a deviation switch to the equilibrium
prices p1 = p2 = 6. An optimal deviation, say for firm 1, would be to charge
p1 = 15/2 − (1/4) · 5 = 25/4, yielding an instantaneous profit of (25/4)(10 −
(2/3)(25/4)− (1/3)5) = 252/24. The relevant inequality is 252/24 + 24δ/(1−
δ) ≤ 25/(1 − δ), simplifying to δ ≥ 25/49.

7.8 On Discounting
See the solution to Problem 6.17(e).

7.9 On Limit Average
A sequence like 1, 3, 5, 7, . . . has a limit average of infinity. More interestingly,
one may construct a sequence containing only the numbers +1 and −1 of
which the finite averages ‘oscillate’, e.g, below −1/2 and above +1/2, so that
the limit does not exist.

Problems of Chapter 8

8.1 Symmetric Games
(a) (0, 1) is the only ESS.
(b) Both (1, 0) and (0, 1) are ESS: the unique best reply against (1, 0) is
(1, 0), and the unique best reply against (0, 1) is (0, 1). The (Nash equilibrium)
strategy (1/3, 2/3) is not an ESS. For the latter, (8.1) yields 2/3 > 2y2 +(1−
y)2, which is equivalent to (3y − 1)2 < 0. This holds for no value of y.

8.2 More Symmetric Games
(a) The replicator dynamics is ṗ = p(p − 1)(p − 1/2), with rest points p =
0, 1, 1/2, of which only p = 1/2 is stable. The game (A,AT ) has a unique
symmetric Nash equilibrium, namely ((1/2, 1/2), (1/2, 1/2)). The unique ESS
is (1/2, 1/2).
(b) The replicator dynamics is ṗ = 3p2(1 − p), with rest points p = 0, 1,
of which only p = 1 is stable. The game (A,AT ) has two symmetric Nash
equilibria, namely ((1, 0), (1, 0)) and ((0, 1), (0, 1)), and a unique ESS, namely
(1, 0).

8.3 Asymmetric Games
(a) The replicator dynamics is given by the equations ṗ = p(1−p)(1−2q) and
q̇ = q(1 − 2p)(1 − q). There are five rest points, namely p = q = 0, p = q = 1,
p = q = 1/2, and p = 0, q = 1, and p = 1, q = 0. The last two rest points are
stable. They correspond to the two strict Nash equilibria of the game, namely
((0, 1), (1, 0)) and ((1, 0), (0, 1)).
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(b) The replicator dynamics is given by the equations ṗ = pq(1 − p) and
q̇ = pq(1−q). There is one stable rest point, namely p = q = 1, corresponding
to the unique strict Nash equilibrium ((1, 0), (1, 0)) of the game. The other
rest points are all points in the set

{(p, q) | p = 0 and 0 ≤ q ≤ 1 or q = 0 and 0 ≤ p ≤ 1} .

8.4 More Asymmetric Games
(a) Let (x, 1−x) be the shares of the row population and (y, 1−y) the shares of
the column population. The replicator dynamics are dx/dt = x(1−x)(2−3y)
and dy/dt = 2y(1−2x)(y−1). The rest points are (x, y) = (0, 0), (x, y) = (1, 0),
(x, y) = (1, 1), (x, y) = (0, 1), (x, y) = (1/2, 2/3). None of these is stable. The
game has no pure Nash equilibria and therefore no strict Nash equilibria
(Remark 8.9).
(b) The replicator dynamics are dx/dt = x(x− 1)(2y − 1) and dy/dt = y(y −
1)(2x − 1). The rest points are (x, y) = (0, 0), (x, y) = (1, 0), (x, y) = (1, 1),
(x, y) = (0, 1), (x, y) = (1/2, 1/2). The rest points (0, 1) and (1, 0) are stable.
They correspond to the strict Nash equilibria ((0, 1), (1, 0)) and ((1, 0), (0, 1)).

8.5 Frogs Call For Mates
(a) If P −z > 1−m then Call is ESS. If m−z < 0 then Don’t Call is ESS. If
P−z < 1−m and m−z > 0 then there is a mixed ESS. Part (b) follows from
the cases mentioned in (a): if z < 0.4 then Call is ESS; if z > 0.6 then Don’t
Call is ESS; if 0.4 < z < 0.6 then there is a mixed ESS. Note that for (a) and
(b) Prop. 8.5 can be used. Similarly, for (c) we can use Prop. 8.8, by stating
the conditions under which each of the four pure strategy combinations is a
strict Nash equilibrium: if z1 < P +m−1 and z2 < P +m−1 then (Call,Call)
is a strict Nash equilibrium, etc.

8.6 Video Market Game
There are four rest points, namely: x = y = 0, x = y = 1, (x = 0, y = 1), and
(x = 1, y = 0) [(x, 1− x) is the row ‘population’, (y, 1− y) corresponds to the
columns]. The only stable rest point is x = 0, y = 1.

Problems of Chapter 9

9.1 Number of Coalitions
An arbitrary subset S ⊆ N with |N | = n can be represented by a vector
x ∈ {0, 1}N , where i ∈ S ⇔ xi = 1. There are 2n different vectors in {0, 1}N .

9.2 Computing the Core
(a) {(0, 0, 1)}; (b) polygon with vertices (15, 5, 4), (9, 5, 10), (14, 6, 4), and
(8, 6, 10); (c) {(x1, . . . , x5, 0, . . . , 0) ∈ R15 | x1 ≥ 0, . . . , x5 ≥ 0, x1 + . . .+ x5 =
1}.
9.3 The Core of a Two-Person Game
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c ≥ a+ b, C({1, 2}, v) = {(x1, x2) | x1 ≥ a, x2 ≥ b, x1 + x2 = c}.
9.4 The Core of the General Glove Game
Let ℓ = r. Every two-person coalition consisting of a left-hand and a right-
hand glove owner has worth 1, so needs to obtain at least 1 in the core. Hence,
every such pair obtains exactly 1 in the core. This implies that all left-hand
glove owners receive the same amount and all right-hand glove owners receive
the same amount. Altogether, the core consists of all payoff vectors in which
all right-hand glove owners receive an amount 0 ≤ α ≤ 1 and all left-hand
glove owners an amount 1 − α. For α = 1/2, we obtain the Shapley value, so
the Shapley value is in the core.

9.5 A Condition For Nonemptiness of the Core of a Three-Person Game
For a core element x, we have v({1, 2}) + v({1, 3}) + v({2, 3}) ≤ (x1 + x2) +
(x1 + x3) + (x2 + x3) = 2v({1, 2, 3}).
9.6 Non-Monotonicity of the Core
(b) The core of (N, v′) is the set {(0, 0, 1, 1)} (use the fact that C(N, v′) ⊆
C(N, v)). Hence, player 1 can only obtain less in the core although the worth
of coalition {1, 3, 4} has increased.

9.7 Efficiency of the Shapley Value
Consider an order i1, i2, . . . , in of the players. The sum of the coordinates of
the associated marginal vector is

[v({i1}) − v(∅)]
+[v({i1, i2}) − v({i1})]
+[v({i1, i2, i3}) − v({i1, i2})]
+ . . .
+[v(N) − v(N \ {in})]
= v(N) − v(∅) = v(N) .

Hence, every marginal vector is efficient, so the Shapley value is efficient since
it is the average of the marginal vectors.

9.8 Computing the Shapley Value
(a) Φ(N, v) = (1/6, 1/6, 2/3) /∈ C(N, v); (b) (91

2 , 6
1
2 , 8), not in the core.

(c) The Shapley value assigns to each nonpermanent member the number(
9
3

)
· (8! · 6!)/15! ≈ 0.002. Hence, each permanent member is assigned ap-

proximately 1
5 · (1 − 0.02) = 0.196. Clearly the Shapley value is not on the

core.

9.9 The Shapley Value and the Core
(a) a = 3 (use Problem 9.5).
(b) (2.5, 2, 1.5).
(c) The Shapley value is (a/3 + 1/2, a/3, a/3 − 1/2). The minimal value of a
for which this is in the core is 15/4.
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9.10 Shapley Value in a Two-Player Game
Φ(N, v) = (v({1}) + (v({1, 2}) − v({1}) − v({2}))/2, v({2}) + (v({1, 2}) −
v({1}) − v({2}))/2).

9.11 Computing the Nucleolus
(a) (0, 0, 1).
(b) (11.5, 5.5, 7).
(c) (1/5, 1/5, 1/5, 1/5, 1/5, 0, . . . , 0) ∈ R15.
(d) In (N, v): (1/2, 1/2, 1/2, 1/2); in (N, v′): (0, 0, 1, 1).

9.12 Nucleolus of Two-Player Games
The nucleolus is (v({1})+(v({1, 2})−v({1})−v({2}))/2, v({2})+(v({1, 2})−
v({1}) − v({2}))/2).

9.13 Computing the Core, the Shapley Value, and the Nucleolus
(a) The nucleolus and Shapley value coincide and are equal to (1.5, 2, 2.5).
(c) The maximal value of v({1}) is 2. For that value the core is the line segment
with endpoints (2, 1, 3) and (2, 3, 1).

9.14 Voting (1)
(a) The winning coalitions, i.e., the coalitions with worth 1, are {1, 2}, {1, 3, 4},
and all coalitions containing at least one of these two. To compute the Shapley
value, note that players 3 and 4 only make a contribution of 1 to respectively
the coalitions {1, 4} and {1, 3}. Hence, Φ3(N, v) = Φ4(N, v) = 2!1!/4! = 1/12.
Player 2 makes a contribution of 1 to the coalitions {1}, {1, 3}, and {1, 4},
and thus Φ2(N, v) = 1!2!/4! + 2 · 2!1!/4! = 3/12. Hence, the Shapley value is
Φ(N, v) = (7/12, 3/12, 1/12, 1/12).
(b) Let x be in the core. Since v({1, 2}) = 1, we must have that x3 = x4 = 0.
Since v({1, 3, 4}) = 1, we must have that x2 = 0. Therefore, C(N, v) =
{(1, 0, 0, 0)}. By Prop. 9.7, the nucleolus is in the core, so the nucleolus is
(1, 0, 0, 0).

9.15 Voting (2)
(a) The winning coalitions of minimal size are {1, 3, 4}, {1, 3, 5}, {1, 4, 5},
{2, 3, 4}, {2, 3, 5}, {2, 4, 5}.
(b) v(S) = 1 for every S containing one of the coalitions in (a), and v(S) = 0
for all other coalitions.
(c) Player 1 makes a contribution of 1 to the coalitions {3, 4}, {3, 5}, {4, 5},
and {3, 4, 5}. Hence, Φ1(N, v) = 3 · 2!2!/5! + 1 · 3!1!/5! = 9/60. We obtain
Φ(N, v) = (1/60)(9, 9, 14, 14, 14). Players 3,4, and 5 are most powerful.
(d) The nucleolus is of the form (α, α, (1−2α)/3, (1−2α)/3, (1−2α)/3), where
0 ≤ α ≤ 1/2 to make it an imputation. The maximal excess is reached for the
coalitions in (a), and this excess is equal to 1 − α − 2(1 − α)/3 = (α + 1)/3,
which is minimal for α = 0. Hence the nucleolus is (0, 0, 1/3, 1/3, 1/3). Players
3,4, and 5 are still most powerful.
(e) The nucleolus is not in the core (e.g., v({1, 3, 4} = 1 > 2/3), so the core
must be empty. This can also be seen directly. Let x be in the core. Since
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v({1, 3, 4}) = 1, we must have x5 = 0. Similarly, x3 = x4 = 0. Hence, x1 = 1,
but similarly x2 = 1. Hence x(N) = 2 > 1 = v(N), which means that x

violates a core constraint.

9.16 Two Buyers and a Seller
(a) v({1, 3}) = 1, v({2, 3}) = 2, v(N) = 2, and v(S) = 0 in all other cases.
(b) C(N, v) = {(x1, x2, x3) | x1 = 0, x2 + x3 = 2, 1 ≤ x3 ≤ 2}.
(c) Φ(N, v) = (1/6, 4/6, 7/6).
(d) The nucleolus is (0, 1/2, 3/2).

9.17 Properties of the Shapley Value
(a) In Φi(N, v) the term v(S∪{i})−v(S) occurs the same number of times as
the term v(S ∪{j})− v(S) in Φj(N, v), for every coalition S ⊆ N \ {i, j}. Let
S be a coalition with i ∈ S and j /∈ S. Then v(S \{i}∪{j}) = v(S \{i}∪{i}),
so that

v(S ∪ {j}) − v(S) = v((S \ {i} ∪ {j}) ∪ {i}) − v((S \ {i}) ∪ {i})
= v((S \ {i} ∪ {j}) ∪ {i}) − v((S \ {i}) ∪ {j}) ,

and also these expressions occur the same umber of times. Similarly for coali-
tions S that contain j but not i.
(b) This is obvious from Def. 9.4.

(c) Observe that it is sufficient to show
∑
S:i/∈S

|S|!(n−|S|−1)!
n! = 1. To show this,

note that |S|!(n−|S|−1)!
n! = 1

n

(
n− 1
|S|

)−1

, so that

∑

S:i/∈S

|S|!(n− |S| − 1)!

n!
=

1

n

∑

s=0,1,...,n−1

(
n− 1
s

)(
n− 1
s

)−1

=
1

n
· n = 1 .

Problems of Chapter 10

10.1 A Division Problem (1)
(b) In terms of utilities: (1

3

√
3, 2

3 ), in terms of distribution: (1
3

√
3, 1 − 1

3

√
3).

(c) The Rubinstein outcome is x∗ where x∗1 =
√

1
1+δ+δ2 and x∗2 = 1− 1

1+δ+δ2 .

(d) limδ→1 x
∗
1 = 1

3

√
3, consistent with what was found under (a).

10.2 A Division Problem (2)
By symmetry and Pareto optimality the Nash bargaining solution would as-
sign equal distribution of the good if the utility function of player 2 were u(·).
By covariance, the distribution does not change if the utility function of player
2 is v(·) = 2u(·). The resulting utilities are (u( 1

2 ), 2u( 1
2 )).
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10.3 A Division Problem (3)

(a) The distribution of the good is
(
2 1−δ3

1−δ4 , 2 − 2 1−δ3

1−δ4

)
. In utility terms this

is
(

1−δ3

1−δ4 ,
3

√
2 − 2 1−δ3

1−δ4

)
.

(b) By taking the limit for δ → 1 in (b), we obtain (1.5, 0.5) as the distribution
assigned by the Nash bargaining solution. In utilities: (0.75, 3

√
0.5).

(c) Same as in (b): by independence of irrelevant alternatives (or by the defi-
nition of the Nash bargaining solution) nothing changes.

10.4 An Exchange Economy
(a) xA1 (p1, p2) = (3p2 + 2p1)/2p1, x

A
2 = (4p1 − p2)/2p2, x

B
1 = (p1 + 6p2)/2p1,

xB2 = p1/2p2.
(b) (p1, p2) = (9, 5) (or any positive multiple thereof); the equilibrium alloca-
tion is ((33/18, 31/10), (39/18, 9/10)).
(c) The (non-boundary part of the) contract curve is given by the equation
xA2 = (17xA1 +5)/(2xA1 +8). The core is the part of this contract curve such that
ln(xA1 + 1) + ln(xA2 + 2) ≥ ln 4 + ln 3 = ln 12 (individual rationality constraint
for A) and 3 ln(5−xA1 )+ln(5−xA2 ) ≥ 3 ln 2+ln 4 = ln 12 (individual rationality
constraint for B).
(d) The point xA = (33/18, 31/10) satisfies the equation xA2 = (17xA1 +
5)/(2xA1 + 8).
(e) For the disagreement point d one can take the point (ln 12, ln 12). The
set S contains all points u ∈ R2 that can be obtained as utilities from any
distribution of the goods that does not exceed total endowments e = (4, 4).
Unlike the Walrasian equilibrium allocation, the allocation obtained by apply-
ing the Nash bargaining solution is not independent of arbitrary monotonic
transformations of the utility functions. It is a ‘cardinal’ concept, in contrast
to the Walrasian allocation, which is ‘ordinal’.

10.5 The Matching Problem of Table 10.1 Continued
(a) The resulting matching is (w1,m1), (w2,m2), w3 and m3 remain single.
(b) If, in a stable matching, we have (m1, w1), then clearly also (m2, w2),
m3 stays single, and hence also w3 stays single. This is the stable matching
resulting from the deferred acceptance algorithm, both with the men and the
women proposing.

If (m1, w2) in a stable matching, then also (m2, w1), but this would be
blocked by m3 and w1, a contradiction. Obviously, (m1, w3) cannot occur in a
stable matching. So there are not other stable matchings than the one in (a).

10.6 Another Matching Problem
(a) With the men proposing: (m1, w1), (m2, w2), (m3, w3). With the women
proposing: (m1, w1), (m2, w3), (m3, w2).
(b) Since in any stable matching we must have (m1, w1), the matchings found
in (a) are the only stable ones.
(c) Obvious: every man weakly or strongly prefers the men proposing matching
in (a); and vice versa for the women.
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10.7 Yet Another Matching Problem: Strategic Behavior
(a) With the men proposing: (m1, w2), (m2, w3), (m3, w1). With the women
proposing: (m1, w1), (m2, w3), (m3, w2).
(b) There are no other stable matchings: each of the other four matchings is
blocked by {m3, w2} or by {m1, w1}.
(c) The resulting matching is (m1, w1), (m2, w3), (m3, w2). This is clearly
better for w1. It is a Nash equilibrium: w1 and w2 get their top men, and w3

cannot change the outcome of the algorithm by herself.

10.8 Core Property of Top Trading Cycle Procedure
All players in a top trading cycle get their top houses, and thus none of these
players can be a member of a blocking coalition, say S. Omitting these players
and their houses from the problem, by the same argument none of the players
in a top trading cycle in the second round can be a member of S: the only
house that such a player may prefer is no longer available in S; etc.

10.9 House Exchange with Identical Preferences
Without loss of generality, assume that each player has the same preference
h1h2 . . . hn. In a core allocation, obviously, player 1 gets h1. Hence, player 2
gets h2; hence, player 3 gets h3, etc. So there is a unique core allocation: each
player keeps his own house (this is independent of the preference).

10.10 A House Exchange Problem
There are three core allocations namely: (i) 1 : h3, 2 : h4, 3 : h1, 4 : h2; (ii)
1 : h2, 2 : h4, 3 : h1, 4 : h3; (iii) 1 : h3, 2 : h1, 3 : h4, 4 : h2. Allocation (i) is in
the strong core.

10.11 Cooperative Oligopoly
(a)–(c) Analogous to Problems 6.1, 6.2. Parts (d) and (f) follow directly from
(c). For parts (e) and (g) use the methods of Chap. 9.

Problems of Chapter 11

11.1 Preferences
(a) If aPb then aRB and not bRa, hence bPA does not hold.

If aPb and bPc then aRb, bRc, so aRc; cRa would imply cRb and hence
not bPc, a contradiction; hence aPc.

Clearly, aPa is not possible since aRa.
Finally, if a 6= b and aRb and bRa then neither aPb nor bPa, so P is not

necessarily complete.
(b) Since aRa we have aIa.

If aIb and bIc then aRb and bRc hence aRc; and cRb and bRa hence cRa;
hence aIc.

I is not complete unless aRb for all a, b ∈ A.
I is only antisymmetric if R is a linear order.
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11.2 Pairwise Comparison
(a) C(r) is reflexive and complete. It is not antisymmetric: if |N(a, b, r)| =
|N(b, a, r)| for distinct a, b, then aC(r)b and bC(r)a.
(b) For the given profile, aC(r)bC(r)cC(r)a.
(c) There is no Condorcet winner in this example.

11.3 Independence of the Conditions in Theorem 11.1
The social welfare function based on the Borda scores is Pareto efficient but
does not satisfy IIA and is not dictatorial (cf. Sect. 11.1). The social welfare
function that assigns to each profile of preferences the reverse preference of
agent 1 satisfies IIA and is not dicatorial but also not Pareto efficient.

11.4 Independence of the Conditions in Theorem 11.2
A constant social welfare function (i.e., always assigning the same fixed al-
ternative) is strategy-proof and nondictatorial but not surjective. The social
welfare function that always assigns the bottom element of agent 1 is surjec-
tive, nondictatorial, and not strategy-proof.

11.5 Independence of the Conditions in Theorem 11.3
A constant social welfare function (i.e., always assigning the same fixed alter-
native) is monotonic and nondictatorial but not unanimous. A social welfare
function that assigns the common top alternative to any profile where all
agents have the same top alternative, and a fixed constant alternative to any
other profile, is unanimous and nondictatorial but not monotonic.

11.6 Copeland Score and Kramer Score
(a) The Copeland ranking is based on scores and therefore reflexive, complete,
and transitive. Thus, it is a preference. The Copeland ranking is not antisym-
metric, consider e.g. the profile in Problem 11.2(b). It is easy to see that the
Copeland ranking is Pareto efficient. By Arrow’s Theorem therefore, it does
not satisfy IIA.
(b) The Kramer ranking is based on scores and therefore reflexive, complete,
and transitive. Thus, it is a preference. The Kramer ranking is not antisym-
metric, consider e.g. the profile in Problem 11.2(b). The Kramer ranking is
not Pareto efficient: if all preferences are of the form . . . abc . . . then b and c
have equal Kramer scores 0, although every agent prefers b over c. If, in such
a profile, we move bc to the top for agent 1 – so his preference becomes of the
form bc . . . – then b gets a Kramer score of 1 whereas c still has Kramer score
0: hence, IIA is violated.

11.7 Two Alternatives
Consider the social welfare function based on majority rule, i.e., it assigns
aPb if |N(a, b, r)| > |N(b, a, r)|; bPa if |N(a, b, r)| < |N(b, a, r)|; and aIb if
|N(a, b, r)| = |N(b, a, r)|. This clearly satisfies IIA, PE, and nondictatoriality.
The social choice function that assigns the top alternative of this ranking
and a if aIb, satisfies surjectivity unanimity, monotonicity, strategy-proofness,
nondictatoriality.
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Review Problems of Part I

RP 1 Matrix Games (1)
(a) All rows are (pure) maximin strategies (with minimum 0) and all columns
are pure minimax strategies (with maximum 2). The value of the game is
between 0 and 2 (which is obvious anyway in this case).
(b) The third column is strictly dominated by the second column and the
third row is strictly dominated by the second row. Entry (1, 2) is a saddlepoint,
hence the value of the game is 2. The unique maximin strategy is (1, 0, 0), and
the minimax strategies are the strategies in the set {(q, 1−q, 0) | 0 ≤ q ≤ 1/2}.
(c) The second and third rows are the maximin rows. The second column is
the unique minimax column. From this we can conclude that the value of the
game is between 1 and 2. The first and fourth columns are strictly dominated
by the second. Next, the first row is strictly dominated by the last row. The
unique maximin strategy is (0, 2/3, 1/3) and the unique minimax strategy is
(0, 2/3, 1/3, 0). The value of the game is 5/3.

RP 2 Matrix Games (2)
(a) The first row is the unique maximin row (with minimum 2) and both
columns are minimax columns (with maximum 5). So the value is between 2
and 5. The game has no saddlepoint.
(b) v(A1) = 5/2, v(A2) = 20/7, v(A3) = 2 (saddlepoint), v(A4) = 1 (saddle-
point), v(A5) = 7/3, v(A6) = 25/9. Since player 1 can pick rows, the value
must be the maximum of these amounts, hence 20/7, the value of A2.
(c) The unique maximin strategy is (5/7, 0, 2/7, 0) and the unique minimax
strategy is (3/7, 4/7).

RP 3 Matrix Games (3)
(a) The unique maximin row is the first row, with minimum 8. The unique
minimax column is the first column, with maximum 12. So the value of the
game is between 8 and 12. The game has no saddlepoint.
(b) The second row is strictly dominated by for instance putting probability
1/2 on the first row and 1/2 on the third row. After eliminating the second
row, the third column is strictly dominated by the first column.
(c) The unique maximin strategy is (1/2, 0, 1/2) and the unique minimax
strategy is (3/4, 1/4, 0). The value of the game is 10.

RP 4 Bimatrix Games (1)
(a) D is strictly dominated by 3/5 ·U +2/5 ·M . Next, C is strictly dominated
by R.
(b) In the reduced (two by two) game, the best reply function of player 1 is:
play U if player 2 puts less than probability 2/5 on L, play M if player 2
puts more than probability 2/5 on L, and play any combination of U and M
if player 2 puts probability 2/5 on L. The best reply function of player 2 is:
play R if player 1 puts positive probability on U , and play any combination of
L and R if player 1 plays M . The set of Nash equilibria is: {((1, 0), (0, 1))} ∪
{((0, 1), (q, 1 − q)) | 1 ≥ q ≥ 2/5}.
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(c) The set of Nash equilibria in the original game is: {((1, 0, 0), (0, 0, 1))} ∪
{((0, 1, 0), (q, 0, 1 − q)) | 1 ≥ q ≥ 2/5}.
RP 5 Bimatrix Games (2)
(a) For x > 2: {((1, 0), (1, 0))}. For x = 2: {((1, 0), (1, 0))}∪{((p, 1−p), (0, 1)) |
0 ≤ p ≤ 1/2}. For 0 < x < 2: {((1/2, 1/2), ((2 − x)/2, x/2))}. For x = 0:
{((0, 1), (0, 1))}∪{((p, 1−p), (1, 0)) | 1 ≥ p ≥ 1/2}. For x < 0: {((0, 1), (0, 1))}.
(b) f is strictly dominated by 1/3 · e + 2/3 · g. Next: b is strictly domi-
nated by c, e by g, a by d. The remaining two by two game has a unique
Nash equilibrium. In the original game the unique Nash equilibrium is
((0, 0, 4/9, 5/9), (0, 0, 1/2, 1/2)).

RP 6 Voting
(a)




(4, 0) (3, 1) (2, 2)

(4, 0) 3/2, 3/2 1, 2 1, 2
(3, 1) 2, 1 3/2, 3/2 1, 2
(2, 2) 2, 1 2, 1 3/2, 3/2




(b) By iterated elimination of strictly dominated strategies it follows that the
unique Nash equilibrium in this game is ((2, 2), (2, 2)). (This is a constant sum
game: (2, 2) is the optimal strategy for each party.)

RP 7 A Bimatrix Game
(a) For a 6= 0 the unique Nash equilibrium is ((1/2, 1/2), (1/2, 1/2)). For
a = 0 the set of Nash equilibria is {((p, 1−p), (0, 1)) | 1 ≥ p > 1/2}∪{((p, 1−
p), (1, 0)) | 0 ≤ p < 1/2} ∪ {((1/2, 1/2), (q, 1 − q)) | 0 ≤ q ≤ 1}.
(b) The strategic form of this game is

( LL LR RL RR

T a, 0 a, 0 0, 1 0, 1
B 0, 1 a, 0 0, 1 a, 0

)

There are two subgame perfect equilibria in pure strategies: player 1 plays T
and player 2 plays RL (i.e., R after T and L after B); and player 1 plays B
and player 2 plays RL.

RP 8 An Ice-cream Vendor Game
(a) There are four different situations: (i) all vendors in the same location: each
gets 400; (ii) two in the same location and the third vendor in a neighboring
location: the first two get 300 and the third gets 600; (iii) two in the same
location and the third vendor in the opposite location: the first two get 300
and the third gets 600; and (iv) all vendors in different locations: the middle
one gets 300 and the others get 450 each. From this it is easily seen that (iii)
and (iv) are Nash equilibria but (i) and (ii) are not Nash equilibria.
(b) There are many subgame perfect Nash equilibria, but they can be reduced
to three types: (i) player 1 chooses arbitrarily, player 2 chooses the opposite
location of player 1, and player 3 chooses a remaining optimal open location;
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(ii) player 1 chooses arbitrarily, player 2 chooses one of the neighboring lo-
cations of player 1, and player 3 chooses the opposite location of player 2 if
that is unoccupied, and otherwise the same location as player 2; (iii) player 1
chooses arbitrarily, player 2 chooses the same location as player 1, and player
3 chooses the opposite location of player 1.

RP 9 A Repeated Game
(a) (U,L,B) and (D,R,B).
(b) In the second period, after each action combination of the first period,
one of the two equilibria in (a) has to be played.
(c) In the first period player 1 plays U , player 2 plays R, and player 3 plays
A. In the second period, if the first period resulted in (U,R,A) then player 1
plays D, player 2 plays R, and player 3 plays B; in all other cases, player 1
plays U , player 2 plays L, and player 3 plays B.
(d) In the first period player 1 plays U , player 2 plays R, and player 3 plays
B. In the second period, if the first period resulted in (U,R,B) then player 1
plays U , player 2 plays L, and player 3 plays B; in all other cases, player 1
plays D, player 2 plays R, and player 3 plays B.

RP 10 Locating a Pub
(a) Player 1 has 3 pure strategies and player 2 has 8 pure strategies.
(b) Player 1 chooses B. Player 2 chooses B, C, B, if player 1 chooses A, B,
C respectively.
(c) Player 1 has 24 pure strategies and player 2 has 8 pure strategies.
(d) (i) Player 1 plays A; after A the subgame equilibrium (B,C) is played,
after B the subgame equilibrium (A,C), and after C the subgame equilibrium
(A,B). (ii) Player 1 plays B; after A the subgame equilibrium (B,C) is played,
after B the subgame equilibrium (C,A), and after C the subgame equilibrium
(A,B). (iii) Player 1 plays C; after A the subgame equilibrium (B,C) is
played, after B the subgame equilibrium (C,A), and after C the subgame
equilibrium (B,A).

RP 11 A Two-stage Game
(a) In G1: (D,R); in G2: (T,X), (M,Y ), and (B,Z).
(b) Each player has 2 · 34 = 162 pure strategies.
(c) In G1 player 1 plays U and player 2 plays L. In G2 the players play as
follows. If (U,L) was played, then player 1 plays M and player 2 plays Y . If
(D,L) was played, then player 1 plays B and player 2 plays Z. If (U,R) was
played, then player 1 plays T and player 2 plays X. If (D,R) was played, then
player 1 plays M and player 2 plays Y .
(d) In the second stage (in G1) always (U,L) has to be played. Hence, there are
three subgame perfect equilibria, corresponding to the three Nash equilibria
of G2.

RP 12 Job Market Signaling
(a)
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[1 − α]

[α]
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[1 − β]

[β]

(b) The Nash equilibria are: (i) type H plays E, type L plays N , F plays M
after E and C after N ; (ii) both types play N , F always plays C.
(c) The equilibrium in (i) is separating with (forced) beliefs α = 1 and β =
0. The equilibrium in (ii) is pooling with β = 1/3 (forced) and α ≤ 2/5.
According to the intuitive criterion we must have α = 1, so that the intuitive
criterion is not satisfied by the latter equilibrium. (It does not apply to the
first equilibrium.)

RP 13 Second-hand Cars (1)
(a,b) The extensive form of this signaling game is as follows:
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5, 5

0, 0

15, 5

0, 0

15,−5

0, 0

15, 5

[1 − α]

[α]

2 2

[1 − β]

[β]

The strategic form is:



40 Complete Solutions




bb bn nb nn

CC 10, 5 10, 5 0, 0 0, 0
CN 15, 0 7.5, 2.5 7.5,−2.5 0, 0
NC 10, 5 2.5, 2.5 7.5, 2.5 0, 0
NN 15, 0 0, 0 15, 0 0, 0




The Nash equilibria are: (CC, bn), (NN, bb), (NN,nb), (NN,nn).
(c) (CC, bn) is pooling with β ≤ 1/2, (NN, bb) is pooling for all α. The other
two equilibria are not perfect Bayesian, since player 2 will play b after C.

RP 14 Second-hand Cars (2)
(a) This is a static game of incomplete information, represented by the pair
G1, G2:

G1 =




1 3 5

1 1,−1 0, 0 0, 0
3 0, 0 −1, 1 0, 0
5 −1, 1 −2, 2 −3, 3


 G2 =




1 3 5

1 3,−3 0, 0 0, 0
3 2,−2 1,−1 0, 0
5 1,−1 0, 0 −1, 1




where G1 is played with probability 25% and G2 with probability 75%. (The
numbers should be multiplied by 1000, the buyer is the row and the seller the
column player.)
(b) The buyer has one type and three pure strategies, the seller has two types
and nine pure strategies.
(c) Strategy “5” is strictly dominated by strategy “3”.
(d) Against strategy “3” of the buyer the best reply of the seller is the com-
bination (3, 5), but against this combination the best reply of the buyer is
“1”.
(e) Against strategy “1” of the buyer the seller has four best replies: (3, 3),
(3, 5), (5, 3), and (5, 5). In turn, (only) against (3, 5) and (5, 5) is “1” a best
reply. Hence there are two Nash equilibra in pure stategies: (i) (1, (3, 5)) and
(ii) (1, (5, 5)). No trade is going to take place.

RP 15 Signaling Games
(a) The strategic form with best replies underlined is:




uu ud du dd

LL 2, 1 2, 1 1.5, 0.5 1.5, 0.5
LR 2.5, 1.5 1.5, 1 2, 0.5 1, 0
RL 1, 0 0.5, 0.5 1, 0.5 0.5, 1
RR 1.5, 0.5 0, 0.5 1.5, 0.5 0, 0.5




(LR, uu) is a separating perfect Bayesian equilibrium with beliefs α = 1 and
β = 0. (LL, ud) is a pooling Bayesian equilibrium with beliefs α = 1/2 and
β ≥ 1/2. For the latter, the intuitive criterion requires β = 0, so that this
equilibrium does not satisfy it.
(b) The strategic form with best replies underlined is:
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


uu ud du dd

LL 3, 1.5 3, 1.5 0.5, 1 0.5, 1
LR 2, 1 2.5, 0 1, 1.5 1.5, 0.5
RL 1.5, 1.5 3.5, 2 0, 0.5 2, 1
RR 0.5, 1 3, 0.5 0.5, 1 3, 0.5




(LL, uu) is a pooling perfect Bayesian equilibrium with beliefs α = 1/2 and
β ≤ 2/3. The intuitive criterion requires β = 1, so this pooling equilibrium
does not satisfy it. (LR, du) is a separating perfect Bayesian equilibrium with
beliefs α = 1 and β = 0, and (RL, ud) is a separating perfect Bayesian equi-
librium with beliefs α = 0 and β = 1.

RP 16 A Game of Incomplete Information
(a) Start with the decision node of player 1. Player 1 has four actions/strategies:
AA, AB, BA, BB. All these actions lead to one and the same information set
of player 2, who has three actions/strategies: C, D, E.
(b) The strategic form is:




C D E

AA 3, 2 1.5, 1.5 2.5, 1.5
AB 4, 2.5 2.5, 3 1, 1.5
BA 3, 2 1.5, 1.5 2.5, 1.5
BB 4, 2.5 2.5, 3 1, 1.5




The Nash equilibria in pure strategies are (AB,D) and (BB,D).
(c) Player 1 has now two pure strategies, namely A and B. If player 1 plays
A then the best reply of player 2 is EC. Against EC, the payoff of A is 1.5
and the payoff of B is 2.5, so that A is not a best reply against EC. Against
B, the best reply of player 2 is ED. In turn, B is player 1’s best reply against
ED (yields 2 whereas A only yields 1). So the unique Nash equilibrium in
pure strategies is (B,ED).

RP 17 A Bayesian Game
(a) This is the game

( F Y

F −1, 1 1, 0
Y 0, 1 0, 0

)

with (Y, F ) as unique Nash equilibrium (also in mixed strategies).
(b) Start with the decision node for player 1, who has two actions/strategies:
F and Y . Player 2 has a singe information set and four actions/strategies:
FF , FY , Y F , Y Y .
(c) The strategic form is:

( FF FY Y F Y Y

F 1 − 2α, 2α− 1 1 − 2α, α 1, α− 1 1, 0
Y 0, 1 0, α 0, 1 − α 0, 0

)
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For α = 0 the Nash equilibria in pure strategies are (F, FY ) and (F, Y Y ). For
0 < α < 1/2: (F, FY ). For α = 1/2: (F, FY ) and (Y, FF ). For 1/2 < α < 1:
(Y, FF ). For α = 1: (Y, FF ) and (Y, FY ).

RP 18 Entry as a Signaling Game
(a) The extensive form of this signaling game is:
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(b,c) The strategy combination (pu, af) (strong type p, incumbent a after p)
is a Nash equilibrium. It is a separating perfect Bayesian equilibrium for α = 1
and β = 0. Also (uu, ff) is a Nash equilibrium. It is pooling perfect Bayesian
for β = 1/2 and α ≤ 1/2. It does not satisfy the intuitive criterion since that
requires α = 1.

RP 19 Bargaining (1)
(a) Player 1 has only one type. Player 2 has infinitely many types, namely
each v ∈ [0, 1] is a possible type of player 2. A typical strategy of player 1
consists of a price p1 ∈ [0, 1] and a yes/no decision depending on the price
p2 of player 2 if that player rejects p1 – in principle, the yes/no decision may
also depend on p1.
(b) A typical strategy of player 2 consists, for every type v ∈ [0, 1], of a yes/no
decision depending on the price p1 asked by player 1 and a price p2 in case
the decision was ‘no’. In principle, p2 may also depend on p1 (not only via the
yes/no decision).
(c) Player 2 accepts if v − p1 ≥ δv (noting that he can offer p2 = 0 if he does
not accept the price p1 of player 1); rejects and offers p2 = 0 if v − p1 < δv.
(d) Using (c) player 1 asks the price p1 that maximizes p1 ·Pr[p1 ≤ (1− δ)v],
i.e., his expected payoff – note that his payoff is 0 if player 2 rejects. Hence,
player 1 solves maxp1∈[0,1] p1 ·[1−p1/(1−δ)], which has solution p1 = (1−δ)/2.
So the equilibrium is, that player 1 asks this price and accepts any price of
player 2; and player 2 accepts any price at most (1 − δ)/2, and rejects any
higher price and then offers p2 = 0.
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RP 20 Bargaining (2)
(a) The (Pareto) boundary of the feasible set consists of all pairs (x, 1 − x2)
for x ∈ [0, 1].
(b) The Nash bargaining solution outcome is found by maximizing the expres-
sion x(1−x2) over all x ∈ [0, 1]. The solution is ((1/3)

√
3, 2/3). In distribution

of the good: ((1/3)
√

3, 1 − (1/3)
√

3).
(c),(d) Let (x, 1−x2) be the proposal of player 1 and (y, 1−y2) that of player
2. Then the equations 1 − x2 = δ(1 − y2) and y = δx hold for the Rubinstein
outcome. This results in x = 1/

√
1 + δ + δ2; taking the limit for δ → 1 gives

(1/3)
√

3, which is indeed the Nash bargaining solution outcome for player 1.

RP 21 Bargaining (3)
(a) Player 1 proposes (1 − δ + (1/2)δ2, δ − (1/2)δ2) at t = 0 and player 2
accepts. Note that 1− δ + (1/2)δ2 > δ − (1/2)δ2, so the beginning player has
an advantage.
(b) If the utility function of player 2 were the same as that of player 1, then
the Nash bargaining solution would result in equal split. This is still the
case if player 2’s utility function is multiplied by 2, as is the case here: the
maximum of u(x) ·2u(1−x) is attained at the same point as the maximum of
u(x)·u(1−x). So the division of the good is (1/2, 1/2). In terms of utilities, this
gives (u(1/2), 2u(1/2)). (The Nash bargaining solution is symmetric, Pareto
optimal, and scale covariant: see Chap. 10.)

RP 22 Ultimatum Bargaining
(a) Player 1 chooses an action/strategy (1 −m,m). Player 2 decides for each
strategy of player 1 whether to accept or reject the offer. If he accepts, the
payoffs are (1 −m,m+ a(2m− 1)), otherwise the payoffs are (0, 0).
(b) Player 1 proposes (1−a/(1+2a), a/(1+2a)), and player 2 accepts (1−m,m)
if and only if m ≥ a/(1+2a). Hence, the outcome is (1−a/(1+2a), a/(1+2a)).
(c) If a becomes large, then this outcome converges to equal split: this is
because then player 2 cares mainly about the division and not so much about
what he gets.

RP 23 An Auction (1)
(a) The game has imperfect but complete information.
(b) The unique Nash equilibrium is each bidder bidding v1 = v2.
(c) There is no Nash equilibrium.
(d) The associated bimatrix game is:




0 1 2 3

0 1/2, 3/2 0, 2 0, 1 0, 0
1 0, 0 0, 1 0, 1 0, 0
2 −1, 0 −1, 0 −1/2, 1/2 0, 0
3 −2, 0 −2, 0 −2, 0 −1, 0




The Nash equilibria are (0, 1), (1, 1), and (1, 2).



44 Complete Solutions

RP 24 An Auction (2)
(a) Let bi < vi. If bi wins then vi is equally good. If bi loses and the winning
bid is below vi then vi is a strict improvement. If bi loses and the winning bid
is at least vi then vi is at least as good. If, on the other hand, bi > vi, then, if
bi wins, the fourth-highest bid is below vi and the second highest bid is above
vi, then bidding vi results in zero instead of positive payoff.
(b) For instance, player 2 can improve by any bid above v1.
(c) All bidders bid ṽ where ṽ ∈ [v2, v1].

RP 25 An Auction (3)
(a) The best reply function b2 of player 2 is given by: b2(0) = {1}, b2(1) = {2},
b2(2) = {3}, b2(3) = b2(4) = {0, . . . , 4}, b2(5) = {0, . . . , 5}, b2(6) = {0, . . . , 6}.
The best reply function b1 of player 1 is given by: b1(0) = {0}, b1(1) = {1},
b1(2) = {2}, b1(3) = {3}, b1(4) = {4}, b1(5) = {5}, b1(6) = {0, . . . , 6}.
(b) The Nash equilibria are: (3, 3), (4, 4), (5, 5), and (6, 6).

RP 26 Quantity Versus Price Competition
(a) The profit functions are q1(4− 2q1 − q2) and q2(4− q1 − 2q2) respectively
(or zero in case an expression is negative). The first-order conditions (best
reply functions) are q1 = (4 − q2)/4 and q2 = (4 − q1)/4 (or zero) and the
equilibrium is q1 = q2 = 4/5 with associated prices equal to 8/5 and profits
equal to 32/25.
(b) Follows by substitution.
(c),(d) The profit functions are (1/3)p1(p2−2p1 +4) and (1/3)p2(p1−2p2 +4)
(or zero) respectively. The first-order conditions (best reply functions) are
p1 = (p2 + 4)/4 and p2 = (p1 + 4)/4. The equilibrium is p1 = p2 = 4/3
with associated quantities q1 = q2 = 8/9 and profits equal to 32/27. Price
competition is tougher.

RP 27 An Oligopoly Game (1)
(a),(b) Player 1 chooses q1 ≥ 0. Players 2 and 3 then choose q2 and q3 simul-
taneously, depending on q1. The best reply functions of players 2 and 3 in the
subgame following q1 are q2 = (a− q1 − q3 − c)/2 and (a− q1 − q2 − c)/2 (or
zero), and the equilibrium in the subgame is q2 = q3 = (a− q1 − c)/3. Player
1 takes this into account and maximizes q1(a− c− q1−2(a− q1− c)/3), which
gives q1 = (a−c)/2. Hence, the subgame perfect equilibrium is: player 1 plays
q1 = (a− c)/2; players 2 and 3 play q2 = q3 = (a− q1 − c)/3. The outcome is
player 1 playing (a− c)/6 and players 2 and 3 playing (a− c)/6.

RP 28 An Oligopoly Game (2)
(a) The best-reply functions are q1 = (10 − q2 − q3)/2, q2 = (10 − q1 − q3)/2,
q3 = (9 − q1 − q2)/2.
(b) The equilibrium is q1 = q2 = 11/4, q3 = 7/4.
(c) To maximize joint profit, q3 = 0 and q1 + q2 = 5. (This follows by using
intuition: firm 3 has higher cost, or by solving the problem as a maximization
problem under nonnegativity constraints.)

RP 29 A Duopoly Game with Price Competition
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(a) The monopoly price of firm 1 is p1 = 65 and the monopoly price of player
2 is p2 = 75.
(b)

p1(p2) =





{x | x > p2} if p2 < 30
{x | x ≥ 30} if p2 = 30
{31} if p2 = 31
{p2 − 1} if p2 ∈ [32, 65]
{65} if p2 ≥ 66

p2(p1) =





{x | x > p1} if p1 < 50
{x | x ≥ 50} if p1 = 50
{51} if p1 = 51
{p1 − 1} if p1 ∈ [52, 75]
{75} if p1 ≥ 76

(c) (p1, p2) = (31, 32).
(d) (p1, p2) = (50, 51).

RP 30 Contributing to a Public Good
(a) The Nash equilibria in pure strategies are all strategy combinations where
exactly two persons contribute.
(b) The expected payoff of contributing is equal to −3+8(1− (1−p)2), which
in turn is equal to 16p− 8p2 − 3.
(c) A player should be indifferent between contributing or not if the other two
players contribute, hence 16p− 8p2 − 3 = 8p2. This holds for p = 1/4 and for
p = 3/4.

RP 31 A Demand Game
(a) Not possible: each player can gain by raising his demand by 0.1. (b) Not
possible: at least one player has xi > 0.2 and can gain by decreasing his
demand by 0.2. (c) The unique Nash equilibrium is (0.5, 0.5, 0.5). (d) A Nash
equilibrium is for instance (0.6, 0.6, 0.6).
(e) All triples with sum equal to one, and all triples such that the sum of each
pair is at least one.

RP 32 A Repeated Game (1)
(a) The unique Nash equilibrium in the stage game is ((2/3, 1/3), (1/2, 1/2)),
with payoffs (8, 22). Therefore, all payoffs pairs in the quadrangle with vertices
(16, 24), (0, 25), (0, 18), and (16, 16) which are strictly larger than (8, 22), as
well as (8, 22), can be reached as long run average payoffs in a subgame perfect
equilibrium in the repeated game, for suitable choices of δ.
(b) Write G = (A,B), then v(A) = 8 and −v(−B) = 18. Therefore, all payoffs
pairs in the quadrangle with vertices (16, 24), (0, 25), (0, 18), and (16, 16)
which are strictly larger than (8, 20), can be reached as long run average
payoffs in a Nash equilibrium in the repeated game, for suitable choices of δ.
(c) The players alternate between (T,L) and (B,R). Player 1 has no incentive
to deviate, but uses the eternal punishment strategy B to keep player 2 from
deviating. Player 2 will not deviate provided

25 + 18δ/(1 − δ) ≤ 24/(1 − δ2) + 16δ/(1 − δ2)

and
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18 + 18δ/(1 − δ) ≤ 16/(1 − δ2) + 24δ/(1 − δ2) .

The first inequality is satisfied if δ is at least (approximately) 0.55, and the
second inequality if δ ≥ 1/3. Hence, this is a Nash equilibrium for δ ≥ 0.55.
It is not subgame perfect since player 2 can obtain 22 by playing the stage
game equilibrium strategy.

RP 33 A Repeated Game (2)
(a) (D,C), (D,R), and (M,R).
(b) Let ((p1, p2, p3), (q1, q2, q3)) be a Nash equilibrium. First consider the case
q3 < 1. Then p1 = 0 and therefore q1 = 0. If p2 > 0 then q2 = 0 and q3 = 1,
a contradiction. Hence, p2 = 0, and then p3 = 1. We obtain the set of Nash
equilibria {((0, 0, 1), (0, q2, q3)) | q2, q3 ≥ 0, q2 + q3 = 1, q3 < 1}.

Next, consider the case q3 = 1. Then 9p1 +p2 +4p3 ≤ p1 +2p2 +4p3, hence
8p1 ≤ p2. We obtain another set of Nash equilibria {((p1, p2, p3), (0, 0, 1)) |
p1 ≥ 0, 8p1 ≤ p2, p1 + p2 = 1}.
(c) Each player has 3× 39 = 310 pure strategies. In the first stage the players
play (U,L) and in the second stage they play (for instance) according to the
table




L C R

U D,R M,R D,R
M D,C D,R D,R
D D,C D,R D,R


 .

(d) Always play (U,L) but after a deviation by player 1, player 2 reverts to
C forever, to which player 1 replies by D, and after a deviation by player
2, player 1 reverts to M forever, to which player 2 replies by R. This is a
subgame perfect equilibrium provided that

10 + 2δ/(1 − δ) ≤ 8/(1 − δ) ⇔ δ ≥ 1/4

and
9 + 2δ/(1 − δ) ≤ 8/(1 − δ) ⇔ δ ≥ 1/7

hence if δ ≥ 1/4.

RP 34 A Repeated Game (3)
(a) (D,L), (U,R), and (D,R).
(b) The second row and next the second column can be deleted by iter-
ated elimination of strictly dominated strategies. This results in the sets
of Nash equilibria {((0, 0, 1), (q1, 0, q3)) | q1, q3 ≥ 0, q1 + q3 = 1} and
{((p1, 0, p3), (0, 0, 1)) | p1, p3 ≥ 0, p1 + p3 = 1}.
(c) In the first stage the players play (M,C) and in the second stage they play
(for instance) according to the table




L C R

U D,R D,L D,R
M U,R D,R D,R
D D,R D,L D,R


 .
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(d) Always play (M,C) but after a deviation by player 1 player 2 reverts to
L forever, to which player 1 replies by D, and after a deviation by player 2
player 1 reverts to U , to which player 2 replies by R. This is a subgame perfect
equilibrium provided that

12 + δ/(1 − δ) ≤ 10/(1 − δ)

which holds for δ ≥ 2/11.

RP 35 A Repeated Game (4)
(a) Player 1 plays B and player 2 plays L in both stages.
(b) They play (T,L) in the first stage. If player 1 would deviate to B, then
player 2 plays R in the second stage, otherwise L. Player 1 plays B in the
second stage.
(c) Since (B,L) is the unique Nash equilibrium in the stage game and there
are no payoff pairs better for both players, the only possibility is that player
1 plays B and player 2 plays L forever. This is a subgame perfect equilibrium
for any value of δ, with long run average payoffs (5, 5).

RP 36 A Repeated Game (5)
(a) Only (T,L).
(b) The payoff pair (2, 1), and all payoff pairs larger for both players in the
triangle with vertices (5, 0), (0, 6), and (1, 1).
(c) At even times play (B,L) and at odd times play (T,R). After a deviation
revert to T (player 1) and L (player 2) forever. This is a subgame perfect
Nash equilibrium provided that

2 + 2δ/(1 − δ) ≤ 5δ/(1 − δ2)

and
1 + δ/(1 − δ) ≤ 6δ/(1 − δ2)

which is equivalent to δ ≥ max{2/3, 1/5} = 2/3.

RP 37 An Evolutionary Game
(a) The species consists of 100p% animals of type C and 100(1− p)% animals
of type D.
(b) ṗ = p(0p+2(1−p)−2p(1−p)−3(1−p)p−(1−p)2) which after simplification
yields ṗ = 4p(p−1)(p−1/4). Hence the rest points are p = 0, 1/4, 1 and p = 1/4
is stable.
(c) The unique symmetric Nash equilibrium strategy is (1/4, 3/4). One has to
check that (1/4, 3/4)A(q, 1 − q) > (q, 1 − q)A(q, 1 − q) for all q 6= 1/4, which
follows readily by computation.

RP 38 An Apex Game
(a) Suppose (x1, . . . , x5) is in the core. Since x1 + x2 ≥ 1, and all xi are
nonnegative and sum to one, we must have x3 = x4 = x5 = 0. Similarly,
x2 = 0, but this contradicts x2 + . . .+ x5 ≥ 1. So the core is empty.
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(b) Φ2(v) = 1!3!/5!+3!1!/5! = 1/10, hence Φ(v) = (6/10, 1/10, 1/10, 1/10, 1/10).
(c) Let (1−4a, a, a, a, a) be the nucleolus of this game. The relevant (maximal)
excesses to consider are 1−(1−4a)−a = 3a (e.g., {1, 2}) and 1−4a ({2, . . . , 5}).
Equating these yields a = 1/7.

RP 39 A Three-person Cooperative Game (1)
(a) For a > 10 the core is empty. For a = 10, a core element is for instance
(0, 5, 5). Hence, a ≤ 10.
(b) The Shapley value is ((25−2a)/6, (19+a)/6, (16+a)/6). By writing down
the core constraints, it follows that this is in the core for −13 ≤ a ≤ 8.75.
(c) At this vector, the excesses of the three two-player coalitions are equal,
namely to (a − 14)/3. For this tobe the nucleolus we need that the excesses
of the one-person coalitions are not larger than this, i.e.,

(2a− 16)/3 ≤ (a− 14)/3, (−a− 4)/3 ≤ (a− 14)/3, (−a− 7)/3 ≤ (a− 14)/3

and it is straightforward to check that this is true for no value of a.

RP 40 A Three-person Cooperative Game (2)
(a) The core is nonempty for a ≤ 1. In that case, the core is the quadrangle
(or line segment if a = 1) with vertices (1, 2, 2), (a, 2, 3 − a), (1, 1, 3), and
(a, 2 − a, 3).
(b) The Shapley value is ((2a + 7)/6, (10 − a)/6, (13 − a)/6), which is in the
core for −2 ≤ a ≤ −1/2.
(c) By equating the excesses of the two-person coalitions we obtain the vector
(2/3, 5/3, 8/3) with excess −1/3. This is the nucleolus if a − 2/3 ≤ −1/3,
hence if a ≤ 1/3.

RP 41 Voting
(a) The winning coalitions (omitting set braces) are AB, AC, ABC, ABD,
ACD, ABCD, and BCD. Then ΦA(v) = 1!2!/4!+1!2!/4!+2!1!/4!+2!1!/4!+
2!1!/4! = 5/12. Similarly, one computes the other values to obtain Φ(v) =
(1/12)(5, 3, 3, 1). (In fact, it is sufficient to compute ΦB(v) and ΦC(v).)
(b) pA = 5, pB = 3, pC = 3, pD = 1; β(A) = 5/12, β(B) = 3/12, β(C) = 3/12,
β(D) = 1/12.
(c) The winning coalitions are AB, AC, ABC. The Shapley value is (2/3, 1/6,
1/6). Further, pA = 3, pB = pC = 1; β(A) = 3/5, β(B) = β(C) = 1/5.

RP 42 An Airport Game
(a) v(1) = v(2) = v(3) = 0, v(12) = v(13) = c1, v(23) = c2, and v(N) =
c1 + c2.
(b) The core is the quadrangle with vertices (c1, c2, 0), (0, c2, c1), (0, c1, c2),
and (c1, 0, c2).
(c) Φ(v) = (1/6)(4c1, 3c2 + c1, 3c2 + c1). This is a core element (check the
constraints).
(d) The nucleolus is of the form (a, (c1+c2−a)/2, (c1+c2−a)/2). By equating
the excesses of the two-person coalitions it follows that a = (3c1−c2)/3, hence
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the nucleolus would be ((3c1 − c2)/3, 2c2/3, 2c2/3) and the excess of the two-
person coalitions is then −c2/3. We need that the excesses of the one-person
coalitions are not larger, that is, −(3c1 − c2)/3 ≤ −c2/3 and −(2/3)c2 ≤
−c2/3. This results in the condition c1 ≥ 2c2/3.

RP 43 A Glove Game
(a) By straightforward computation, Φ(v) = (1/60)(39, 39, 14, 14, 14): note
that it is sufficient to compute one of these values.
(b) C(v) = {(1, 1, 0, 0, 0)}.
(c) By (b) and the fact that the nucleolus is in the core whenever the core is
nonempty, the nucleolus is (1, 1, 0, 0, 0, ).

RP 44 A Four-person Cooperative Game
(a) C(v) = {x ∈ R4 | xi ≥ 0∀i, x1 + x2 = x3 + x4 = 2, x1 + x3 ≥ 3}. In the
intended diagram, the core is a triangle with vertices (2, 1), (2, 2), and (1, 2).
(b) Φ(v) = (1/4)(5, 3, 5, 3) (it is sufficient to compute one of these values).

RP 45 A Matching Problem
(a) The resulting matching is (x1, y4), (x2, y3), (x3, y2), (x4, y1).
(b) The resulting matching is (x1, y4), (x2, y3), (x3, y1), (x4, y2).
(c) x1 prefers y4 over y1 and y4 prefers x1 over y4.
(d) In any core matching, x2 and y3 have to be paired, since they are each
other’s top choices. Given this, x1 and y4 have to be paired. This leaves only
the two matchings in (a) and (b).

RP 46 House Exchange
(a) There are two core allocations: 1 : h1, 2 : h3, 3 : h2 and 1 : h2, 2 : h3, 3 : h1.
(b) The unique top trading cycle is 1, 2, 3, with allocation 1 : h2, 2 : h3, 3 : h1.
(c) Take preference h1, h2, h3 with unique core allocation 1 : h1, 2 : h3, 3 : h2.

RP 47 A Marriage Market
(a) m1 must be paired to his favorite woman in the core. Next, m2 must be
paired to his favorite of the remaining women, etc.
(b) (m1, w1), (m2, w2), (m3, w3), (m4, w4).
(c) (m1, w4), (m2, w3), (m3, w2), (m4, w1).
(d) (m1, w2), (m2, w1), (m3, w3), (m4, w4) (one can reason about this but also
just try the six possibilities).

Problems of Chapter 12

12.1 Solving a Matrix Game
(a) Column 1 is strictly dominated by column 2. Next, row 4 is strictly dom-
inated by row 3. Finally, column 3 is strictly dominated by α times column 2
and 1 − α times column 4 for any 1/4 < α < 1/3.
(b) We obtain
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B =




4 1
3 2
0 4


 .

By solving the problem graphically we obtain v2(q, 1 − q) = 4 − 4q for 0 ≤
q ≤ 2/5, v2(q, 1 − q) = q + 2 for 2/5 ≤ q ≤ 1/2, v2(q, 1 − q) = 3q + 1 for
1/2 ≤ q ≤ 1. From this we obtain v(B) = 12/5 and the unique optimal
strategy of player 2 is (2/5, 3/5). The unique optimal strategy for player 1
is (0, 4/5, 1/5) (graphically). Further, we have v1(p1, p2, p3) = 4p1 + 3p2 if
4p1 + 3p2 ≤ p1 + 2p2 + 4p3, hence if 7p1 + 5p2 ≤ 4; and v1(p1, p2, p3) =
p1 + 2p2 + 4p3 if 7p1 + 5p2 ≥ 4.
(c) v(A) = 12/5 and the unique optimal strategies of players 1 and 2 are,
respectively, (0, 4/5, 1/5, 0) and (0, 2/5, 0, 3/5).
(d) Independent of y, the strategies in (c) still guarantee 12/5 to player 1 and
−12/5 to player 2. Hence, the answer is independent of y and the same as
in (c).

12.2 Proof of Lemma 12.2
For all p ∈ ∆m we have minq∈∆n pAq ≤ minq∈∆n(maxp′∈∆m p′Aq) = v2(A).
Hence, v1(A) = maxp∈∆m minq∈∆n pAq ≤ v2(A).

12.3 2 × 2 Games
(a) To have no saddlepoints we need a11 > a12 or a11 < a12. By assuming the
first, the other inequalities follow.
(b) For optimal strategies p = (p, 1 − p) and q = (q, 1 − q) we must have
0 < p < 1 and 0 < q < 1. Then it is easy to compute that p = [a22 −
a21]/[(a22 − a21) + (a11 − a12)] and q = [a22 − a12]/[(a22 − a21) + (a11 − a12)].
The value of the game is v(A) = pa11 + (1 − p)a12. It is then straightforward
to check that these expressions yield the formulas as stated in the problem.

12.4 Symmetric Games
Let x be optimal for player 1. Then xAy ≥ v(A) for all y; hence yAx =
−xAy ≤ −v(A) for all y; hence (take y = x) v(A) ≤ −v(A), so v(A) ≤ 0.

Let y be optimal for player 2. Then xAy ≤ v(A) for all x; hence yAx =
−xAy ≥ −v(A) for all x; hence (take x = y) v(A) ≥ −v(A), so v(A) ≥ 0.

Thus, v(A) = 0.
Let x be optimal for player 1, then xAy ≥ 0 for all y; hence −yAx ≥ 0 for

all y; hence yAx ≤ 0 for all y: this implies that x is also optimal for player
2. The converse is analogous.

12.5 The Duality Theorem Implies the Minimax Theorem
Let A be an m × n matrix game. Without loss of generality assume that all
entries of A are positive. Consider the associated LP as in Sect. 12.2.

Consider the vector x̄ = (1/m, . . . , 1/m, η) ∈ Rm+1 with η > 0. Since
all entries of A are positive it is straightforward to check that x̄ ∈ V if η ≤
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∑m
i=1 aij/m for all j = 1, . . . , n. Since x̄ · c = −η < 0, it follows that the value

of the LP must be negative.
Let x ∈ Omin and y ∈ Omax be optimal solutions of the LP. Then

−xm+1 = −yn+1 < 0 is the value of the LP. We have xi ≥ 0 for ev-
ery i = 1, . . . ,m,

∑m
i=1 xi ≤ 1, and (x1, . . . , xm)Aej ≥ xm+1 (> 0) for

every j = 1, . . . , n. Optimality in particular implies
∑m
i=1 xi = 1, so that

v1(A) ≥ (x1, . . . , xm)Aej ≥ xm+1 for all j, hence v1(A) ≥ xm+1. Similarly,
it follows that v2(A) ≤ yn+1 = xm+1, so that v2(A) ≤ v1(A). The Minimax
Theorem now follows.

12.6 Infinite Matrix Games
(a) A is an infinite matrix game with for all i, j ∈ N: aij = 1 if i > j, aij = 0
if i = j, and aij = −1 if i < j.
(b) Fix a mixed strategy p = (p1, p2, . . .) for player 1 with pi ≥ 0 for all
i ∈ N and

∑∞
i=1 pi = 1. If player 2 plays pure strategy j, then the expected

payoff for player 1 is equal to −∑j−1
i=1 pi +

∑∞
i=j+1 pi. Since

∑∞
i=1 pi = 1, this

expected payoff converges to −1 as j approaches ∞. Hence, infq pAq = −1,
so sup

p
infq pAq = −1. Similarly, one shows infq sup

p
pAq = 1, hence the

game has no ‘value’.

12.7 Equalizer Theorem
Assume, without loss of generality, v = 0. It is sufficient to show that there
exists q ∈ Rn with q ≥ 0, Aq ≤ 0, and qn = 1. The required optimal strategy
is then obtained by normalization.

This is equivalent to existence of a vector (q,w) ∈ Rn+m with q ≥ 0,
w ≥ 0, such that (

A I
en 0

)(
q

w

)
=

(
0

1

)
,

where row vector en ∈ Rn, I is the m×m identity matrix, 0 is an 1×m vector
on the left hand side and an m × 1 vector on the right hand side. Thus, we
have to show that the vector x := (0, 1) ∈ Rm+1 is in the cone spanned by the
columns of the (m+1)×(n+m) matrix on the left hand side. Call this matrix
B and call this cone Z. We assume x /∈ Z and derive a contradiction. By
Theorem 22.1 there is a p ∈ Rm+1 such that p ·z > p ·x = pm+1 for all z ∈ Z.
Since 0 ∈ Z, it follows that pm+1 < 0. Let i ∈ {1, . . . ,m}. By considering α
times column n + i of B, it follows that αpi > pm+1 for all positive α, but
this implies pi ≥ 0. By a similar argument, (p1, . . . , pm)Aej ≥ 0 for all j ∈
{1, . . . , n−1}. Also, (p1, . . . , pm)Aen+pm+1 > pm+1, so (p1, . . . , pm)Aen > 0;
so in particular (p1, . . . , pm) 6= 0. It follows that we can normalize (p1, . . . , pm)
to an optimal strategy of player 1 that gives positive payoff when played
against column n. This is the desired contradiction.

Problems of Chapter 13

13.1 Existence of Nash Equilibrium Using Brouwer
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(a) Clearly, fi,si
(σ) ≥ 0 for every i ∈ N and si ∈ Si, and

∑
si∈Si

fi,si
(σ) = 1.

(b) The set
∏
i∈N ∆(Si) is compact and convex, and f is continuous.

(c) Let σ∗ ∈∏i∈N ∆(Si). If σ∗ is a Nash equilibrium of G then

σ∗
i (si) =

σ∗
i (si) + max{0, ui(si, σ∗

−i) − ui(σ
∗)}

1 +
∑
s′

i
∈Si

max{0, ui(s′i, σ∗
−i) − ui(σ∗)} (∗)

for all i ∈ N and si ∈ Si, so that σ∗ is a fixed point of f . Conversely, let σ∗

be a fixed point of f . Then (∗) holds for all i ∈ N and si ∈ Si. Hence

σ∗
i (si)

∑

s′
i
∈Si

max{0, ui(s′i, σ∗
−i) − ui(σ

∗)} = max{0, ui(si, σ∗
−i) − ui(σ

∗)} .

Multiply both sides of this equation by ui(si, σ
∗
−i)−ui(σ∗) and next sum over

all si ∈ Si, to obtain

∑
si∈Si

σ∗
i (si)[ui(si, σ

∗
−i) − ui(σ

∗)]
∑
s′

i
∈Si

max{0, ui(s′i, σ∗
−i) − ui(σ

∗)}

=
∑
si∈Si

[ui(si, σ
∗
−i) − ui(σ

∗)]max{0, ui(si, σ∗
−i) − ui(σ

∗)} .

Now for the first factor on the left-hand side we have
∑

si∈Si

σ∗
i (si)[ui(si, σ

∗
−i) − ui(σ

∗)] =
∑

si∈Si

σ∗
i (si)ui(si, σ

∗
−i) − ui(σ

∗)

= ui(σ
∗) − ui(σ

∗)

= 0 .

Hence,

∑

si∈Si

[ui(si, σ
∗
−i) − ui(σ

∗)]max{0, ui(si, σ∗
−i) − ui(σ

∗)} = 0 .

But this implies ui(si, σ
∗
−i) − ui(σ

∗) ≤ 0 for all si. Hence, player i cannot
deviate profitably by any pure strategy, and therefore also not by any mixed
strategy (cf. Sect. 13.2.1). We conclude that σ∗ is a Nash equilibrium of G.

13.2 Existence of Nash Equilibrium Using Kakutani
For upper semi-continuity of β, take a sequence σk converging to σ, a sequence
τk ∈ β(σk) converging to τ , and show τ ∈ β(σ). This is straightforward. Also
convex-valuedness of β is straightforward.

13.3 Lemma 13.2
Consider player 1. The only-if direction is straightforward from the definition
of best reply. For the if-direction, note that if pAq ≥ eiAq for all i = 1, . . . ,m,
then also pAq ≥ ∑m

i=1 p
′
ie
iAq = p′Aq for all p′ = (p′1, . . . , p

′
n) ∈ ∆m. Simi-

larly for player 2.
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13.4 Lemma 13.3
Take i such that eiAq ≥ ekAq for all k = 1, . . . ,m. Then, clearly, eiAq ≥
p′Aq for all p′ ∈ ∆m, so ei ∈ β1(q). The second part is analogous.

13.5 Dominated Strategies
(a) Let (p∗,q∗) be a Nash equilibrium and suppose q∗n > 0. Define q̄

by q̄j = q∗j + q∗nqj for j = 1, . . . , n − 1 and q̄n = 0. Then q̄ ∈ ∆n

and p∗Bq̄ =
∑n−1
j=1 (q∗j + q∗nqj)p

∗Bej = q∗n(p
∗Bq) +

∑n−1
j=1 q

∗
j (p

∗Bej) >

q∗n(p
∗Ben) +

∑n−1
j=1 q

∗
j (p

∗Bej) = p∗Bq∗, a contradiction.

(b) Denote by NE(A,B) the set of Nash equilibria of (A,B). Then

(p∗,q∗) ∈ NE(A,B) ⇔ (p∗, (q′, 0)) ∈ NE(A,B) where (q′, 0) = q∗

⇔ ∀p ∈ ∆m,q ∈ ∆n−1[p∗A(q′, 0) ≥ pA(q′, 0),

p∗B(q′, 0) ≥ p∗B(q, 0)]

⇔ ∀p ∈ ∆m,q ∈ ∆n−1[p∗A′q′ ≥ pA′q′,

p∗B′q′ ≥ p∗B′q]

⇔ (p∗,q′) ∈ NE(A′, B′) .

Note that the first equivalence follows by part (a).

13.6 A 3 × 3 Bimatrix Game
(a) Suppose {1, 2} ⊆ C(p). Then 4q2 + 5q3 = 4q1 + 5q3, so q1 = q2 and q has
the form (α, α, 1 − 2α). But then the third row yields a payoff to player 1 of
6 − 6α whereas the first and second rows yield only 5 − 6α, a contradiction.
(b) Suppose {2, 3} = C(p). Then 4q2 + 5q3 ≤ 4q1 + 5q3, so q2 ≤ q1. However,
since p1 = 0 column 1 is strictly dominated for player 2, so q1 = 0 and
therefore q2 = 0. Then, however, C(p) = {3}, a contradiction.
(c) The only possibility left for a two-element carrier of p is {1, 3}, but then
the second column and next the first row is dominated, a contradiction. Hence
p must have a one-element carrier, and that can only be {3}. So the unique
Nash equilibrium is ((0, 0, 1), (0, 0, 1)).

13.7 A 3 × 2 Bimatrix Game
The best reply function of player 1 is:

β1(q) =





{e1} if q2 > q1
∆3 if q1 = q2 = 1

2
{p ∈ ∆3 | p1 = 0} if q2 < q1 .

The best reply function of player 2 is:

β2(p) =

{
{e2} if p1 > 0
∆2 if p1 = 0 .

The set of Nash equilibria is {(p,q) ∈ ∆3 × ∆2 | p1 = 0, q1 ≥ 1
2} ∪

{((1, 0, 0), (0, 1))}.
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13.8 The Nash Equilibria in Example 13.18
(a) Let p = (p1, p2, p3) be the strategy of player 1. We distinguish two cases:
(i) p2 = 0 (ii) p2 > 0.

In case (i), reduce the game to

( q1 q2 q3

p1 1, 1 0, 0 2, 0
p3 0, 0 1, 1 1, 1

)

where q = (q1, q2, q3) is player 2’s strategy. This game can be solved graph-
ically and yields the following set of Nash equilibria: {((1, 0), (1, 0, 0))} ∪
{((1/2, 1/2), (q, 1/2, 1/2 − q)) | 0 ≤ q ≤ 1/2} ∪ {((p, 1 − p), (0, 1/2, 1/2)) | 0 ≤
p ≤ 1/2}∪{((0, 1), (0, q, 1−q)) | 1/2 ≤ q ≤ 1}. As long as player 1 gets at least
1 (the payoff from playingM) these equilibria are also equilibria of the original
game G, so that we obtain: {((1, 0, 0), (1, 0, 0))}∪{((p, 0, 1−p), (0, 1/2, 1/2)) |
0 ≤ p ≤ 1/2} ∪ {((0, 0, 1), (0, q, 1 − q)) | 1/2 ≤ q ≤ 1}.

In case (ii), R gives a lower expected payoff to player 2 than C, so the
game can be reduced to




q1 q2

p1 1, 1 0, 0
p2 1, 2 1, 2
p3 0, 0 1, 1


 .

Solving this game graphically and extending to G yields the collections (iii)–
(v). Observe that the equilibrium ((1, 0, 0), (1, 0, 0)) is also a member of (iii).
(b) Consider again the perturbed games G(ε) as in Example 13.18. For q = 0
consider the strategy combination ((ε, 1−2ε, ε), (ε, 1−2ε, ε)) in G(ε): this is a
Nash equilibrium in G(ε), which for ε→ 0 converges to ((0, 1, 0), (0, 1, 0). For
q = 1 consider, similarly, ((ε, 1 − 2ε, ε), (1 − 2ε, ε, ε)) in G(ε); for 0 < q < 1
consider ((ε, 1 − 2ε, ε), (q − ε/2, 1 − q − ε/2, ε)).

13.9 Proof of Theorem 13.8
(ii) ⇒ (i): conditions (13.1) are satisfied and f = 0, which is optimal since
f ≤ 0 always.
(i) ⇒ (ii): clearly we must have a = pAq and b = pBq (otherwise f < 0 which
cannot be optimal). From the conditions (13.1) we have p′Aq ≤ a = pAq and
pBq′ ≤ b = pBq for all p′ ∈ ∆m and q′ ∈ ∆n, which implies that (p,q) is a
Nash equilibrium.

13.10 Matrix Games
This is a repetition of the proof of Theorem 12.5. Note that the solutions of
program (13.3) give exactly the value of the game a and the optimal (minimax)
strategies of player 2. The solutions of program (13.4) give exactly the value
of the game −b and the optimal (maximin) strategies of player 1.

13.11 Tic-Tac-Toe
(a) Start by putting a cross in the center square. Then player 2 has essentially
two possibilities for the second move, and it is easy to see that in each of the
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two cases player 1 has a forcing third move. After this, it is equally easy to
see that player 1 can always enforce a draw.
(b) If player 1 does not start at the center, then player 2 can put his first
circle at the center and then can place his second circle in such a way that it
becomes forcing. If player 1 starts at the center then either a pattern as in (a)
is followed, leading to a draw, or player 2’s second circle becomes forcing, also
resulting in a draw.
(c) Since the game has a pure strategy Nash equilibrium (it is a finite extensive
form game of perfect information), the value must be −1, 0, or 1 (by Theorem
13.9). Here, −1 indicates that player 1 looses, 0 a draw, and 1 a win for player
1. By (a) and (b) its value must be 0.

13.12 Iterated Elimination in a Three-Player Game
R is strictly dominated by L, then U by D, then r by l. This results in the
strategy combination (D, l, L).

13.13 Never a Best Reply and Domination
Strategy Y is not strictly dominated: this would require putting probabil-
ity larger than 2

3 on V and also probability larger than 2
3 on X, which is

impossible.
For Y to be a best reply, there must be strategies (p, 1 − p) of player 1 and
(q, 1 − q) of player 2 such that:

6pq + 6(1 − p)(1 − q) ≥ 9pq

6pq + 6(1 − p)(1 − q) ≥ 9(1 − p)q + 9p(1 − q)

6pq + 6(1 − p)(1 − q) ≥ 9(1 − p)(1 − q) .

This is not possible, as can be seen, for instance by making a diagram in p, q-
space in which the sets of solutions of these three inequalities are depicted:
there is no point where all three intersect.

13.14 Completely Mixed Nash Equilibria are Perfect
Let σ be a completely mixed Nash equilibrium in G. Let ε := min{σi(hi) |
i ∈ N, hi ∈ Si}. Then ε > 0. Take any sequence of perturbed games G(µt)
with (without loss of generality) µtih < ε for all i ∈ N , h ∈ Si, t = 1, 2, . . . and
with µt → 0 for t → ∞. Then σ is a Nash equilibrium in G(µt) for every t,
so σt → σ where σt := σ for every t.

13.15 A 3-Player Game with an Undominated but not Perfect Equilibrium
(a) Note that r and R are strictly dominated. Therefore, the set of Nash
equilibria of the game is {((p, 1 − p), l, L) | 0 ≤ p ≤ 1}, where p is the proba-
bility with which player 1 plays U . In the Nash equilibrium of any perturbed
game G(µ) with µ small, the three players would put maximal probability on
the strategies U , l, and L, respectively. This implies that (U, l, L) is the only
limit of Nash equilibria of perturbed games, and therefore the only perfect
equilibrium.
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(b) Clearly, l and L are undominated, and so is D. So the equilibrium (D, l, L)
is undominated.

13.16 Existence of Proper Equilibrium
Tedious but straightforward.

13.17 Strictly Dominated Strategies and Proper Equilibrium
(a) The only Nash equilibria are (U, l(, L)) and (D, r(, L)). Obviously, only
the first one is perfect and proper.
(b) Let 1 > ε > 0 and consider the strategy combination σε such that: σε1 puts
probability ε on U and 1− ε on D; σε2 puts probability ε on l and 1− ε on r;
and σε3 puts probability ε on R and 1 − ε on L. For ε sufficiently small, this
is an ε-proper equilibrium, as is easily seen by checking the definition. Hence
the limit for ε→ 0, (D, r, L), is a proper Nash equilibrium. (One can also let
σε3 put probability 2ε on R and 1 − 2ε on L in order to obtain that player 1
strictly prefers D over U and player 2 strictly prefers r over l.)

13.18 Strictly Perfect Equilibrium
(a) Identical to the proof of Lemma 13.16, see Problem 13.14: note that any
sequence of perturbed games converging to the given game must eventually
contain any given completely mixed Nash equilibrium σ.
(b) Let σ be a strict Nash equilibrium in the game G. Note that σ must be
pure, hence σ = (s1, . . . , sn) for some s1 ∈ S1, . . . , sn ∈ Sn. Let (G(µt))t∈N
be any sequence of perturbed games converging to G. For each t, consider the
strategy combination σt in which player i puts probability µtih on any pure
strategy h ∈ Si \ {si} and 1 −∑h∈Si\{si}

on si. Since σ is strict, for large

enough t the combination σt is a Nash equilibrium in G(µt), and σt → σ for
t→ ∞.
(c) Note that M and R are strictly dominated. The set of Nash equilibria
is {((p, 1 − p), L) | 0 ≤ p ≤ 1}, where p is the probability on U . Consider a
sequence of perturbed games G(µt) with µt2M = µt2R: in a Nash equilibrium of
such a perturbed game player 2 playsM and R both with the same probability
µt2M = µt2R, and thus player 1 is indifferent between the two rows. Hence, any
((p, 1 − p), L) can be obtained as the limit of Nash equilibria of perturbed
games, so every Nash equilibrium of the game (A,B) is perfect. By the same
argument, all Nash equilibria are also proper. But none of these is strictly
perfect: for µt2M > µt2R any sequence of Nash equilibria of perturbed games
converges to (U,L) whereas for µt2M < µt2R any sequence of Nash equilibria
of perturbed games converges to (D,L).

13.19 Correlated Equilibria in the Two-Driver Example (1)
Inequalities (13.5) and (13.6) result in: −10p11 + 6p12 ≥ 0, 10p21 − 6p22 ≥ 0,
−10p11 + 6p21 ≥ 0, 10p12 − 6p22 ≥ 0. Altogether, we obtain the conditions:
p11 + p12 + p21 + p22 = 1, pij ≥ 0 for all i, j ∈ {1, 2}, p11 ≤ 3

5 min{p12, p21},
p22 ≤ 5

3 min{p12, p21}.
13.20 Nash Equilibria are Correlated
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Let i, k ∈ {1, . . . ,m}. Then

n∑

j=1

(aij − akj)pij =

n∑

j=1

(aij − akj)piqj

= pi

n∑

j=1

qj(aij − akj)

= pi(e
iAq − ekAq) .

If pi > 0, then row i is a pure best reply, hence eiAq ≥ ekAq, so that the
last expression above is always nonnegative. This proves (13.5). The proof of
(13.6) is analogous..

13.21 The Set of Correlated Equilibria is Convex
Let P and Q be correlated equilibria and 0 ≤ t ≤ 1. Check that (13.5) and
(13.6) are satisfied for tP + (1 − t)Q.

13.22 Correlated vs. Nash Equilibrium
(a) The Nash equilibria are: ((1, 0), (0, 1)), ((0, 1), (1, 0)), and ((2/3, 1/3),
(2/3, 1/3)).
(b) To verify that P is a correlated equilibrium, check conditions (13.5) and
(13.6). These are, for both player 1 and player 2, (1/2) · 6 + (1/2) · 2 ≥
(1/2) · 7 + (1/2) · 0 and 1 · 7 + 0 · 0 ≥ 1 · 6 + 0 · 2.

The associated payoffs are 5 for each. The payoff pair (5, 5) lies ‘above’
the triangle of payoffs with vertices (7, 2), (2, 7), and (42

3 , 4
2
3 ), which are the

payoffs of the Nash equilibria of the game.

13.23 Correlated Equilibria in the Two-Driver Example (2)
The payoff matrices are:

( 1′ 2′

1 −10,−10 5, 0
2 0, 5 −1,−1

)
.

The matrix C is:




(1, 2) (2, 1) (1′, 2′) (2′, 1′)

(1, 1′) −10 0 −10 0
(1, 2′) 6 0 0 10
(2, 1′) 0 10 6 0
(2, 2′) 0 −6 0 −6


 .

The optimal (maximin) strategy of player 1 in C is (0, 1
2 ,

1
2 , 0): this guarantees

a payoff of at least 3, and by playing (1
2 , 0,

1
2 , 0) player 2 guarantees to pay

at most 3, so 3 is the value of the game. Clearly, no other strategy of player
1 guarantees 3. (Alternatively, this matrix game can be analyzed by first
deleting strategies (1, 1′) and (2, 2′) of player 1: these are strictly dominated
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by any mixed strategy that puts positive weights on (1, 2′) and (2, 1′). The
resulting 2 × 4 matrix game can be analyzed by using the graphical method
of Chap. 2.)

The associated correlated equilibrium is:

( c s

c 0 0.5
s 0.5 0

)
,

resulting in each of the two pure Nash equilibria played with probability 1
2 .

13.24 Finding Correlated Equilibria
Let P be a correlated equilibrium. Then

5p11 + p12 ≥ 2p11 + 4p12 ⇔ p11 ≥ p12

2p21 + 4p22 ≥ 5p21 + p22 ⇔ p22 ≥ p21

2p11 + 3p21 ≥ 3p11 + p21 ⇔ 2p21 ≥ p11

3p12 + p22 ≥ 2p12 + 3p22 ⇔ p12 ≥ 2p22

which implies

P =

(
1
3

1
3

1
6

1
6

)
.

So this is the unique correlated equilibrium.
The matrix C is:




(1, 2) (2, 1) (1′, 2′) (2′, 1′)

(1, 1′) 3 0 −1 0
(1, 2′) −3 0 0 1
(2, 1′) 0 −3 2 0
(2, 2′) 0 3 0 −2


 .

Then the (unique) maximin strategy is p = ( 1
3 ,

1
3 ,

1
6 ,

1
6 ), and the value of the

game is v(C) = 0 – hence, maximin strategies correspond one-to-one with
correlated equilibria. (The (unique) minimax strategy is (1

9 ,
2
9 ,

1
3 ,

1
3 ).)

13.25 Nash, Perfect, Proper, Strictly Perfect, and Correlated Equilibria
(a) Suppose p3 = 0. If p1 > 0 then q1 = 1, hence p3 = 1. Contradiction. Hence
p = (0, 1, 0).
(b) Suppose p1, p3 > 0. Then 6q1 = 6q3, so q1 = q3. Also, 4q1 + 4q3 ≤ 6q1, so
8q1 ≤ 6q1, which implies q1 = q3 = 0. Hence q = (0, 1, 0).
(c) If p3 = 0 then p = (0, 1, 0), so player 2 gets 0. If p1, p3 > 0, then q =
(0, 1, 0), so player 1 gets 0. If p1 = 0 and p3 > 0, then q3 = 1, but then p1 = 1,
a contradiction.
(d) If p3 = 0 then p = (0, 1, 0) and 6q3 ≤ 4q1 +4q3 and 6q1 ≤ 4q1 +4q3, so we
obtain a set of Nash equilibria {((0, 1, 0), (q1, q2, q3)) | (q1, q2, q3) ∈ ∆3, q3 ≤
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2q1 ≤ 4q3}. The case p3 > 0 and p1 = 0 does not result in a Nash equilibrium.
If p3 > 0 and p1 > 0, then q = (0, 1, 0) and 6p1 ≤ 4p1 + 4p3 and 6p3 ≤
4p1 +4p3, so we obtain a second set of Nash equilibria {((p1, p2, p3), (0, 1, 0)) |
0 < p1 ≤ 2p3 ≤ 4p1}.
(e) Any strategy (p1, p2, p3) with p1, p3 > 0 is weakly dominated by a strategy
(p1 − ε, p2 + 2ε, p3 − ε) for small ε > 0. Similarly, any strategy (q1, q2, q3)
with q1, q3 > 0 is weakly dominated. Hence, the only perfect equilibrium is
((0, 1, 0), (0, 1, 0)).
(f) By (e) and the fact that a proper equilibrium always exists, ((0, 1, 0), (0, 1, 0))
is the only proper equilibrium. Again by (e), since ((0, 1, 0), (0, 1, 0)) is the only
perfect equilibrium, it is also strictly perfect: since any converging sequence of
Nash equilibria of perturbed games leads to a perfect equilibrium, this must
be ((0, 1, 0), (0, 1, 0)), which is therefore strictly perfect.
(g) 4β+4γ ≥ 6γ, 4β+4γ ≥ 6β, hence β ≤ 2γ ≤ 4β; 4α+4δ ≥ 6α, 4α+4δ ≥ 6δ,
hence δ ≤ 2α ≤ 4δ.
(h) 4β + 4γ = 3 (payoff to player 1) and 4α+ 4δ = 1 (payoff to player 2), for
instance β = γ = 3/8, α = δ = 1/8.

13.26 Independence of the Axioms in Corollary 13.40
Not OPR: take the set of all strategy combinations in every game. Not CONS:
in games with maximal player set take all strategy combinations, in other
games take the set of Nash equilibria. Not COCONS: drop a Nash equilibrium
in some game with maximal player set, but otherwise always take the set of
all Nash equilibria.

13.27 Inconsistency of Perfect Equilibria
Observe that the perfect equilibria in G0 are all strategy combinations where
player 2 plays L, player 3 plays D, and player 1 plays any mixture between T
and B – this follows easily by first applying Theorem 13.21, noting that R and
U are (even strictly) dominated strategies; and next consider perturbed games
where player 2 plays L and R with probabilities 1− ε and ε, respectively, and
player 3 plays D and U with probabilities 1 − ε and ε, respectively, so that
player 1 is indifferent between T and B. Consider now the reduced game by
fixing player 3’s strategy at D. Then B is (weakly) dominated for player 1, so
the only remaining perfect equilibrium is the pair (T,L). This shows that the
perfect Nash equilibrium correspondence is not consistent.

Problems of Chapter 14

14.1 Mixed and Behavioral Strategies
LL′ should be played with probability 1/8, LR′ with probability 3/8, and RL′

and RR′ with any probabilities adding up to 1/2.

14.2 An Extensive Form Structure without Perfect Recall
(a) The paths {(x0, x1)} and {(x0, x2)} contain different player 1 actions.
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(b) Any behavioral strategy generating the same probability distribution over
the end nodes as σ1, should assign positive probabilities to L, R, l, and r.
Therefore it generates positive probabilities on x4 and x5 as well, a contra-
diction.

14.3 Consistency Implies Bayesian Consistency
With notations as in Def. 14.13, for h ∈ H with Pb(h) > 0 and x ∈ h we have:
βh(x) = limm→∞ βmh (x) = limm→∞ Pbm(x)/Pbm(h) = Pb(x)/Pb(h). Here, the
second equality follows from Bayesian consistency of the (bm, βm).

14.4 (Bayesian) Consistency in Signaling Games
The idea of the proof is as follows. Let (b, β) be a Bayesian consistent assess-
ment. This means that β is determined on every information set of player 2
that is reached with positive probability, given b1. Take m ∈ N. Assign the
number 1/m2 to action a of a type i of player 1 if that type does not play a but
some other type of player 1 plays a with positive probability. Assign the num-
ber 1/m2 also to action a of type i if no type of player 1 plays a and player
2 attaches zero belief probability to type i conditional on player 1 having
played a. To every other action of a of player 1, assign the number β(i, a)/m,
where β(i, a) is the (positive) belief that player 2 attaches to player 1 being of
type i conditional on having played a. Next, normalize all these numbers to
behavioral strategies bm1 of player 1. For player 2, just take completely mixed
behavioral strategies bm2 converging to b2. Then (bm, βm) → (b, β), where the
βm are determined by Bayesian consistency.

14.5 Sequential Equilibria in a Signaling Game
Player 2 plays u if α > 1/3, d if α < 1/3, and is indifferent if α = 1/3. Player
2 plays u′ if β > 2/3, d′ if β < 2/3, and is indifferent if β = 2/3. This results
in nine different combinations of values of α and β. Only two of those lead to
sequential equilibria:

• α > 1/3, β < 2/3. Then b2(u) = b2(d
′) = 1, b1(R) = b1(R

′) = 1, hence
β = 1/2 and α > 1/3.

• α = 1/3, β = 2/3. Then b1(L) = b1(R
′) = 1/3, b2(u) = b2(u

′) = 1/2.

14.6 Computation of Sequential Equilibrium (1)
The unique sequential equilibrium consists of the behavioral strategies where
player 1 plays B with probability 1 and C with probability 1/2, and player 2
plays L with probability 1/2; and player 1 believes that x3 and x4 are equally
likely.

14.7 Computation of Sequential Equilibrium (2)
(b) The Nash equilibria are (L, l), and (R, (α, 1−α)) for all α ≤ 1/2, where α
is the probability with which player 2 plays l. All these equilibria are subgame
perfect, since the only subgame is the whole game.
(c) Let π be the belief player 2 attaches to node y1. Then the sequential equi-
libria are: (L, l) with belief π = 1; (R, r) with belief π ≤ 1/2; and (R, (α, 1−α))
for any α ≤ 1/2 with belief π = 1/2.
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14.8 Computation of Sequential Equilibrium (3)
(b) First observe that there is no Nash equilibrium in which player 2 plays
pure. Let player 2’s strategy be (q, 1 − q) with q the probability on l. Since
player 2 has to be indifferent, player 1 has to put equal probability on L and
M , but then it is better for player 1 to play R. Hence, the Nash equilibria are
(R, (q, 1 − q)) with 1/3 ≤ q ≤ 2/3. (The conditions on q keep player 1 from
deviating to L or M .)
(c) With player 2 attaching equal belief to y1 and y2 (since player 2 should
be indifferent between l and r), the equilibria in (b) are sequential.

14.9 Computation of Sequential Equilibrium (4)
The Nash equilibria in this game are: (R, (q1, q2, q3)) with q3 ≤ 1/3 and
q1 ≤ 1/2 − (3/4)q3, where q1, q2, q3 are the probabilities put on l,m, r, re-
spectively; and ((1/4, 3/4, 0), (1/4, 0, 3/4) (probabilities on L,M,R and l,m, r,
respectively).

Let π be the belief attached by player 2 to y1. Then with π = 1/4 the
equilibrium ((1/4, 3/4, 0), (1/4, 0, 3/4) becomes sequential. There is no π that
makes m optimal for player 2; therefore, the first set of equilibria contains no
equilibrium that can be extended to a sequential equilibrium, since q2 > 0
there.

14.10 Computation of Sequential Equilibrium (5)
The Nash equilibria are: (DB, r); ((R, (s, 1 − s)), (q, 1 − q)) with 0 ≤ s ≤ 1
and q ≥ 1/3, where s is the probability on A and q is the probability on l. The
subgame perfect equilibria are: (DB, r); (RA, l); ((R, (3/4, 1/4)), (3/5, 2/5)).
The first one becomes sequential with β = 0; the second one with β = 1; and
the third one with β = 3/5.

Problems of Chapter 15

15.1 Computing ESS in 2 × 2 Games (1)
ESS(A) can be computed using Proposition 15.4.
(a) ESS(A) = {e2}. (b) ESS(A) = {e1, e2}. (c) ESS(A) = {(2/3, 1/3)}.
15.2 Computing ESS in 2 × 2 Games (2)
Case (1): ESS(A′) = {e2}; case (2): ESS(A′) = {e1, e2}; case (3): ESS(A′) =
{x̂} = {(a2/(a1 + a2), a1/(a1 + a2))}.
15.3 Rock-Paper-Scissors (1)
The unique Nash equilibrium is ((1/3, 1/3, 1/3), (1/3, 1/3, 1/3)), which is sym-
metric. But (1/3, 1/3, 1/3) is not an ESS: e.g., (1/3, 1/3, 1/3)A(1, 0, 0) = 1 =
(1, 0, 0)A(1, 0, 0).

15.4 Uniform Invasion Barriers
Case (1), e2: maximal uniform invasion barrier is 1.
Case (2), e1: maximal uniform invasion barrier is a1/(a1 + a2).
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Case (2), e2: maximal uniform invasion barrier is a2/(a1 + a2).
Case (3), x̂: maximal uniform invasion barrier is 1.

15.5 Replicator Dynamics in Normalized Game (1)
Straightforward computation.

15.6 Replicator Dynamics in Normalized Game (2)
The replicator dynamics can be written as ẋ = [x(a1 + a2) − a2]x(1 − x),
where ẋ = ẋ1. So x = 0 and x = 1 are always stationary points. In case
(1) the graph of ẋ on (0, 1) is below the horizontal axis. In case (2) there is
another stationary point, namely at x = a2/(a1 + a2); on (0, a2/(a1 + a2))
the function ẋ is negative, on (a2/(a1 + a2), 1) it is positive. In case (3) the
situation of case (2) is reversed: the function ẋ is positive on (0, a2/(a1 + a2))
and negative on ((a2/(a1 + a2), 1).

15.7 Weakly Dominated Strategies and Replicator Dynamics
(a) For population shares (x, 1− x) the replicator dynamics is ẋ = x(1− x)2.
The only (Lyapunov and asymptotically) stable stationary point is x = 1. The
strategy (1, 0) is the unique ESS. The strategy (0, 1) is weakly dominated.
(b) In this case the replicator dynamics are given by

ẋ1 = x1[1 − (x1 + x2)
2 − x1x3]

ẋ2 = x2[x1 + x2 − (x1 + x2)
2 − x1x3]

ẋ3 = x3[−(x1 + x2)
2 − x1x3] .

The stationary points are e1, e2, e3, and all points with x3 = 0. Except e3,
all stationary points are Lyapunov stable. None of these points is asymptoti-
cally stable. Note that e3 is strictly dominated (by e1)). One can also derive
d(x1/x2)/dt = x1x3/x2 > 0 at completely mixed strategies, i.e., at the inte-
rior of ∆3. Hence, the share of subpopulation 1 grows faster than that of 2
but this difference goes to zero if x3 goes to zero (e2 is weakly dominated by
e1).

15.8 Stationary Points and Nash Equilibria (1)
(a) NE(A) = {(α, α, 1 − 2α) | 0 ≤ α ≤ 1/2}.
(b) By Proposition 15.18 and (a) it follows that {(α, α, 1 − 2α) | 0 ≤ α ≤
1/2} ∪ {e1, e2, e3} ⊆ ST (A), and that possibly other stationary points must
be boundary points of ∆3. The replicator dynamics are given by

ẋ1 = x1(x1 − x2)(x1 − x2 − 1)

ẋ2 = x2(x1 − x2)(1 + x1 − x2)

ẋ3 = x3(x1 − x2)
2 .

Inspection of this system yields no additional stationary points. All stationary
points except e1 and e2 are Lyapunov stable, but no point is asymptotically
stable.

15.9 Stationary Points and Nash Equilibria (2)
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(a) Let (x1, x2, x3) ∈ NE(A). If x3 = 0 then x2 = 1, resulting in (0, 1, 0). If
x3 > 0, then we must have 2x2 + 4x3 ≥ 3x1 + 3x2 + x3, i.e., 4x3 ≥ 2x1 + 1,
from the first row; and 2x2 + 4x3 ≥ 4x1 + 4x2, i.e., 3x3 ≥ x1 + 1 from the
second row. If x1, x2 > 0 then both inequalities have to be equalities, but this
is impossible. If x1 > 0 and x2 = 0 then we have 4x3 = 2x1 + 1, resulting
in (1/2, 0, 1/2). Similarly, the case x1 = 0 and x2 > 0 results in (0, 2/3, 1/3).
Finally, the case x1 = x2 = 0 results in (0, 0, 1).
(b) Use Proposition 15.18. This implies that (1, 0, 0), (0, 1, 0), (0, 0, 1), (1/2, 0,
1/2), and (0, 2/3, 1/3) all are stationary states. Any other stationary state
must be on the boundary of ∆3 and have exactly one zero coordinate. If
x1 = 0 and x2, x3 > 0, then the replicator dynamics ẋ2 = x2(4x2 − 4x2

2 −
4x2

3 − 2x2x3) implies after simplification that 2x3(2x3 + x2) = 0, which is
impossible. If x2 = 0 and x1, x3 > 0, then the replicator dynamics ẋ1 =
−x1[(x1 + x2)(6x1 + 6x2 − 8) − (x1 − 3)] implies after simplification that
6x2

1 − 9x1 + 3 = 0, yielding x1 = 1 or x1 = 1/2, and thus no new stationary
state. Finally, the case x3 = 0 and x1, x2 > 0 yields via the replicator dynamics
ẋ1 = −x1[(1 − x3)(−6x3 − 2) − (x1 − 3)] that x1 = 1.
(c) By Proposition 15.19, (1, 0, 0) is not Lyapunov stable. Since ẋ2 = −2x2x3 ·
(2x3 + x2), which is negative for positive values of x2 and x3, also the states
(0, 2/3, 1/3) and (0, 1, 0) are not Lyapunov stable. Since ẋ2 = −2x2x3(2x3 +
x2) and ẋ1 = −x1[3 + (x1 + x2)(6x1 + 6x2 − 8) − x1], the state (0, 0, 1) is
asymptotically stable. Finally, at (1/2+ε, 0, 1/2−ε) for ε > 0 we have ẋ1 > 0,
so that (1/2, 0, 1/2) is not Lyapunov stable.
(d) (1/2, 0, 1/2)A(1/2, λ, 1/2−λ) = 2, whereas (1/2, λ, 1/2−λ)A(1/2, λ, 1/2−
λ) = 2 + 6λ2. Hence (1/2, 0, 1/2) is not locally superior.

15.10 Lyapunov Stable States in 2 × 2 Games
Case (1): e2; case (2): e1 and e2; case (3): x̂. (Cf. Problem 15.6.)

15.11 Nash Equilibrium and Lyapunov Stability
NE(A) = {e1}. If we start at a completely mixed strategy close to e1, then
first x3 increases, and we can make the solution trajectory pass e3 as closely
as desired. This shows that e1 is not Lyapunov stable.

15.12 Rock-Paper-Scissors (2)
(a) Replicator dynamics:

ẋ1 = x1[x1 + (2 + a)x2 − xAx]

ẋ2 = x2[x2 + (2 + a)x3 − xAx]

ẋ3 = x3[x3 + (2 + a)x1 − xAx] .

(b)

ḣ(x) =
1

x1x2x3
(ẋ1x2x3 + x1ẋ2x3 + x1x2ẋ3)

=
ẋ1

x1
+
ẋ2

x2
+
ẋ3

x3
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= (x1 + x2 + x3) + (2 + a)(x1 + x2 + x3) − 3xAx

= 3 + a− 3xAx .

(c) Since 1 = (x1 + x2 + x3)
2 = ||x||2 + 2(x1x2 + x1x3 + x2x3), it follows

that xAx = 1 + a(x1x2 + x1x3 + x2x3) = 1 + a
2 (1− ||x||2), and hence ḣ(x) =

a
2 (3||x||2 − 1).
(d) Directly from (c).
(e) Follows from (d). If a > 0 then any trajectory converges to the maximum
point of x1x2x3, i.e. to (1/3, 1/3, 1/3). If a = 0 then the trajectories are orbits
(x1x2x3 constant) around (1/3, 1/3, 1/3). If a < 0 then the trajectories move
outward, away from (1/3, 1/3, 1/3).

Problems of Chapter 16

16.1 Imputation Set of an Essential Game
Note that I(v) is a convex set and f i ∈ I(v) for every i = 1, . . . , n. Thus,
I(v) contains the convex hull of {f i | i ∈ N}. Now let x ∈ I(v), and write
x = (v(1), . . . , v(n))+(α1, . . . , αn), where

∑
i∈N αi = v(N)−∑i∈N v(i) =: α.

Then x =
∑
i∈N (αi/a)f

i, so that x is an element of the convex hull of {f i |
i ∈ N}.
16.2 Convexity of the Domination Core
Claim: For each x ∈ I(v) and ∅ 6= S ⊆ N we have

∃z ∈ I(v) : zdomSx ⇔ x(S) < v(S) and x(S) < v(N) −
∑

i/∈S

v(i) .

Proof. ⇒: Let z satisfy the left hand side of the equivalence. Then v(N) =
z(N) = z(S) +

∑
i/∈S zi ≥ z(S) +

∑
i/∈S v(i) and x(S) < z(S) ≤ v(S), which

imply the right hand side.
⇐: Assume the right hand side is true. Since x(N \ S) >

∑
i/∈S v(i), we can

take j /∈ S with xj > v(j). Let α := min{xj − v(j), v(S)−x(S)}, and define z

by zi = xi+α/|S| if i ∈ S, zj = xj−α, and zi = xi otherwise. Then zdomSx.
This completes the proof of the claim.

Because of the claim, we have for S 6= ∅:

I(v) \D(S) = {x ∈ I(v) | x(S) ≥ v(S) or x(S) ≥ v(N) −
∑

i/∈S

v(i)}

= {x ∈ I(v) | x(S) ≥ min{v(S), v(N) −
∑

i/∈S

v(i)}}

and therefore I(v) \D(S) is a convex set. Hence

DC(v) = I(v) \
⋃

S 6=∅

D(S) =
⋂

S 6=∅

(I(v) \D(S))
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is convex.

16.3 Dominated Sets of Imputations
(a) For any x ∈ I(v) and any i ∈ N , xi ≥ v(i). So there is no z ∈ I(v) with
xi < zi ≤ v(i). Hence, D(i) = ∅. Also, x(N) = v(N) so it is not possible that
zj > xj for all j ∈ N , hence D(N) = ∅.
(b) In both games, D(ij) = {x ∈ I(v) | xi+xj < v(ij)}, i, j ∈ {1, 2, 3}, i 6= j.

16.4 The Domination Relation
(a) Clearly, xdomx and xdomSx are not possible, hence dom and domS are
irreflexive.
Let x,y, z ∈ I(v) with xdomSy domSz. Then xi > yi > zi for all i ∈ S, and
x(S) ≤ v(S). Hence x domSz, so domS is transitive.
If xdomSy, then xi > yi for all i ∈ S, so y domSx is not possible. Hence,
domS is antisymmetric.
(b) N = {1, 2, 3, 4}, v(N) = 8, v(12) = 6, v(34) = 6, v(S) = 0 otherwise.
Then (3, 3, 1, 1) dom{1,2}(1, 1, 3, 3) whereas (1, 1, 3, 3) dom{3,4}(3, 3, 1, 1).
(c) A trivial example is the one in (ii) with z = (3, 3, 1, 1). Other example:
N = {1, . . . , 6}, v(N) = 10, v(12) = 6, v(34) = 6, v(56) = 5, v(S) = 0
otherwise. Then

(3, 3, 1, 1, 1, 1) dom{1,2}(1, 1, 3, 3, 1, 1) dom{3,4}(1, 1, 1, 1, 3, 3)

but not (1, 1, 1, 1, 3, 3) dom(3, 3, 1, 1, 1, 1).

16.5 Stable Sets in a Three-Person Game
(a) Let x ∈ I(v). There are i, j ∈ N , i 6= j, with xi + xj < 1. Take z ∈ I(v)
with zi > xi, zj > xj , and zi + zj = 1. Then zdom{i,j}x.
(b) Let x ∈ I(v) \A. Then there are i 6= j with xi, xj < 1/2.
(c) Let x ∈ I(v) \B.

Case 1: x3 < c. Note that x1 < 1 − c or x2 < 1 − c otherwise x1 + x2 ≥
2 − 2c > 1 which is impossible. If x1 < 1 − c then (1 − c, 0, c) dom{1,3}x, and
if x2 < 1 − c then (0, 1 − c, c) dom{2,3}x.

Case 2: x3 > c. Then x1 +x2 = 1−x3 < 1−c. Take α, β with α+β = 1−c
and α > x1, β > x2. Then (α, β, c) dom{1,2}x.

16.6 Singleton Stable Set
Let {x} be a one-element stable set and assume that v(N) >

∑
i∈N v(i). Then

there is a player j with xj > v(j). Take some other player k and an imputation
y with xj > yj , xk < yk, and all other coordinates of x and y equal. Then x

should dominate y but this is only possible through the coalition {j}. Hence,
xj ≤ v(j), a contradiction.

16.7 A Glove Game
(a) Let x = (x1, x2, x3) 6= (0, 1, 0) be any imputation. Without loss of gener-
ality assume x1 + x2 < 1. Define ε = 1 − x1 − x2 (> 0). Then the imputation
(x1 + ε/2, x2 + ε/2, 0) dominates x via {1, 2}.
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(b) The core and the domination core are both equal to {(0, 1, 0)}, cf. Theorem
16.12.
(c) The imputation (1/3, 1/3, 1/3) (for instance) is not dominated by (0, 1, 0),
hence external stability is not satisfied.
(d) Consider any 0 ≤ λ, λ′ ≤ 1/2. Then, clearly, (λ, 1 − 2λ, λ) does not domi-
nate (λ′, 1 − 2λ′, λ′), since λ > λ′ implies 1 − 2λ < 1 − 2λ′. (Note that, since
v({1, 3}) = 0, domination is only possible via {1, 2} or {2, 3}.) Hence B is
internally stable.

Let (x1, x2, x3) /∈ B, then without loss of generality x1 < x3 and in par-
ticular also x1 < 1

2 . Take 0 ≤ λ ≤ 1
2 with x1 < λ < 1

2 (x1 + x3). Then
x2 = 1 − x1 − x3 = 1 − 2

(
x1+x3

2

)
< 1 − 2λ. Hence, (λ, 1 − 2λ, λ) dominates

(x1, x2, x3) via {1, 2}. So B is externally stable.

16.8 Proof of Theorem 16.15
Take x,y ∈ ∆S . Suppose that x domTy for some coalition T . Then T & S, and
hence v(T ) = 0. This is a contradiction, hence internal stability is satisfied. If
x ∈ I(v) \ ∆S , then there is a player j /∈ S with xj > 0. Define y ∈ ∆S by
yi = xi + y(N \ S)/|S| for all i ∈ S and yi = 0 for all i /∈ S. Then y domSx.
This proves external stability.

16.9 Example 16.16
Let A denote the set in (16.3). We first show that A is internally stable for
any 0 ≤ α ≤ 1. Consider (x, x, 1 − 2x) ∈ A, hence α

2 ≤ x ≤ 1
2 . It is sufficient

to show that this imputation is not dominated by any other element of A.
First suppose it would be dominated by an element in A of the form

(y, y, 1− 2y). If it is dominated via {1, 2}, then 2y ≤ α ≤ 2x, a contradiction.
If it is dominated via {1, 3}, then y > x and 1 − 2y > 1 − 2x, again a
contradiction. Likewise, it can not be dominated via {2, 3}.

Next, suppose it would be dominated by an element of A of the form
(y, 1−2y, y). If it is dominated via {1, 2} then y > x ≥ α

2 and 1−2y > x ≥ α
2 ,

hence y + (1 − 2y) > α, a contradiction. If it is dominated via {1, 3}, then
2y ≤ α and so x < y ≤ α

2 , a contradiction. If it is dominated via {2, 3}, then
1 − 2y > x ≥ α

2 and y ≥ α
2 , so y + (1 − 2y) > α, a contradiction.

The case where (x, x, 1 − 2x) would be dominated by an element of the
form (1−2y, y, y) leads to a contradiction in the same way. So we have proved
that A is internally stable for any 0 ≤ α ≤ 1.

We next show that A is externally stable whenever α ≥ 2
3 . Let (x1, x2, x3) ∈

I(v) \ A. If there are at least two coordinates, say x1, x2, smaller than α
2 ,

then (x1, x2, x3) is dominated by (α2 ,
α
2 , 1 − α) via {1, 2}. Otherwise, w.l.o.g.,

x1, x2 ≥ α
2 and (say) x2 < x1. Then x2 <

1−x3

2 . Choose x2 < y < 1−x3

2 . Then
1− 2y > x3. Moreover, y+ (1− 2y) = 1− y < 1− x2 ≤ 1− α

2 ≤ α, where the
last inequality follows from α ≥ 2

3 . So (y, y, 1− 2y) dominates (x1, x2, x3) via
{2, 3}, and (y, y, 1 − 2y) ∈ A.
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Let now α < 2
3 . We show that A is not externally stable. Note that in this

case C(v) = {(x1, x2, x3) ∈ I(v) | x1, x2, x3 ≤ 1 − α}. Take any x ∈ C(v) \A,
then x is undominated since C(v) ⊆ DC(v). So A is not externally stable.

We prove that A∪C(v) is a stable set whenever α < 2
3 . For internal stability,

it suffices to show that an x ∈ A \ C(v) is not dominated by anything in the
core. W.l.o.g. let x = (x, x, 1 − 2x), hence, since 1 − 2x ≤ 1 − α, we have
x > 1 − α. Then (x, x, 1 − 2x) is not dominated by any (y1, y2, y3) ∈ C(v),
since y1, y2, y3 ≤ 1− α whereas x > 1− α. This shows internal stability of A.

To show external stability of A∪C(v), observe that the complement of this
set in I(v) consists of three pairwise disjoint subsets of I(v) each of the form
{(x1, x2, x3) ∈ I(v) | xi > max{1 − α, xj , xk}} for different i, j, k. W.l.o.g.
let i = 1, j = 2, k = 3 and take (x1, x2, x3) in the associated subset. Then
either there is an ε > 0 such that x1 − 2ε = 1 − α and x2, x3 ≤ 1 − α; or
there is an ε > 0 with x1 − 2ε = x3 + ε > 1 − α; or there is an ε > 0 with
x1 − 2ε = x2 + ε > 1 − α. In each case, (x1 − 2ε, x2 + ε, x3 + ε) dominates
(x1, x2, x3) via {2, 3}; in the first case (x1 − 2ε, x2 + ε, x3 + ε) ∈ C(v) and in
the last two cases (x1 − 2ε, x2 + ε, x3 + ε) ∈ A. This shows external stability
of A ∪ C(v).

Finally, for α ≤ 1
2 we have A ⊆ C(v). Clearly, C(v) is internally stable,

and external stability follows in the same way as in the preceding paragraph.
Hence, the core is a stable set, and therefore the unique stable set, cf. Theorem
16.17, which also holds for the core instead of the D-core (cf. Problem 16.10).

16.10 Proof of Theorem 16.17
(a) Let A be a stable set and suppose x ∈ DC(v) \ A. Then x is dominated
by some element of A, contradiction.
(b) Let A  B and let A be a stable set. Take x ∈ B \ A. Then y domx for
some y ∈ A, hence y ∈ B. So B is not internally stable and, therefore, not a
stable set.
(c) Follows from (a) and (b).

16.11 Core and D-Core
Condition (16.1) is not a necessary condition for equality of the core and the
D-core. To find a counterexample, first note that if C(v) 6= ∅ then (16.1)
must hold. Therefore, a counterexample involves a game with empty core and
D-core. Take the following game for n ≥ 3. If |S| = 2 then let v(S) = 2, let
v(N) = 1, and let v(T ) = 0 for all other coalitions T . Then ∅ = C(v) = DC(v)
but (16.1) is not fulfilled.

16.12 Strategic Equivalence
Straightforward using the definitions.

16.13 Proof of Theorem 16.20

Write B =

(
A

−A

)
. Then
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max{b · y | Ay = c,y ≥ 0} = max{b · y | By ≤ (c,−c),y ≥ 0}
= min{(c,−c) · (x, z) | (x, z)B ≥ b, (x, z) ≥ 0}
= min{c · (x − z) | (x − z)A ≥ b, (x, z) ≥ 0}
= min{c · x′ | x′A ≥ b} .

The second equality follows from Theorem 22.6.

16.14 Infeasible Programs in Theorem 16.20
Follow the hint.

16.15 Proof of Theorem 16.22 Using Lemma 22.5
List the non-empty coalitions S ⊆ N as S1, . . . , Sp (p = 2n− 1) with Sp = N .
Define the (n+n+p)×pmatrix A as follows. Column k < p is (eSk ,−eSk ,−ek)
where: eSk ∈ Rn, eSk

i = 1 if i ∈ Sk, e
Sk

i = 0 if i /∈ Sk. Column p is
(eN ,−eN ,0). Then C(N, v) 6= ∅ iff there exists (z, z′,w) ∈ Rn × Rn × Rp
with (z, z′,w) ≥ 0 and (z, z′,w)A = b, where b = (v(Sk))

p
k=1. This has the

form as in (a) of Lemma 22.5. The associated system in (b) of Lemma 22.5 is
as follows: there is a y ∈ Rp with Ay ≥ 0 and b ·y < 0. Hence, for such a y we
have

∑
S:i∈S yS ≥ 0 and −∑S:i∈S yS ≥ 0 for all i ∈ N . Thus,

∑
S:i∈S yS = 0

for all i ∈ N or, equivalently, yN +
∑
S:i∈S,S 6=N yS = 0 for all i ∈ N . Further,

−yS ≥ 0 for all S 6= N , hence yS ≤ 0 for all S 6= N . Also, b · y < 0 implies
yNv(N) +

∑
S⊂N,S 6=N ySv(S) < 0.

Now suppose that λ is a balanced map. Define y ∈ Rp by yN = 1 − λ(N)
and yS = −λ(S) for all S 6= N . Then for every i ∈ N we have

∑
S:i∈S yS =∑

S:i∈S,S 6=N −λ(S)+1−λ(N) = 0 since λ is balanced. Also, y(S) = −λ(S) ≤ 0
for all S 6= N . Thus, this vector y satisfies the conditions established above.

Now we have:

C(N, v) 6= ∅ ⇔ (a) in Farkas’ Lemma is true
⇔ (b) in Farkas’ Lemma is not true
⇔ for every balanced map λ we have yNv(N) +

∑
S 6=N ySv(S) ≥ 0 for y

associated with λ as above
⇔∑

S 6=N −λ(S)v(S) + (1 − λ(N))v(N) ≥ 0 for every balanced map λ
⇔∑

S⊂N λ(S)v(S) ≤ v(N) for every balanced map λ.

16.16 Balanced Maps and Collections
(a) Let λ be a balanced map with associated balanced collection B. Since, for
all i ∈ N , we have

∑
S:i∈S λ(S) = 1, it follows that

∑
S∈2N : S 6=∅ λ(S) ≥ 1. In

particular,
∑
S∈2N : S 6=∅ λ(S) = 1 ⇔ ∀i ∈ N,S ∈ B [i ∈ S] ⇔ B = {N}.

(b) Define the map λc by

λc(T ) =
λ(N \ T )∑
S∈B λ(S) − 1

for all T ∈ Bc, and λc(T ) = 0 otherwise. Then, for every i ∈ N ,

∑

T : i∈T

λc(T ) =

∑
S: i/∈S λ(S)∑
S∈B λ(S) − 1

= 1 .
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(c) Follows directly from (b), since {N \ S, {i} | i ∈ S} is a partition and
therefore a balanced collection. The weights for {S,N \ {i} | i ∈ S} are equal
to 1/|S|.
(d) If λ and λ′ are two balanced maps and 0 ≤ α ≤ 1 then for each i ∈ N :

∑

S: i∈S

(αλ+ (1 − α)λ′)(S) = α · 1 + (1 − α) · 1 = 1 .

16.17 Minimum of Balanced Games
Follows by using the definition of balancedness or by Theorem 16.22.

16.18 Balanced Simple Games
Let (N, v) be a simple game.

Suppose i is a veto player. Let B be a balanced collection with balanced
map λ. Then

∑

S∈B

λ(S)v(S) =
∑

S∈B:i∈S

λ(S)v(S) ≤ 1 = v(N) ,

since i is a veto player. Hence, v is balanced.
For the converse, suppose v is balanced. We distinguish two cases.

Case 1: There is an i with v({i}) = 1. In this case, take S ⊂ N \ {i}, and
define λ by λ({i}) = 1, λ(S) = 1, and λ(N \ (S ∪ {i})) = 1, and λ(T ) = 0 for
every other nonempty coalition T . Then λ is balanced, and thus λ({i})v({i})+
λ(S)v(S)+λ(N \ (S ∪{i}))v(N \ (S ∪{i})) ≤ 1. This implies v(S) = 0, hence
i is a veto player.
Case 2: v({i}) = 0 for every i ∈ N . In this case, suppose there are no veto
players. Then there are nonempty coalitions S1, . . . , Sm such that v(Sj) = 1
for each j = 1, . . . ,m and for every player i ∈ N there is an Sj with i /∈ Sj .
Let, for every i ∈ N , ni := |{j ∈ {1, . . . ,m} | i ∈ Sj}|, then ni ≤ m − 1.
Define λ by λ(Sj) = 1

m−1 for each j = 1, . . . ,m, λ({i}) = 1 − ni

m−1 for every
i ∈ N , and λ(T ) = 0 for every other coalition T . Then for each i ∈ N we have

∑

S:i∈S

λ(S) =

(
1 − ni

m− 1

)
+

ni
m− 1

= 1 ,

so that λ is a balanced map. Hence,

1 = v(N) ≥
∑

S 6=∅

λ(S)v(S) ≥
n∑

j=1

λ(Sj)v(Sj) =
m

m− 1
> 1 ,

a contradiction. Thus, v has a veto player.

Problems of Chapter 17

17.1 The Games 1T
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(a) The system is complete (for each v we can write v =
∑
S 6=∅ v(S)1S) and

linearly independent (
∑
S 6=∅ αS1S = 0 implies αS = 0 for all S).

(b) Let T 6= ∅ and i ∈ N . If i ∈ T then 1T ((T \ {i}) ∪ {i}) − 1T (T \ {i}) =
1 − 0 6= 0 and if i /∈ T then 1T (T ∪ {i}) − 1T (T ) = 0 − 1 6= 0. So 1T has no
null-player.
(c) For i /∈ T :

Φi(1T ) =
|T |!(n− |T | − 1)!

n!
[1T (T ∪ {i}) − 1T (T )] = −|T |!(n− |T | − 1)!

n!

and for i ∈ T :

Φi(1T ) =
(|T | − 1)!(n− |T |)!

n!
[1T ((T \ {i}) ∪ {i}) − 1T (T \ {i})]

=
(|T | − 1)!(n− |T |)!

n!
.

17.2 Unanimity Games
(a) Suppose

∑
T 6=∅ αTuT = 0 (where 0 means the zero-game) for some

αT ∈ R. Then
∑
T 6=∅ αTuT ({i}) = 0 implies α{i} = 0, for each i. Next,∑

T 6=∅, |T |≥2 αTuT ({i, j}) = 0 implies α{i,j} = 0, for all i, j. Etc. Hence, all

αT are zero, so that {uT | T 6= ∅} is a linearly independent system.
(b) Let W ∈ 2N then

∑

T 6=∅

cTuT (W ) =
∑

T 6=∅

∑

S⊆T

(−1)|T |−|S|v(S)uT (W )

=
∑

T 6=∅,T⊆W

∑

S⊆T

(−1)|T |−|S|v(S)

=
∑

S⊆W

v(S)
∑

T :S⊆T⊆W

(−1)|T |−|S|

= v(W ) +
∑

S: S W

v(S)
∑

T :S⊆T⊆W

(−1)|T |−|S| .

It is sufficient to show that the second term of the last expression is equal to
0, hence that

∑
T :S⊆T⊆W (−1)|T |−|S| = 0. We can write

∑

T :S⊆T⊆W

(−1)|T |−|S| =

|W |−|S|∑

k=0

(−1)k
(
|W | − |S|

k

)
.

This last expression is of the form β =
∑m
k=0(−1)k

(
m
k

)
. By the binomial

formula (a+b)m =
∑m
k=0

(
m
k

)
am−kbk, it follows that β = 0 by taking a = 1

and b = −1.
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17.3 If-Part of Theorem 17.4
EFF: every marginal vector mσ is efficient, so the average of these vectors is
also efficient. NP: for a null-player i, v(S ∪ i) − v(S) = 0 for every S, hence
Φi(v) = 0. ADD: follows from the fact that (v + w)(S ∪ i) − (v + w)(S) =
v(S ∪ i) − v(S) + w(S ∪ i) − w(S) for all v, w, S, i.
SYM: Let i, j be symmetric in v. Note that for S ⊆ N with i /∈ S and j ∈ S
we have v((S ∪ i) \ j) = v(S) by symmetry of i and j, since v((S ∪ i) \ j) =

v((S \ j) ∪ i) and v(S) = v((S \ j) ∪ j. Write γ(|S|) = |S|!(n−|S|−1)!
n! , then

Φi(v) =
∑

S:i,j /∈S

γ(|S|)[v(S ∪ i) − v(S)] +
∑

S:i/∈S,j∈S

γ(|S|)[v(S ∪ i) − v(S)]

=
∑

S:i,j /∈S

γ(|S|)[v(S ∪ j) − v(S)] +
∑

S:i/∈S,j∈S

γ(|S|)[v(S ∪ i) − v((S ∪ i) \ j)]

=
∑

S:i,j /∈S

γ(|S|)[v(S ∪ j) − v(S)] +
∑

T :i∈T,j /∈T

γ(|T |)[v(T ∪ j) − v(T )]

= Φj(v) .

17.4 Dummy Player Property and Anonymity
That DUM implies NP and the Shapley value satisfies DUM is straightfor-
ward.
AN implies SYM: Let i and j be symmetric players, and let the value ψ
satisfy AN. Consider the permutation σ with σ(i) = j, σ(j) = i, and σ(k) = k
otherwise. Since i and j are symmetric players it follows easily that v = vσ.
Then, by AN, ψi(v) = ψσ(i)(v

σ) = ψj(v), proving SYM of ψ.

17.5 Shapley Value, Core, and Imputation Set
In the case of two players the core and the imputation set coincide. If the
core is not empty then the Shapley value is in the core, cf. Example 17.2. In
general, consider any game with v(1) = 2, v(N) = 3, and v(S) = 0 otherwise.
Then Φ1(v) = 5/n, hence the Shapley value is not even in the imputation set
as soon as n ≥ 3.

17.6 Shapley Value as a Projection
If a is an additive game then Φ(a) = (a(1), a(2), . . . , a(n)). For a general
game v let av be the additive game generated by Φ(v). Then Φ(av) =
(av(1), . . . , av(n)) = Φ(v).

17.7 Shapley Value of Dual Game
Let v =

∑
T 6=∅ αTuT . Then for any coalition S,

∑
T 6=∅ αTu

∗
T (S) =

∑
T 6=∅

αT [uT (N) − uT (N \ S)] =
∑
T 6=∅ αTuT (N) −∑T 6=∅ αTuT (N \ S) = v(N) −

v(N \ S) = v∗(S). Hence, v∗ =
∑
T 6=∅ αTu

∗
T .

Take T arbitrary. For all players i, j ∈ T , i 6= j, and S ⊆ N \ {i, j}, we
have u∗T (S∪{i}) = 1−uT (S∪{i}) = 1 and u∗T (S∪{j}) = 1−uT (S∪{j}) = 1,
hence i and j are symmetric. Also, every player i /∈ T is a null player. Hence,
since u∗T (N) = 1, efficiency, symmetry and null player of the Shapley value
imply Φ(αTuT ) = Φ(αTu

∗
T ). By additivity, Φ(v) = Φ(v∗).
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This can also be proved directly, by using (17.4), as follows. For i ∈ N ,

Φi(v
∗) =

∑

S: i/∈S

γS [v(N) − v(N \ (S ∪ i)) − v(N) + v(N \ S)]

=
∑

S: i/∈S

γS [v(N \ S) − v(N \ (S ∪ i))]

= (∗)

where γS = (|S|!(n−|S|−1)!/n!). Write N \S = T ∪ i, hence N \ (S ∪ i) = T ,
and observe that γT = γS . Then

(∗) =
∑

T : i/∈T

γT [v(T ∪ i) − v(T )] = Φi(v) .

17.8 Multilinear Extension
(a) Let cT :=

∑
S:S⊆T (−1)|T |−|S|v(S). Let T ∈ 2N , T 6= ∅. The product∏

i∈T xi only occurs in the expression
∏
i∈S xi

∏
i∈N\S(1 − xi) if S ⊆ T ,

since each term in this expression contains the factor
∏
i∈S xi. So let S ⊆ T ,

then the factor
∏
i∈T\S xi occurs in

∏
i∈N\S(1 − xi) with sign (−1)|T\S| =

(−1)|T |−|S|. Altogether, the factor
∏
i∈T xi occurs in the right hand side of

formula (17.14) with coefficients (−1)|T |−|S|v(S) for every S ⊆ T . So f(x) =∑
T⊆N

∑
S⊆T (−1)|T |−|S|v(S)

(∏
i∈T xi

)
=
∑
T⊆N

(∏
i∈T xi

)
.

(b) Let g be another multilinear extension of ṽ to [0, 1]n, say g(x) =∑
T⊆N bT

(∏
i∈T xi

)
. Since g(eS) = f(eS) = v(S) for every S ∈ 2N , we

obtain:
S = {i} ⇒ g(eS) = b{i} = c{i} = f(eS) for all i ∈ N ,
S = {i, j} ⇒ g(eS) = b{i} + b{j} + b{i,j} = c{i} + c{j} + c{i,j} ⇒ b{i,j} = c{i,j}
for all i 6= j, etc.
So bT = cT for all T , whence the uniqueness of the multilinear extension.

17.9 The Beta-Integral Formula

∫ 1

0

t|S|(1 − t)n−|S|−1dt = − t
|S|(1 − t)n−|S|

n− |S|
∣∣∣
1

0

+
|S|

n− |S|

∫ 1

0

t|S|−1(1 − t)n−|S|dt

=
|S|(|S| − 1)

(n− |S|)(n− |S| + 1)

∫ 1

0

t|S|−2(1 − t)n−|S|+1dt

...

=
|S|!

(n− |S|) · (n− |S| + 1) · . . . · (n− 1)

·
∫ 1

0

t0(1 − t)n−1dt
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=
|S|!

(n− |S|) · (n− |S| + 1) · . . . · (n− 1) · n

=
|S|!(n− |S| − 1)!

n!
.

Here, the first term after the first equality sign is equal to zero, and similar
terms are omitted in the following lines. Partial integration has been applied
repeatedly.

17.10 Path Independence of Φ
Let τ : N → N be a permutation. Then, using Theorem 17.12(c),

Φτ(1)({τ(1)}, v) = P ({τ(1)}, v) − P (∅, v) ,
Φτ(2)({τ(1), τ(2)}, v) = P ({τ(1), τ(2)}, v) − P ({τ(1)}, v) ,

Φτ(3)({τ(1), τ(2), τ(3)}, v) = P ({τ(1), τ(2), τ(3)}, v) − P ({τ(1), τ(2)}, v) ,
...

Φτ(n)(N, v) = P (N, v) − P ({τ(1), . . . , τ(n− 1)}, v) .

So
∑n
k=1 Φτ(k)({τ(1), . . . , τ(k)}, v) = P (N, v) − P (∅, v) = P (N, v), which is

independent of the permutation τ .

17.11 An Alternative Characterization of the Shapley Value
The Shapley value satisfies all these conditions. Conversely, (b)–(d) imply
standardness for two-person games, so the result follows from Theorem 17.18.

Problems of Chapter 18

18.1 Marginal Vectors and Dividends
(a) This is straightforward from the definition of a dividend.
(b) For each i ∈ N , mπ

i = v(Pπ(i) ∪ i) − v(Pπ(i)) =
∑
T⊆Pπ(i)∪i ∆v(T ) −∑

T⊆Pπ(i) ∆v(T ) =
∑
T⊆Pπ(i)∪i, i∈T ∆v(T ).

18.2 Convexity and Marginal Vectors
For the if-direction, note that the equalities imply that every marginal vector
is in the core of the game: for π ∈ Π(N) and non-empty coalition T we have∑
i∈T m

π
i (v) ≥ v(T ), hence mπ(v) ∈ C(v). Hence, the Weber set is a subset

of the core, and by Theorems 18.3 and 18.6 it follows that the game is convex.
For the only-if direction, if the game is convex then by Theorem 18.6 every

marginal vector is in the core, so that for all T ∈ 2N \ {∅}:

v(T ) ≤
∑

i∈T

mπ
i (v) .

Since this inequality is an equality for any permutation π where the players
of T come first, we are done.
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18.3 Strictly Convex Games
Let π and σ be two different permutations and suppose that k ≥ 1 is the
minimal number such that π(k) 6= σ(k). Then mπ

π(k)(v) = v(π(1), . . . , π(k −
1), π(k))−v(π(1), . . . , π(k−1)) < v(Pσ(π(k))∪π(k))−v(Pσ(π(k))) = mσ

π(k)(v),

where the inequality follows from strict convexity since {π(1), . . . , π(k−1)} $
Pσ(π(k)). Hence, mπ 6= mσ.

18.4 Sharing Profits
(a) Let π be a permutation with π(k) = 0 then

mπ
π(ℓ) =





0 if ℓ < k
f(k − 1) if ℓ = k

f(ℓ− 1) − f(ℓ− 2) if ℓ > k.

For the landlord: Φ0(v) = 1
(n+1)! [n!f(0) + n!f(1) + n!f(2) + . . .+ n!f(n)] =

1
n+1 [

∑n
s=0 f(s)].

For worker i: Φi(v) = 1
n [v(N) − Φ0(v)] = nf(n)−f(0)−f(1)−...−f(n−1)

n(n+1) .

(b) x ∈ C(v) if and only if x ≥ 0 and
∑
i∈S xi ≥ f(|S|− 1) for every coalition

S with 0 ∈ S.
(c) Extend f to a piecewise linear function on [0, n]. Then v is convex if and
only if f is convex.

18.5 Sharing Costs
(a) For every nonempty coalition S, v(S) =

∑
i∈S ci − max{ci | i ∈ S}. If we

regard c = (c1, . . . , c2) as an additive game we can write v = c− cmax, where
cmax(S) = max{ci | i ∈ S}.
(b) For a coalition S and a player i /∈ S, v(S∪i)−v(S) = min{ci, cmax(S)}. If T
is another coalition with S ⊆ T and i /∈ T , then v(S∪i)−v(S) ≤ v((T∪i)−v(T )
since cmax(S) ≤ cmax(T ). Hence v is a convex game.
For each permutation π and each player i ∈ N , mπ

i (v) = min{ci, cmax(Pπ(i))}.
Since the game is convex, both the Weber set and the core are equal to the
convex hull of these marginal vectors, while the Shapley value is its barycenter.
The Shapley value can also be computed as follows. First we compute the
Shapley value of cmax. Clearly, Φ1(cmax) = [(n− 1)!/n!] · c1 = c1

n . Further,

Φ2(cmax) =
(n− 1)!

n!
c2 +

(n− 2)!

n!
(c2 − c1)

=
c2

n− 1
− c1
n(n− 1)

Φ3(cmax) =
(n− 1)!

n!
c3 +

(n− 2)!

n!
(c3 − c1)

+
(n− 2)!

n!
(c3 − c2) +

2!(n− 3)!

n!
(c3 − c2)

=
c3

n− 2
− c2

(n− 1)(n− 2)
− c1
n(n− 1)
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and in general

Φi(cmax) =
ci

n− i+ 1
−

i−1∑

j=1

cj
(n− j + 1)(n− j)

.

Hence,

Φi(v) = ci − Φi(cmax) =
n− i

n− i+ 1
ci +

i−1∑

j=1

cj
(n− j + 1)(n− j)

.

18.6 Independence of the Axioms in Theorem 18.8
(a) Consider the value which, for every game v, gives each dummy player his
individual worth and distributes the rest, v(N) −∑i∈D v(i) where D is the
subset of dummy players, evenly among the players. This value satisfies all
axioms except LIN.
(b) Consider the value which, for every game v, distributes v(N) evenly among
all players. This value satisfies all axioms except DUM.
(c) The value which gives each player his individual worth satisfies all axioms
except EFF.
(d) Consider any set of weights {απ | π ∈ Π(N)} with απ ∈ R for all π and∑
π∈Π(N) απ = 1. The value

∑
π∈Π(N) απm

π satisfies LIN, DUM and EFF,
but not MON unless all weights are nonnegative.

18.7 Null-Player in Theorem 18.8
Check that the dummy axiom in the proof of this theorem is only used for
unanimity games. In those games, dummy players are also null-players, so it
is sufficient to require NP. Alternatively, one can show that DUM is implied
by ADD (and, thus, LIN), EFF and NP.

18.8 Characterization of Weighted Shapley Values
Check that every weighted Shapley value satisfies the Partnership axiom. Con-
versely, let ψ be a value satisfying the Partnership axiom and the four other
axioms. Let S1 := {i ∈ N | ψi(uN ) > 0} and for every i ∈ S1 let ωi := ψi(uN ).
Define, recursively, Sk := {i ∈ N \(S1∪. . .∪Sk−1) | ψi(uN\(S1∪...∪Sk−1)) > 0}
and for every i ∈ Sk let ωi := ψi(uN\(S1∪...∪Sk−1)). This results in a parti-
tion (S1, . . . , Sm) of N . Now define the weight system w by the partition
(S1, . . . , Sm) with S1 := Sm, S2 := Sm−1, . . ., Sm := S1, and the weights
ω. Then it is sufficient to prove that for each coalition S and each player
i ∈ S we have ψi(uS) = Φwi (uS). Let h := max{j | S ∩ Sj 6= ∅}, then with
T = N \ (Sh+1 ∪ . . . ∪ Sm) we have by the Partnership axiom: ψi(uS) =

1
ψ(uT )(S)ψi(uT ). If i /∈ Sh then ψi(uT ) = 0, hence ψi(uS) = 0 = Φwi (uS). If

i ∈ Sh then ψi(uS) = ωi∑
j∈S∩Sh

ωj
= Φwi (uS).

18.9 Core and Weighted Shapley Values in Example 18.2
First write the game as a sum of unanimity games:
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v = u{1,2} + u{1,3} − u{2,3} + 2uN .

Then consider all possible ordered partitions of N , there are 13 different ones,
and associated weight vectors. This results in a description of all payoff vectors
associated with weighted Shapley values, including those in the core of the
game.

Problems of Chapter 19

19.1 Binary Relations
Not (4): � on R defined by x � y ⇔ x2 ≥ y2.
Not (3): ≥ on R2.
Not (2): � on R defined by: for all x, y, x ≥ y, let x � y if x− y ≥ 1, and let
y � x if x− y < 1.
Not (1): > on R.
The ordering on R, defined by [x � y] ⇔ [x = y or 0 ≤ x, y ≤ 1] is reflexive
and transitive but not complete and not anti-symmetric.

19.2 Linear Orders
If x ≻ y then by definition x � y and not y � x: hence x 6= y since otherwise
y � x by reflexivity.
If x � y and x 6= y then not y � x since otherwise x = y by anti-symmetry.
Hence x ≻ y.

19.3 The Lexicographic Order (1)
Check (1)–(4) in Sect. 19.2 for �lex. Straightforward.

19.4 The Lexicographic Order (2)
This is the set {(x1, x2) ∈ R2 | [x1 = 3, x2 ≥ 1] or [x1 > 3]}. This set is not
closed.

19.5 Representability of Lexicographic Order (1)
Consider Problem 19.4. Since (α, 0) �lex (3, 1) for all α > 3, we have u(α, 0) ≥
u(3, 1) for all α > 3 and hence, by continuity of u, limα↓3 u(α, 0) ≥ u(3, 1).
Therefore (3, 0) �lex (3, 1), a contradiction.

19.6 Representability of Lexicographic Order (2)
Suppose that u represents �lex on R2, that is, x �lex y if and only if u(x) ≥
u(y) for all x,y ∈ R2. Then for any t ∈ R let q(t) be a rational number in
the interval [u(t, 0), u(t, 1)]. Since (t, α) ≻lex (s, β) and hence u(t, α) > u(s, β)
for all t > s and all α, β ∈ [0, 1], we have [u(t, 0), u(t, 1)]∩ [u(s, 0), u(s, 1)] = ∅
for all t 6= s. Hence, q(t) 6= q(s) for all t 6= s. Therefore, we have found
uncountably many different rational numbers, a contradiction.

19.7 Single-Valuedness of the Pre-nucleolus
Although the pre-nucleolus is defined with respect to the unbounded set
I∗(N, v), clearly the pre-nucleolus is equal to the nucleolus with respect to
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some subset X of I∗(N, v) of the form X = {x ∈ I∗(N, v) | xi ≤M} for some
real number M large enough. Since X is compact and convex Theorem 19.3
applies.

19.8 (Pre-)Nucleolus and Core
For any core element all excesses are non-positive by definition of the core.
This implies that for the (pre-)nucleolus all excesses must be non-positive as
well, since otherwise any core element would have a smaller maximal excess.
But then the (pre-)nucleolus is in the core itself. (Of course, nucleolus and
pre-nucleolus must be equal since they are both equal to the nucleolus with
respect to the core.)

19.9 Kohlberg Criterion for the Nucleolus
First observe that the following modification of Theorem 19.4 holds:

Theorem 19.4′ Let (N, v) be a game and x ∈ I(N, v). Then the following two
statements are equivalent.

(1) x = ν(N, v).
(2) For every α such that D(α,x, v) 6= ∅ and for every side-payment y with

y(S) ≥ 0 for every S ∈ D(α,x, v) and with yi ≥ 0 for all i ∈ N with
xi = v(i) we have y(S) = 0 for every S ∈ D(α,x, v).

The proof of this theorem is almost identical to the proof of Theorem 19.4. In
the second sentence of the proof, note that zε ∈ I(N, v) for ε small enough.
In the second part of the proof, (2)⇒(1), note that yi = zi−xi ≥ 0 whenever
xi = v(i).

For the ‘if’-part of the statement in this problem, let x ∈ I(N, v), D(α,x, v) 6=
∅, and E(α,x, v) such that D(α,x, v)∪E(α,x, v) is balanced. Consider a side-
payment y with y(S) ≥ 0 for every S ∈ D(α,x, v) and yi ≥ 0 for every i with
xi = v(i) (hence in particular for every i with {i} ∈ E(α,x, v)). The argument
in the first part of the proof of Theorem 19.5 now applies to D(α,x, v) ∪
E(α,x, v), and Theorem 19.4′ implies x = ν(N, v).
For the ‘only-if’ part, consider the program (19.4) in the second part of the
proof of Theorem 19.5 but add the constraints −yi ≤ 0 for every i ∈ N with
xi = v(i). Theorem 19.4′ implies that the dual of this program is feasible, that
is, there are λ(S) ≥ 0, S ∈ D(α,x, v), λ({i}) ≥ 0, i such that xi = v(i), and
λ(N) ∈ R such that

−
∑

i∈N : xi=v(i)

λ({i})e{i} −
∑

S∈D(α,x,v)

λ(S)eS + λ(N)eN =
∑

S∈D(α,x,v)

eS .

Hence λ(N)eN =
∑
S∈D(α,x,v)(1 + λ(S))eS +

∑
i∈N : xi=v(i)

λ({i})e{i}. Let

E(α,x, v) consist of those one-person coalitions {i} with xi = v(i) and
λ({i}) > 0, then D(α,x, v) ∪ E(α,x, v) is balanced.

19.10 Proof of Theorem 19.5
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To formulate the dual program, use for instance the formulation in Theorem
16.20. For instance, the primal (19.4) can be converted to the minimization
problem in Theorem 16.20; then the dual corresponds to the maximization
problem in Theorem 16.20. Feasibility of the dual follows from Problem 16.14.

19.11 Nucleolus of a Three-Person Game (1)
At the imputation (5, 4, 3) the excesses of the one-person coalitions are equal
to −1 and the excesses of the two-person coalitions are equal to −5, so this is
clearly the nucleolus.

19.12 Nucleolus of a Three-Person Game (2)
The core of this game is non-empty, so the nucleolus and pre-nucleolus coin-
cide. First, we solve the minimization problem: minα subject to: x1 + α ≥ 0,
x2 + α ≥ 0, x3 + α ≥ 1, x1 + x2 + α ≥ 7, x1 + x3 + α ≥ 5, x2 + x3 + α ≥ 3,
x1 + x2 + x3 = 10. The solution is: α = −1, B1 = {3, 12}, X1 = {x ∈ I(v) |
x3 = 2, x1 + x2 = 8, x1 ≥ 4, x2 ≥ 2}.

Next, we solve the problem: minα subject to: x1 + α ≥ 0, x2 + α ≥ 0,
x1 + x2 + α ≥ 7, x1 + α ≥ 3, x2 + α ≥ 1, x ∈ X1. The solution is: α = −2,
B2 = {13, 23}, X2 = {(5, 3, 2)}. So ν(v) = ν∗(v) = (5, 3, 2).

19.13 Nucleolus of a Two-Person Game
(v(1) + (v(12) − v(1) − v(2))/2, v(2) + (v(12) − v(1) − v(2))/2).

19.14 Individual Rationality Restrictions for the Nucleolus
The nucleolus is (1, 0, 0): this is easily checked using the Kohlberg criterion
in Problem 19.9 by adding coalitions {2} and {3} to the coalitions {1, 2} and
{1, 3}, which have the highest excess.
The pre-nucleolus (found by trying a payoff vector of the form (1 − 2α, α, α)
with α < 0) is (5/3,−1/3,−1/3). Again, this is easily verified by the Kohlberg
criterion, Theorem 19.4.

19.15 Example 19.7
The set B1 = {123, 124, 34} is balanced with weights all equal to 1/2. The set
B1∪B2 = {123, 124, 34, 134, 234} is balanced with weights, respectively, equal
to 5/12, 5/12, 3/12, 2/12, 2/12.

19.16 (Pre-)Nucleolus of a Symmetric Game
(a) Let z = (v(N)/n)eN . Let α1, . . . , αp be the excesses at z such that α1 >
. . . > αp. Then for every j = 1, . . . , p there is an M ⊆ N such that =
D(αj , z, v) = ∪k∈M{S ⊆ N | |S| = k}. Hence D(αj , z, v) is a union of balanced
sets and therefore itself balanced. ({S | |S| = k} is balanced with weights(
n− 1
k − 1

)−1

.) Thus, z = ν∗(v) by the Kohlberg criterion, and since z ∈ I(v)

it is also the nucleolus.
(b) The maximal excess is reached (at least) for all coalitions of some same
size, say s < n. The equations v(S) − (s/n)v(N) = v(S) −∑i∈S xi for all S
with |S| = s determine x uniquely: the (pre-)nucleolus is a solution, and there
are n independent equations. Hence X1 consists of a unique element.
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19.17 COV and AN of the Pre-nucleolus
Covariance of the pre-nucleolus follows since applying a transformation as in
the definition of this property changes all excesses (only) by the same positive
(multiplicative) factor.
Anonymity of the pre-nucleolus follows since a permutation of the players
does not change the ordered vectors θ(x), but only permutes the coalitions to
which the excesses correspond.

19.18 Apex Game
Try a vector of the form (1− 4α, α, α, α, α). Equating the excesses of N \ {1}
with the excesses of coalitions of the form {1, j} for j 6= 1 gives α = 1/7. Hence,
the (pre-)nucleolus is (3/7, 1/7, 1/7, 1/7, 1/7). This can easily be verified using
the Kohlberg criterion.

19.19 Landlord Game
(a) By anonymity, each worker is assigned 1

2 [f(n)−f(n−1)]. By computing the
excesses, it follows that among all coalitions containing the landlord, with this
payoff vector the maximal excesses are reached by the coalitions containing
n− 1 workers, and further also by the coalitions consisting of a single worker
and not the landlord. By the Kohlberg criterion this immediately implies that
the given vector is the (pre-)nucleolus. For the Shapley value, see Problem
18.4.
(b) Compute the excesses for the payoff vector f(n)

n+1 e{0,1,...,n}, and apply the
Kohlberg criterion.

19.20 Game in Sect. 19.1
The first linear program is: minimize α subject to the constraints xi+α ≥ 4 for
i = 1, 2, 3, x1+x2+α ≥ 8, x1+x3+α ≥ 12, x2+x3+α ≥ 16, x1+x2+x3 = 24.
The program has optimal value α = −2, reached for x1 = 6 and x2, x3 ≥ 6.

In the second program x1 has been eliminated. This program reduces to:
minimize α subject to x2 +α ≥ 4, x2 ≤ 12+α, x2 +x3 = 18. This has optimal
value α = −4, reached for x2 = 8, x3 = 10.

19.21 The Prekernel
For i, j ∈ N denote by Tij those coalitions that contain player i and not player
j. For a payoff vector x denote by sij(x, v) the maximum of e(S,x, v) over all
S ∈ Tij .

Let now x be the pre-nucleolus and suppose, contrary to what has to be
proved, that there are two distinct players k, ℓ such that skℓ(x, v) > sℓk(x, v).
Let δ = (skℓ(x, v) − sℓk(x, v))/2 and define y by yk = xk + δ, yℓ = xℓ − δ,
and yi = xi for all i 6= k, ℓ. Denote S = {S ∈ 2N \ Tkℓ | e(S,x, v) ≥ skl(x, v)}
and s = |S|. Then θs+1(x) = skℓ(x, v). For S ∈ 2N \ (Tkℓ ∪ Tℓk), we have
e(S,x, v) = e(S,y, v). For S ∈ Tkℓ we have e(S,y, v) = e(S,x, v) − δ. Finally,
for S ∈ Tℓk we have

e(S,y, v) = e(S,x, v) + δ ≤ sℓk(x, v) + δ = skℓ(x, v) − δ .
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Thus, θt(y) = θt(x) for all t ≤ s and θs+1(y) < skℓ(x, v) = θs+1(x). Hence
θ(x) ≻lex θ(y), a contradiction.

Problems of Chapter 20

20.1 The Dentist Game
(20.2) and (20.3) are equivalent since each π ∈ Π(S) corresponds to some
collection {xij ∈ {0, 1}} where

∑
j∈N xij = 1S(i) for all i ∈ S,

∑
i∈N xij =

1S(j) for all j ∈ S. For the ‘dentist game’ of Sect. 1.3.4 the numbers kij are
given by Table 1.3, i.e., by

Pl.1 Pl.2 Pl.3

Pl.1 2 4 8
Pl.2 10 5 2
Pl.3 10 6 4

20.2 Example 20.3
The coalition {1, 2} can generate 3 by the permutation that exchanges 1 and
2, hence a12 = 3. Similarly, a13 = 3. Hence, M = {1} and P = {2, 3}. Thus,
in the associated assignment game w we have w(N) = max{3, 3} = 3 6= 4 =
v(N).

20.3 Subgames of Permutation Games
That a subgame of a permutation game is again a permutation game follows
immediately from the definition: in (20.3) the worth v(S) depends only on
the numbers kij for i, j ∈ S. By a similar argument (consider (20.1)) this also
holds for assignment games.

20.4 A Flow Game
(a) The coalitions {1, 3}, {2, 3}, {1, 2, 3}, {1, 3, 4}, and {2, 3, 4} have worth 1,
N has worth 2, all other coalitions have worth 0.
(b) C(v) = {(x1, x2, x3, x4) | x1 + x3 ≥ 1, x2 + x3 ≥ 1, x1 + x2 + x3 + x4 =
2, xi ≥ 0∀i}.
(c) (1, 1, 0, 0), corresponding to the minimum cut through e1 and e2; {(0, 0, 1+
α, 1−α) | 0 ≤ α ≤ 1}, corresponding to the minimum cut through e3 and e4.

20.5 Every Nonnegative Balanced Game is a Flow Game
Let v be a nonnegative balanced game, and write (following the hint to the

problem) v =
∑k
r=1 αrwr, where αr > 0 and wr a balanced simple game

for each r = 1, . . . , k. Consider the controlled capacitated network with two
vertices, the source and the sink, and k edges connecting them, where each
edge er has capacity αr and is controlled by wr. Then show that the associated
flow game is v.

20.6 On Theorem 20.6 (1)
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(a) This follows straightforwardly from the proof of Theorem 20.6.
(b) Coalitions {1, 3} and {2, 4} have worth 1, {1, 2} has worth 10, all three-
person coalitions have worth 11, the grand coalition has worth 21, and all
other coalitions have worth 0. E.g., each player receiving 51

4 is a core element.

20.7 On Theorem 20.6 (2)
In any core element, player should 1 receive at least 1 and player 2 also, but
v(N) = 1. Hence the game has an empty core.

20.8 Totally Balanced Flow Games
This follows immediately from Theorem 20.6, since every dictatorial game is
balanced, i.e., has veto players.

20.9 If-part of Theorem 20.9

We show that the Banzhaf value satisfies 2-EFF, the other properties are
obvious. With notations as in the formulation of 2-EFF, we have

ψp(vp) =
∑

S⊆(N\p)∪{p}: p/∈S

1

2|N |−2
[vp(S ∪ {p}) − vp(S)]

=
∑

S⊆N\{i,j}

1

2|N |−2
[v(S ∪ {ij}) − v(S)]

=
∑

S⊆N\{i,j}

1

2|N |−1
[2v(S ∪ {ij}) − 2v(S)] .

The term in brackets can be written as

[v(S ∪ {i, j}) − v(S ∪ {i}) + v(S ∪ {j}) − v(S)]
+ [v(S ∪ {i, j}) − v(S ∪ {j}) + v(S ∪ {i}) − v(S)] ,

hence ψp(vp) = ψj(v) + ψi(v).
Note that we cannot weaken DUM to NP. For instance, the value ψ defined by
ψi(v) :=

∑
S⊂N : i6∈S

1
2|N| [v(S ∪ i)− v(S)] satisfies 2-EFF (by a similar argument

as above), SYM, NP, and SMON.
For the three-person glove game v(13) = v(23) = v(123) = 1, v(S) = 0
otherwise, the Banzhaf value is (1/4, 1/4, 1), which is not efficient.

Problems of Chapter 21

21.1 Anonymity and Symmetry
Let F be anonymous and (S,d) symmetric. Let S′ := {(x2, x1) ∈ R2 |
(x1, x2) ∈ S} = S, and d′ := (d2, d1) = d. By Anonymity, F1(S,d) =
F1(S

′,d′) = F2(S,d).
An example of a symmetric but not anonymous solution is as follows. To sym-
metric problems, assign the point in W (S) with equal coordinates; otherwise,
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assign the point of S that is lexicographically (first player 1, then player 2)
maximal.

21.2 Revealed Preference

Suppose F is represented by a binary relation �. Let S, T ∈ B0 with S ⊆ T
and F (T ) ∈ S. Then F (T ) � y for all y ∈ T , so F (T ) � y for all y ∈ S. Since
{F (S)} = {x ∈ S | x � y for all y ∈ S}, we have F (S) = F (T ).
Suppose F satisfies IIA. Define � on R2 by x � y :⇔ ∃S ∈ B0 : x = F (S),y ∈
S. Let S ∈ B0 arbitrary. By definition, F (S) � y for all y ∈ S. Suppose also
z ∈ S, z � y for all y ∈ S. Let T ∈ B0 such that F (T ) = z and F (S) ∈ T .
Then S ∩ T ∈ B0. By IIA, F (S ∩ T ) = F (T ) = z and also F (S ∩ T ) = F (S).
Hence F (S) = z, so {x ∈ S | x � y for all y ∈ S} = {F (S)}.
21.3 The Nash Solution is Well-defined
The function x 7→ (x1 − d1)(x2 − d2) is continuous on the compact set {x ∈
S | x ≥ d} and hence attains a maximum on this set. We have to show that
this maximum is attained at a unique point. In general, consider two points
z, z′ ∈ {x ∈ S | x ≥ d} with (z1 − d1)(z2 − d2) = (z′1 − d1)(z

′
2 − d2) = α. Then

one can show that at the point w = 1
2 (z+z′) ∈ S one has (w1−d1)(w2−d2) >

α. This implies that the maximum is attained at a unique point.

21.4 (a) ⇒ (b) in Theorem 21.1
WPO and IIA are straightforward by definition, and SC follows from an easy
computation. For SYM, note that if N(S,d) = z for a symmetric problem
(S,d), then also (z2, z1) = N(S,d) by definition of the Nash bargaining solu-
tion. Hence, z1 = z2 by uniqueness.

21.5 Geometric Characterization of the Nash Bargaining Solution
Let (S,d) ∈ B and N(S,d) = z. The slope of the tangent line ℓ to the graph
of the function x1 7→ (z1−d1)(z2−d2)/(x1−d1)+d2 (which describes the level
set of x 7→ (x1 − d1)(x2 − d2) through z) at z is equal to −(z2 − d2)/(z1 − d1),
i.e., the negative of the slope of the straight line through d and z. Clearly, ℓ
supports S at z: this can be seen by invoking a separating hyperplane theorem,
but also as follows. Suppose there were some point z′ of S on the other side
of ℓ than d. Then there is a point w on the line segment connecting z′ and z

(hence, w ∈ S) with (w1 − d1)(w2 − d2) > (z1 − d1)(z2 − d2), contradicting
z = N(S,d). The existence of such a point w follows since otherwise the
straight line through z′ and z would also be a tangent line to the level curve
of the Nash product at z.

For the converse, suppose that at a point z there is a supporting line of
S with slope −(z2 − d2)/(z1 − d1). Clearly, this line is tangent to the graph
of the function x1 7→ (z1 − d1)(z2 − d2)/(x1 − d1) + d2 at z. It follows that
z = N(S,d).

21.6 Strong Individual Rationality
The implication (a) ⇒ (b) is straightforward. For (b) ⇒ (a), if F is also weakly
Pareto optimal, then F = N by Theorem 21.1. So it is sufficient to show that,
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if F is not weakly Pareto optimal then F = D. Suppose that F is not weakly
Pareto optimal. Then there is an (S,d) ∈ B with F (S,d) /∈ W (S). By IR,
F (S,d) ≥ d. Suppose F (S,d) 6= d. By SC, we may assume w.l.o.g. d = (0, 0).
Let α > 0 be such that F (S, (0, 0)) ∈W ((α, α)S). Since F (S, (0, 0)) /∈W (S),
α < 1. So (α, α)S ⊆ S. By IIA, F ((α, α)S, (0, 0)) = F (S, (0, 0)), so by SC,
F ((α, α)S, (0, 0)) = (α, α)F (S, (0, 0)) = F (S, (0, 0)), contradicting α < 1. So
F (S, (0, 0)) = (0, 0). Suppose F (T, (0, 0)) 6= (0, 0) for some (T, (0, 0)) ∈ B. By
SC we may assume (0, 0) 6= F (T, (0, 0)) ∈ S. By IIA applied twice, (0, 0) =
F (S ∩ T, (0, 0)) = F (T, (0, 0)) 6= (0, 0), a contradiction. Hence, F = D.

21.7 (a) ⇒ (b) in Theorem 21.2
Straightforward. Note in particular that in a symmetric game the utopia point
is also symmetric, and that the utopia point is ‘scale covariant’.

21.8 Restricted Monotonicity
(a) Follows from applying IM twice.
(b) For (S,d) with d = (0, 0) and u(S,d) = (1, 1), let F (S,d) be the lexico-
graphically (first player 1, then player 2) maximal point of S∩R2

+. Otherwise,
let F be equal to R. This F satisfies RM but not IM.

21.9 Global Individual Monotonicity
It is straightforward to verify that G satisfies WPO, SYM, SC, and GIM.
For the converse, suppose that F satisfies these four axioms, let (S,d) ∈ B
and z := G(S,d). By SC, w.l.o.g. d = (0, 0) and g(S) = (1, 1). Let α ≤ 0

such that S ⊆ S̃ where S̃ := {x ∈ R2 | (α, α) ≤ x ≤ y for some y ∈
S}. In order to prove F (S, (0, 0)) = G(S, (0, 0)) it is sufficient to prove

that F (S̃, (0, 0)) = G(S̃, (0, 0)) (in view of GIM and WPO). Let T =

conv{z, (α, g2(S̃)), (g1(S̃), α)} = conv{z, (α, 1), (1, α)}. By SYM and WPO,

F (T, (0, 0)) = z. By GIM, F (S̃, (0, 0)) ≥ F (T, (0, 0)) = z = G(S, (0, 0)) =

G(S̃, (0, 0)), so by WPO: F (S̃, (0, 0)) = G(S̃, (0, 0)). (Make pictures. Note
that this proof is analogous to the proof of Theorem 21.2.)

21.10 Monotonicity and (Weak) Pareto Optimality
(a) Take d = (0, 0), a = (1, 2), b = (2, 1), S = conv{d,a,b}. By WPO,
F ( conv{d,a},d) = a = (1, 2), F ( conv{d,b},d) = b = (2, 1). By MON and
WPO, F (S,d) = (1, 2) but also F (S,d) = (2, 1), a contradiction.
(b) For the first question the argument is almost similar as in (a), take the
‘comprehensive hulls’ of the three bargaining problems there. Further, the
egalitarian solution E satisfies MON and WPO on B0.

21.11 The Egalitarian Solution (1)
Straightforward.

21.12 The Egalitarian Solution (2)
Let z := E(S,d)+E(T, e). Then it is straightforward to derive that z1−(d1 +
e1) = z2 − (d2 + e2). Since E(S + T, d+ e) is the maximal point x such that
x1 − (d1 + e1) = x2 − (d2 + e2), it follows that E(S + T, d+ E) ≥ z.
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21.13 Independence of Axioms
Theorem 21.1:

WPO, SYM, SC: F = R; WPO, SYM, IIA: F = L, where L(S,d) is the
point of P (S) nearest to the point z ≥ d with z1 − d1 = z2 − d2 measured
along the boundary of S; WPO, SC, IIA: F = D1, where D1(S,d) is the point
of {x ∈ P (S) | x ≥ d} with maximal first coordinate; SYM, SC, IIA: F = D
(disagreement solution).
Theorem 21.2:

WPO, SYM, SC: F = N ; WPO, SYM, IM: F = L; WPO, SC, IM: if
d = (0, 0) and u(S,d) = (1, 1), let F assign the point of intersection of W (S)
and the line segment connecting (1/4, 3/4) and (1, 1) and, otherwise, let F be
determined by SC; SYM, SC, IM: F = D.
Theorem 21.3:

WPO, MON, SYM: F (S,d) is the maximal point of S on the straight line
through d with slope 1/3 if d = (1, 0), F (S,d) = E(S,d) otherwise; WPO,
MON, TC: F (S,d) is the maximal point of S on the straight line through d

with slope 1/3; WPO, SYM, TC: F = N ; MON, SYM, TC: F = D.

21.14 Nash and Rubinstein
(b) The Nash bargaining solution outcome is (1

3

√
3, 2

3 ), hence ( 1
3

√
3, 1− 1

3

√
3)

is the resulting distribution of the good.

(c) The Rubinstein bargaining outcome is
(√

1−δ
1−δ3 ,

δ−δ3

1−δ3

)
.

(d) The outcome in (c) converges to the outcome in (b) if δ converges to 1.

Problems of Chapter 22

22.1 Convex Sets
The only-if part is obvious. For the if-part, for any two vectors x and y

in Z the condition implies that k
2m x + 2m−k

2m y ∈ Z for every m ∈ N and
k ∈ {0, 1, . . . , 2m}. By closedness of Z, this implies that conv{x,y} ⊆ Z,
hence Z is convex.

22.2 Proof of Lemma 22.3
Suppose that both systems have a solution, say (y, z) ≥ 0, (y, z) 6= 0, Ay+z =
0, x > 0, xA > 0. Then xAy +x · z = x(Ay + z) = 0, hence y = 0 and z = 0

since x > 0, xA > 0. This contradicts (y, z) 6= 0.

22.3 Rank of AAT

We have to prove that the rank of AAT is equal to k. It is sufficient to
prove that the null space of AAT is equal to the null space of AT for then,
by the Rank Theorem, we have rank(AAT ) = m − dim Ker(AAT ) = m −
dim Ker(AT ) = rank(AT ) = rank(A) = k. (Here, Ker denotes the null space.)
Let x ∈ Rn. Clearly, if ATx = 0 then AATx = 0. Conversely, if AATx = 0,
then xTAATx = 0, hence ATx ·ATx = 0. The last equality implies ATx = 0.
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22.4 Proof of Lemma 22.5
Suppose that both systems have a solution, say x > 0, xA = b, Ay ≥ 0,
b · y < 0. Then xAy < 0, contradicting x > 0 and Ay ≥ 0.

22.5 Proof of Lemma 22.7
(a) If x ≥ 0, xA ≤ b, y ≥ 0 and b · y < 0 then xAy ≤ b · y < 0, so Ay 6≥ 0.
This shows that at most one of the two systems has a solution.
(b) Suppose the system in (a) has no solution. Then also the system xA+zI =
b, x ≥ 0, z ≥ 0 has no solution. Hence, by Farkas’ Lemma the system(
A
I

)
y ≥ 0, b · y < 0 has a solution. Therefore, the system in (b) has a

solution.

22.6 Extreme Points
The implication (b) ⇒ (a) follows by definition of an extreme point.
For the implication (a) ⇒ (c), let x, y ∈ C \ {e} and 0 < λ < 1. Let z = λx+
(1−λ)y. If z 6= e then z ∈ C \{e} by convexity of C. Suppose now that z = e.
W.l.o.g. let λ ≥ 1/2. Then e = λx+ (1− λ)y = (1/2)x+ (1/2)[µx+ (1− µ)y]
for µ = 2λ− 1. Since µx+ (1−µ)y ∈ C, this implies that e is not an extreme
point of C. This proves the implication (a) ⇒ (c).
For the implication (c) ⇒ (b), let x, y ∈ C, x 6= y, and 0 < α < 1. If
x = e or y = e then clearly αx + (1 − α)y 6= e. If x 6= e and y 6= e then
αx+ (1 − α)y ∈ C \ {e} by convexity of C \ {e}, hence αx+ (1 − α)y 6= e as
well.

22.7 Affine Subspaces
Let A = a + L be an affine subspace, x, y ∈ A, and λ ∈ R. Write x = a + x̄
and y = a+ ȳ for x̄, ȳ ∈ L, then λx+ (1 − λ)y = a+ λx̄+ (1 − λ)ȳ ∈ A since
λx̄+ (1 − λ)ȳ ∈ L (L is a linear subspace).
Conversely, suppose that A contains the straight line through any two of its
elements. Let a be an arbitrary element of A and let L := {x − a | x ∈ A}.
Then it follows straightforwardly that L is a linear subspace of V , and thus
A = a+ L is an affine subspace.

22.8 The set of Sup-points of a Linear Function on a Convex Set
In general, linearity of f implies that, if f(x) = f(y), then f(λx+(1−λ)y) =
f(x) = f(y) for any two points of C and 0 < λ < 1. It follows, in particular,
that the set D is convex.
Let e ∈ ext(D) and suppose e = (1/2)x+ (1/2)y for some x,y ∈ C. Then by
linearity of f , f(e) = (1/2)f(x) + (1/2)f(y), hence x,y ∈ D since e ∈ D. So
e = x = y since e is an extreme point of D. Thus, e is also an extreme point
of C.




