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The Single-Person Decision Problem

1. Think of a simple decision you face regularly and formalize it as a decision

problem, carefully listing the actions and outcomes without the preference

relation. Then, assign payoffs to the outcomes, and draw the decision tree.

2. Going to the Movies: There are two movie theatres in your neighbor-

hood: Cineclass, which is located one mile from your home, and Cineblast,

located 3 miles from your home, each showing three films. Cineclass is show-

ing Casablanca, Gone with the Wind and Dr. Strangelove, while Cineblast

is showing The Matrix, Blade Runner and Aliens. Your problem is to decide

which movie to go to.

(a) Draw a decision tree that represents this problem without assigning

payoff values.

Answer:
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¥

(b) Imagine that you don’t care about distance and that your preferences

for movies is alphabetic (i.e., you like Aliens the most and The Matrix

the least.) Using payoff values 1 through 6 complete the decision tree

you drew in part (a). What option would you choose?

Answer:

¥

(c) Now imagine that your car is in the shop, and the cost of walking each

mile is equal to one unit of payoff. Update the payoffs in the decision

tree. Would your choice change?

Answer:
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¥

3. Fruit or Candy: A banana costs $050 and a candy costs $025 at the local

cafeteria. You have $1.25 in your pocket and you value money. The money-

equivalent value (payoff) you get from eating your first banana is $1.20, and

that of each additional banana is half the previous one (the second banana

gives you a value of $0.60, the third 0.30, etc.). Similarly, the payoff you get

from eating your first candy is $0.40, and that of each additional candy is

half the previous one ($0.20, 0.10, etc.). Your value from eating bananas is

not affected by how many candies you eat and vice versa.

(a) What is the set of possible actions you can take given your budget of

$1.25?

Answer: You can buy any combination of bananas and candies that

sum up to no more than $1.25. If we denote by ( ) the choice to buy

 bananas and  candies, then the set of possible actions is

 = {(0 0) (0 1) (0 2) (0 3) (0 4) (0 5) (1 0) (1 1) (1 2) (1 3) (2 0) (2 1)}

¥

(b) Draw the decision tree that is associated with this decision problem.

Answer: For each choice you need to calculate the final net value. For

example, if you buy one banana and 2 candies then you get 1.2 worth

from the banana, 0.4 from the first candy and 0.2 from the second which

totals 1.8. To this we need to add the $0.25 you have left (the cost was

only $1) so the net final value you have is 2.05.
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¥

(c) Should you spend all your money at the cafeteria? Justify your answer

with a rational choice argument.

Answer: Yes. The highest net final value if from buying two bananas

and one candy. ¥

(d) Now imagine that the price of a candy increased to $030. How many

possible actions do you have? Does your answer to (c) above change?

Answer: Of the 12 options above, three are no longer possible: (0 5) (1 3)

and (2 1). Also, the net final values change because each candy is 5

cents more expensive. The highest net final value is 2.05 which can be

obtained from one of two choices: (1 1) and (2 0), both leaving some

money in the decision maker’s pocket. ¥

4. Alcohol Consumption: Recall the example in which you needed to choose

how much to drink. Imagine that your payoff function is given by − 42,
where  is a parameter that depends on your physique. Every person may

have a different value of , and it is known that in the population () the

smallest  is 02; () the largest  is 6; and () larger people have higher ’s

than smaller people.
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(a) Can you find an amount of drinking that no person should drink?

Answer: The utility from drinking 0 is equal to 0. If a decision maker

drinks  = 2 then, if he has the largest  = 6, his payoff is  = 6× 2−
4 × (2)2 = −4 and it is easy to see that decision makers with smaller
values of  will obtain an even more negative payoff from consuming

 = 2. Hence, no person should choose  = 2. ¥

(b) How much should you drink if your  = 1? If  = 4?

Answer: The optimal solution is obtained by maximizing the payoff

function () =  − 42. The first-order maximization condition is
 − 8 = 0 implying that  = 

8
is the optimal solution. For  = 1 the

solution is  = 1
8
and for  = 4 it is  = 1

2
. ¥

(c) Show that in general, smaller people should drink less than larger people.

Answer: This follows from the solution in part (b) above. For every

type of person , the solution is () = 
8
which is increasing in , and

larger people have higher values of  ¥

(d) Should any person drink more than one bottle of wine?

Answer: No. Even the largest type of person with  = 6 should only

consume  = 3
4
of a bottle of wine. ¥

5. Buying a Car: You plan on buying a used car. You have $12,000, and you

are not eligible for any loans. The prices of available cars on the lot are given

as follows:
Make, Model & Year Price

Toyota Corolla 2002 $9,350

Toyota Camry 2001 $10,500

Buick LeSabre 2001 $8,825

Honda Civic 2000 $9,215

Subaru Impreza 2000 $9,690

For any given year, you prefer a Camry to an Impreza, an Impreza to a

Corolla, a Corolla to a Civic and a Civic to a LeSabre. For any given year,
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you are willing to pay up to $999 to move form a car to the next preferred

car. For example, if the price of a Corolla is $, then you are willing to buy

it over a Civic if the Civic costs more that $( − 999) but you would prefer
buying the Civic if it costs less than this amount. Similarly, you prefer the

Civic at $ to a Corolla that costs more than $(+1000) but you prefer the

Corolla if it costs less. For any given car, you are willing to move to a model

a year older if it is cheaper by at least $500 For example, if the price of a

2003 Civic is $, then you are willing to buy it over a 2002 Civic if the 2002

Civic costs more that $(−500) but you would prefer buying the 2002 Civic
if it costs less than this amount.

(a) What is your set of possible alternatives?

Answer: Given that you have $12,000, which is more than the price

of any car, you have six alternatives: any one of the five cars or buying

nothing. ¥

(b) What is your preference relation between the alternatives in (a) above?

Answer: To answer this we need use the information on willingness to

pay given in the question, together with the prices. The least valued

car would be a 2000 LeSabre. Assume that the value of owning that car

is given by . From the information above, a 2000 Civic is valued at

+ 999, a 2000 Corolla is valued at + 1 998, and so on up to a 2000

Camry valued at  + 3 996. Similarly, each of these cars for the year

2001 is valued at 500 more than the 2000 model, and the 2002 model

is valued at 1,000 more than the 2000 model. Hence, we can write the

table of values as follows:

Make and Model year 2000 year 2001 year 2002

Toyota Camry + 3 996 + 4 496 + 4 996

Subaru Impreza + 2 997 + 3 497 + 3 997

Toyota Corolla + 1 998 + 2 498 + 2 998

Honda Civic + 999 + 1 499 + 1 999

Buick LeSabre + 0 + 500 + 1 000
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Now, to see what the net value from each purchase would be we must

deduct the price of the car from the value. Using the five prices given

above and the values we just calculated we have net payoffs as (e.g., for

the 2002 Corolla, the net payoff is + 2 998− 9 350 = − 6 352),

Make, Model & Year Price

Toyota Corolla 2002 − 6 352
Toyota Camry 2001 − 6 004
Buick LeSabre 2001 − 8 325
Honda Civic 2000 − 8 216
Subaru Impreza 2000 − 6 693

Assuming that  is large enough to want to buy any car, the ranking

of the alternatives is, Toyota Camry 2001, followed by Toyota Corolla

2002, followed by Subaru Impreza 2000, followed by Honda Civic 2000

and last being the Buick LeSabre 2001. ¥

(c) Draw a decision tree an assign payoffs to the terminal nodes associated

with the possible alternatives. What would you choose?

Answer: This follows directly from the analysis in (b) above: you should

choose the Toyota Camry 2001 (with six branches, including no pur-

chase.) ¥

(d) Can you draw a decision tree with different payoffs that represents the

same problem?

Answer: Because we left  as undetermined, we can find many values

of  that will represent this problem. Notice that if  is small enough

(less than 6,004) then the best choice would be not to buy a car. ¥

6. Fruit Trees: You have room for up to two fruit bearing trees in your garden.

The fruit trees that can grow in your garden are either apple, orange or pear.

The cost of maintenance is $100 for an apple tree, $70 for an orange tree and

$120 for a pear tree. Your food bill will be reduced by $130 for each apple

tree you plant, by $145 for each pear tree you plant and by $90 for each
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orange tree you plant. You care only about your total expenditure in making

any planting decisions.

(a) What is the set of possible actions and related outcomes?

Answer: You have two “slots” that can be left empty, or have one of 3

possible trees planted in each slot. Hence, you have 10 possible choices.1

The outcomes will just be the choices of what to plant. ¥

(b) What is the payoff of each action/outcome?

Answer: To calculate the payoffs from each choice it is convenient to

use a table as follows:

Choice cost food savings net payoff

nothing 0 0 0

one apple tree 100 130 30

one orange tree 70 90 20

one pear tree 120 145 25

two apple trees 200 260 60

two orange trees 140 180 40

two pear trees 240 290 50

apple and orange 170 220 50

apple and pear 220 275 55

pear and orange 190 235 45

(c) Which actions are dominated?

Answer: All but choosing two apple trees are dominated. ¥

(d) Draw the associated decision tree. What will a rational player choose?

Answer: The tree will have ten branches with the payoffs associated

with the table above, and the optimal choice is two apple trees. ¥

1This is a probem of choosing 2 items out of 4 possibilities with replacement, which is equal to
4+2−1

2


=

(4+2−1)!
2!(4−1)! =

5×4
2
= 10.
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(e) Now imagine that the food bill reduction is half for the second tree of

the same kind (you like variety). That is, the first apple still reduces

your food bill by $130, but if you plant two apple trees your food bill

will be reduced by $130 + $65 = $195. (Similarly for pear and orange

trees.) What will a rational player choose now?

Answer: An apple tree is still the best choice for the first tree, but now

the second tree should be a pear tree. ¥

7. City Parks: A city’s mayor has to decide how much money to spend on

parks and recreation. City codes restrict this spending to be no more than

5% of the budget, and the yearly budget of the city is $20,000,000. He wants

to please his constituents who have diminishing returns from parks. The

money-equivalent benefit from spending $ on parks is () =
√
400− 1

80
.

(a) What is the action set of the city’s mayor?

Answer: The limit on spending is $1 million, so the actions set is

 ∈ [0 1000000]. ¥

(b) How much should the mayor spend?

Answer: The maximization problem is

max
∈[01000000]

√
400− 1

80
 

and taking the derivative for the first-order condition we obtain,

10√

− 1

80
= 0 ,

or  = $640 000. The second order derivative is −5− 3
2  0 so this is

indeed a maximum. ¥

(c) The movie An Inconvenient Truth has shifted public opinion and now

people are more willing to pay for parks. The new preferences of the

people are given by () =
√
1600 − 1

80
 . What now is the action set
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of the mayor, and how much spending should he choose to cater to his

constituents?

Answer: The first-order condition is now,

20√

− 1

80
= 0 ,

or  = $2 560 000. This exceeds the budget and hence the optimal

solution is to spend $1 million. ¥
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Introducing Uncertainty and Time

1. Getting an MBA: Recall the decision problem in Section 2.3.1, and now

assume that the probability of a strong labor market is , of an average labor

market is 0.5 and of a weak labor market is 05− . All the other values are

the same.

(a) For which values of  will you decide not to get an MBA?

Answer: The expected payoffs from each choice are given by,

(Get MBA) = × 22 + 05× 6 + (05− )× 2 = 20+ 4
(Don’t get MBA) = × 12 + 05× 8 + (05− )× 4 = 8+ 6

which implies that getting an MBA is worthwhile if and only if

20+ 4 ≥ 8+ 6 

or,  ≥ 1
6
 ¥

(b) If  = 04, what is the highest price the university can charge for you

to be willing to go ahead and get an MBA?
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Answer: If  = 04 then the payoffs are,

(Get MBA) = 04× 22 + 05× 6 + 01× 2 = 12
(Don’t get MBA) = 04× 12 + 05× 8 + 01× 4 = 92

which implies that an extra charge of up to 2.8 can be charged by the

university and you would still be willing to get an MBA. ¥

2. Recreation Choices: A player has three possible venues to choose from:

going to a football game, going to a boxing match, or going for a hike.

The payoff from each of these alternatives will depend on the weather. The

following table gives the agent’s payoff in each of the two relevant weather

events:
Alternative payoff if Rain payoff if Shine

Football game 1 2

Boxing Match 3 0

Hike 0 1

For Let  denote the probability of rain.

(a) Is there an alternative that a rational player will never take regardless

of ? (i.e., it is dominated for any  ∈ [0 1].)
Answer: For this decision maker choosing the hike is always worse

(dominated) by going to the football game, and he should never go on

a hike. ¥

(b) What is the optimal decision, or best response, as a function of .

Answer: The expected payoffs from each of the remaining two choices

are given by,

(Football) = × 1 + (1− )× 2 = 2−  

(Boxing) = × 3 + (1− )× 0 = 3 

which implies that football is a better choice if and only if

2−  ≥ 3 
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or,  ≤ 1
2
, and boxing is better otherwise. ¥

3. At the Dog Races: You’re in Las Vegas, and you can decide what to do at

the dog-racing bet room. You can choose not to participate, or you bet on

one of two dogs as follows. Betting on Snoopy costs $1, and you will be paid

$2 if he wins. Betting on Lassie costs $1, and you will be paid $11 if she wins.

You believe that Snoopy has probability 0.7 of winning and that Lassie has

probability 0.1 of winning (there are other dogs that you are not considering

betting on). Your goal is to maximize the expected monetary return of your

action.

(a) Draw the decision tree of this problem.

Answer:

(b) What is your best course of action, and what is your expected value?

Answer: The expected payoff from betting on Snoopy is 07−03 = 04
while betting on Lassie yields 1−09 = 01, so betting on Snoopy is the
best action. ¥

(c) Someone comes and offers you gambler’s anti-insurance to which you

can agree or not. If you agree to it, you get paid $2 up front and you

agree to pay back 50% of any winnings you receive. Draw the new de-

cision tree, and find the optimal action.



16 2. Introducing Uncertainty and Time

Answer:

The best action is still to bet on Snoopy with an expected payoff of 1.7

versus 1.55 from betting on Lassie. ¥

4. Drilling for Oil: An oil drilling company must decide whether or not to

engage in a new drilling activity before regulators pass a law that bans drilling

at that site. The cost of drilling is $1,000,000. After drilling is completed and

the drilling costs are incurred, then the company will learn if there is oil or

not. If there is oil, operating profits generated are estimated at $4,000,000.

If there is no oil, there will be no future profits.

(a) Using  to denote the likelihood that drilling results in oil, draw the

decision tree of this problem.

Answer: Two decision branches: drill or not drill. Following drilling,

Nature chooses oil with probability , with the payoff of $3 million (4

minus the initial investment). With probability 1 −  Nature chooses

no-oil with a payoff $− 1 million. ¥

(b) The company estimates that  = 06. What is the expected value of

drilling? Should the company go ahead and drill?

Answer: The expected payoff (in millions) from drilling is × 3− (1−
)× 1 = 4− 1 = 06, which means that the company should drill. ¥

(c) To be on the safe side, the company hires a specialist to come up with a

more accurate estimate of . What is the minimum vale of  for which
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it would be the company’s best response to go ahead and drill?

Answer: The minimum value of  for which drilling causes no expected

loss is calculated by solving × 3− (1− )× 1 ≥ 0, or  ≥ 1
4
 ¥

5. Discount Prices: A local department store puts out products at an initial

price, and every week the product goes unsold, its price is discounted by

25% of the original price. If it is not sold after 4 weeks, it is sent back to

the regional warehouse. There is a set of butcher knives that was just put

out for the price of $200. Your willingness to pay for the knives (your dollar

value) is $180, so if you buy them at a price  , your payoff is  = 180−  .

If you don’t buy the knives, the chances that they are sold to someone else

conditional on not selling in the week before are given in the following table:

week 1 0.2

week 2 0.4

week 3 0.6

week 4 0.8

For example, if you do not buy it during the first two weeks, the likelihood

that it is available at the beginning of the third week is the likelihood that

it does not sell in either weeks 1 and 2, which is 08× 06 = 048.

(a) Draw your decision tree for the 4 weeks after the knives are put out for

sale.

Answer: We can draw each week as having nature move first to deter-

mine whether someone else bought the knives, and if they did not, then

our player can buy or wait. The tree therefore will be,
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where the numbers in the squares next to Nature’s nodes mark the ex-

pected value from choosing wait before that node. ¥

(b) At the beginning of which week, if any, should you run to buy the

knives?

Answer: We solve this backward. In week 4 the player will buy the

knives of they are there. Waiting in week 3 gives an expected payoff

of only 02× (180− 50) = 26, while buying in week 3 gives a payoff of
180−100 = 80  26, so buying in week 3 beats waiting. Moving back to
week 2, waiting gives an expected payoff of 04× 80 = 32 while buying
yields 180−150 = 30  32 so waiting beats buying, and moving back to
week 1 makes waiting even more valuable compared to buying (buying

in week 1 is dominated by not buying. Hence, the player will wait till

week 3 and then try to buy the knives. ¥

(c) Find a willingness to pay for the knives that would make it optimal to

buy at the beginning of the first week.

Answer: Waiting is risky so intuitively, to make an early purchase

valuable, the willingness to pay must be very high. Set the willingness

to pay at 1000. In week 4 the player will buy the knives. Waiting in week

3 yields 02× (1000− 50) = 190, while buying in week 3 gives a payoff
of 1000− 100 = 900  190, so buying in week 3 beats waiting. Moving
back to week 2, waiting gives an expected payoff of 04×190 = 76 while
buying yields 1000− 150 = 850  76 so buying beats waiting. Moving
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back to week 1, waiting gives an expected payoff of 06 × 850 = 510

while buying yields 1000− 200 = 800  510 so buying in the first week
is the optimal decision. ¥

(d) Find a willingness to pay that would make it optimal to buy at the

beginning of the fourth week.

Answer: Similarly to (c) above, to make a late purchase valuable, the

willingness to pay must be quite low. Set the willingness to pay at 100.

In any week but week 4 the price is above the willingness to pay, so the

optimal decision is to wait for week 4 and then buy the knives if they

are available. ¥

6. Real Estate Development: A real estate developer wishes to build a new

development. Regulations impose an environmental impact study that will

yield an “impact score,” which is an index number based on the impact the

development will likely have on traffic, air quality, sewage and water usage,

etc. The developer, who has lots of experience, knows that the score will

be no less than 40, and no more than 70. Furthermore, he knows that any

score between 40 and 70 is as likely as any other score between 40 and 70

(use continuous values). The local government’s past behavior implies that

there is a 35% chance that it will approve the development if the impact

score is less than 50, a 5% chance that it will approve the development if

the score is between 50 and 55, and if the score is greater than 55 then the

project will surely be halted. The value of the development to the devel-

oper is $20,000,000. Assuming that the developer is risk neutral, what is the

maximum cost of the impact study such that it is still worthwhile for the

developer to have it conducted?

Answer: Observe that there is a 1
3
probability of getting a score between

40 and 50 given that 40 to 50 is one-third of the range 40 to 70. There is

a 1
6
probability of getting a score between 50 and 55 given that 50 to 55 is

one-sixth of the range 40 to 70. Hence, the expected value of doing a study



20 2. Introducing Uncertainty and Time

is

1

3
× 35× $20 000 000 + 1

6
× 05× $20 000 000 + 1

2
× 0× $20 000 000

= $2 500 000

Hence, the most the developer should pay for the study is $2,500,000. ¥

7. Toys: WakTek is a renowned manufacturer of electronic toys, with a spe-

cialty in remote-controlled (RC) miniature vehicles. WakTek is considering

the introduction of a new product, an RC Hovercraft called WakAtak. Pre-

liminary designs have already been produced at a cost of $2 million. To

introduce a marketable product requires the building of a dedicated product

line at a cost of $12 million. Also, before the product can be launched a pro-

totype needs to be built and tested for safety. The prototype can be crafted

even in the absence of a production line, at a cost of $05 million, but if the

prototype is built after the production line then its cost is negligible.1 There

is uncertainty over what safety rating WakAtak will get. This could have a

large impact on demand, as a lower safety-rating will increase the minimum

age required from users. The safety-testing costs $1 million. The outcome of

the safety-test is estimated to have a 65% chance of resulting in a minimum

age of 8 years, a 30% chance of minimum age 15 years, and a 5% chance of

being declared unsafe in which case it could not be sold at all. (The cost of

improving the safety status of a finished design is deemed prohibitive.) Af-

ter successful safety-testing the product could be launched at a cost of $15

million.

There is also uncertainty over demand, which will have a crucial impact on

the eventual profits. Currently the best estimate is that the finished product,

if available to the 8 − 14 demographic, has a 50 − 50 chance of resulting in
profits of either $10 million or $5 million from that demographic. Similarly

there is a 50−50 chance of either $14 million or $6 million profit from the 15-
or-above demographic. These demand outcomes are independent across the

demographics. The profits do not take into account the costs defined above;

1“Negligible” means you can treat it as zero.
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they are measured in expected present-value terms so they are directly com-

parable with the costs.

(a) What is the optimal plan of action for WakTek? What is currently the

expected economic value of the WakAtak project?

Answer: The optimal plan is to build the prototype first and then do

the safety test, then build the production line and launch the product

only if the safety test results in the “safe for 8 years and above” status.

The expected economic profits from this plan are $1.1 million. For jus-

tification of this answer, consider the following decision tree:

Notice that the cost of the preliminary design is sunk (cannot be recov-

ered) and should be ignored. ¥

(b) Suddenly it turns out that the original estimate of the cost of safety-

testing was incorrect. Analyze the sensitivity of WakTek’s optimal plan

of action to the cost of safety-testing.

Answer: If the cost of safety-testing is too high, then the expected

value becomes negative and the optimal plan is to exit the project. To

find out the threshold cost of safety-testing above which exit becomes

optimal, notice that the cost of safety-testing is incurred for sure under
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the optimal plan of action which brings expected profits of $1.1 million.

Therefore, if the cost of safety-testing is increased by $1.1 million or

more (bringing it to $2.1 million or more) then the decision should be

changed to “exit.” ¥

(c) Suppose WakTek has also the possibility of conducting a market survey,

which would tell exactly which demand scenario is true. This market

research costs $15 million if done simultaneously for both demograph-

ics, and $1 million if done for one demographic only. How, if at all, is

the answer to part a) affected?

Answer: First examine the decision tree from part a) to see whether

we can simplify the effect of the market research, by eliminating some

logically possible alternatives. Which alternatives to eliminate from the

tree as “obviously irrelevant” is partly a matter of taste. For example,

there are points in the tree where the opportunity to exit is irrelevant

(e.g. after we’ve found out that demand is high for the “young”2) be-

cause the profits will clearly be higher by not exiting. You can always

just include all alternatives, although that can lead to a very large tree;

the final answer is of course unaffected. Eliminations that are not obvi-

ous but that were used in simplifying the decision trees are justified by

logic as follows:

(i) We can completely ignore the possibility of building a production line

before the safety test. We already established in part (a) that doing the

safety test first achieves expected profits that are (11−(−005) = 115)
million higher than doing the production line first. The only potential

benefit of doing the production line first is the saved $0.5 million pro-

totype cost. Thus no information could ever change the difference in

payoffs to the advantage of a “production line first” plan by more than

this $0.5 million. Since research always costs at least $1 million, “prod.

line first” can not become optimal due to the possibility of doing market

2For brevity, the 8-14 demographic is henceforth referred to as the “young,” and the 14+ demographic as the

“old.”
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research.

(ii) It is never profitable to do research after the safety test. If the re-

sult were “safe for both groups” then the only case where info is useful

(i.e. changes the decision to enter into exit) is if both groups have low

demand. (See Figure 1: exiting payoff−15 is better than the−4 of Low-
Low demand scenario, but less than the payoff under the other three de-

mand scenarios). This demand scenario could be ruled out by research-

ing either group. The expected payoffwould be 1
4
(9+1+4−15)−1  25,

i.e., not worth it after paying for the cost of research. Research after find-

ing out that WakAtak is only “safe for old” is obviously not profitable,

since even if the information caused the decision to change (from “exit”

to “enter,” if demand is high) this results only in a payoff of −1 before
the research cost, while exit guarantees −15; since research is more
costly than the 0:5 difference it cannot be worthwhile.

(iii) The potential benefit of research is that it allows WakTek to save

the cost of production line under unfavorable demand conditions, so

there would be no point in plans of action where research is conducted

after the production line is built.

Consider a plan where both groups are researched simultaneously.

This would lead to expected value of $0.456 million, so not doing re-
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search is better than researching both simultaneously. We can now de-

duce that researching only one of the groups cannot be optimal either.

The reason is that it is less informative than researching both, so the

expected payoff could not be higher than $0.456 million for any other

reason than the fact that it is cheaper by $(15− 1 = 05) million. This
means that the expected value (EV) of a plan where only one group is

researched must be lower than ($0456 + $05 = $0956) million. Thus

the $1.1 million value from no research is still the highest. Similarly,

consider the possibility of researching both groups sequentially. This is,

at best, equally informative as researching both groups simultaneously.

It offers the added option of stopping the research after finding out

the results for one group, and thus potentially a saving of $0.5 million

compared to the cost of researching both simultaneously. Again, this

cost-saving could not increase the EV to above $0.956, so the optimal

plan of action for part a) is not affected.

(d) Suppose that demand is not independent across demographics after all,

but instead is perfectly correlated (i.e., if demand is high in one demo-

graphic, then it is for sure high in the other one as well). How, if at all,

would that change your answer to part c)?

Answer: Now researching either one of the demographic groups is

just as informative as researching both (but cheaper, at $1 million);

it tells WakTek whether the demand is high for both groups or low for

both groups. In this case the optimal decision would be to research one

(doesn’t matter which) group, and do the safety testing if the demand

is high for both groups, then build the production line and launch the

product unless deemed unsafe; This results in EV of $1.7375 million.

The following figure shows the decision tree.3

3Note that expected values are not directly axoected by the correlation so the EV of no research is still 1.1.

However, the correlation of demands is good for WakTek, not just because it makes market research cheaper.

For example, compared to the case (in part c) where WakTek researches both groups simultaneously, one added

benefit here is that WakTek will never have to “waste” the cost of safety-testing in the event where the result

turns out to be “safe for old only,” which leads to exit.
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8. Juice: Bozoni is a renowned Swiss maker of fruit and vegetable juice, whose

products are sold at specialty stores around Western Europe. Bozoni is con-

sidering whether to add cherimoya juice to its line of products. “It would

be one of our more difficult varieties to produce and distribute,” observes

Johann Ziffenboeffel, Bozoni’s CEO. “The cherimoya would be flown in from

New Zealand in firm, unripe form, and it would need its own dedicated ripen-

ing facility here in Europe.” Three successful steps are absolutely necessary

for the new cherimoya variety to be worth producing. The industrial ripen-

ing process must be shown to allow the delicate flavors of the cherimoya

to be preserved; the testing of the ripening process requires the building

of a small-scale ripening facility. Market research in selected small regions

around Europe must show that there is sufficient demand among consumers

for cherimoya juice. And cherimoya juice must be shown to withstand the

existing tiny gaps in the cold chain between the Bozoni plant and the end

consumers (these gaps would be prohibitively expensive to fix). Once these

three steps have been completed, there are about 2,500,000 worth of ex-

penses in launching the new variety of juice. A successful new variety will

then yield profits, in expected present-value terms, of 42.5 million.
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The three absolutely necessary steps can be done in parallel or sequentially

in any order. Data about these three steps is given in Table 1. “Probability

of success” refers to how likely it is that the step will be successful. If it is not

successful, then that means that cherimoya juice cannot be sold at a profit.

All probabilities are independent of each other (i.e., whether a given step is

successful or not does not affect the probabilities that the other steps will be

successful). “Cost” refers to the cost of doing this step (regardless of whether

it is successful or not).

(a) Suppose Mr. Ziffenboeffel calls you and asks your advice about the

project. In particular, he wants to know (i) should he do the three

necessary steps in parallel (i.e., all at once) or should he do them se-

quentially; and (ii) if sequentially, what’s the right order for the steps

to be done? What answers do you give him?

Answer: Bozoni should do the steps sequentially in this order: first test

the cold chain, then the ripening process, then do the test-marketing.

The expected value of profits is 1.84 million. Observe that it would not

be profitable to launch the product if Bozoni had to do all the steps

simultaneously. This is an example of real options–by sequencing the

steps, Bozoni creates options to switch out of a doomed project before

too much money gets spent. ¥

(b) Mr. Ziffenboeffel calls you back. Since Table 1 was produced (see below),

Bozoni has found a small research firm that can perform the necessary

tests for the ripening process at a lower cost than Bozoni’s in-house

research department.

Table 1: Data on launching the Cherimoya juice

Step Probability of success Cost

Ripening process 0.7 1,000,000

Test marketing 0.3 5,000,000

Cold chain 0.6 500,000

At the same time, the EU has raised the criteria for getting approval

for new food producing facilities, which raises the costs of these tests.
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Mr. Ziffenboeffel would, therefore, like to know how your answer to (a)

changes as a function of the cost of the ripening test. What do you tell

him?

Answer: This is sensitivity analysis for the cost of testing the ripening

process. This can be done by varying the cost for ripening, and seeing

which expected payoff (highlighted yellow) is highest for which values of

the cost. For example, whenever we set the cost below 375,000 it turns

out that the payoff from the sequence  →  →  gives the highest

payoff among the six possible sequences. (Excel’s GoalSeek is a partic-

ularly handy way for finding the threshold values quickly).

Specifically, the optimal sequence is

i) →  →  if the cost of  ≤ 375 000
ii)  → →  if the cost of 375 000 ≤  ≤ 2 142 857
iii)  →  →  if the cost of 2 142 857 ≤  ≤ 8 640 000
iv) don’t launch if  costs more than 8 640 000

where “” stands for the ripening process, “” stands for the cold

chain, and “” stands for test marketing. ¥

(c) Mr. Ziffenboeffel calls you back yet again. The good news is the EU

regulations and the outsourcing of the ripening tests “balance” each

other out, so the cost of the test remains 1,000,000. Now the problem

is that his marketing department is suggesting that the probability that

the market research will result in good news about the demand could

be different in light of some recent data on the sales of other subtropical

fruit products. He would, therefore, like to know how your answer to

(a) changes as a function of the probability of a positive result from the

market research. What do you tell him?

Answer: This can be found by varying the probability of success for

test marketing (highlighted by blue in the excel sheet) between 0 and

1. The optimal sequence turns out to be
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i) don’t launch if  ≤ 01905
ii)  → →  if   01905

where  is the probability that the test marketing will be successful.

¥

9. Steel: AK Steel Holding Corporation is a producer of flat-rolled carbon,

stainless and electrical steels and tubular products through its wholly owned

subsidiary, AK Steel Corporation. The recent surge in the demand for steel

significantly increased AK’s profits,4 and it is now engaged in a research

project to improve its production of rolled steel. The research involves three

distinct steps, each of which must be successfully completed before the firm

can implement the cost-saving new production process. If the research is

completed successfully, it will save the firm $4 million. Unfortunately, there

is a chance that one or more of the research steps might fail, in which case

the project is worthless. The three steps are done sequentially, so that the

firm knows whether one step was successful before it has to invest in the next

step. Each step has a 08 probability of success and each step costs $500 000.

The risks of failure in the three steps are uncorrelated with one another. AK

Steel is a risk neutral company. (In case you are worried about such things,

the interest rate is zero).

(a) Draw the decision tree for the firm.

Answer:

4 See “Demand Sends AK Steel Profit Up 32%,” New York Time, 07/23/2008.

http://www.nytimes.com/2008/07/23/business/23steel.html?partner=rssnyt&emc=rss
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¥

(b) If the firm proceeds with this project, what is the probability that it

will succeed in implementing the new production process?

Answer: For the project to be successful, each of the three independent

steps must be completed. Since the probability of success in each stage

is 0.8 and the probabilities are independent, the probability of three

successes is  = 08 · 08 · 08 = 083 = 0512, just over one-half. ¥

(c) If the research were costless, what would be the firm’s expected gain

from it before the project began?

Answer: E[] = 0512 · $4 000 000 + 0488 · 0 = $2 048 000¥

(d) Should the firm begin the research, given that each step costs $500 000?

Answer: The expected cost of the project is

02 ·$500 000+08 ·02 ·$1 000 000+08 ·08 ·$1 500 000 = $1 220 000

The first term is the probability times cost of a failure in the first step.

The second term is the probability times cost of success in the first step

and failure in the second step. The third term is the probability times

cost of success in the first step and success in the second step (success

or failure in the third step does not affect the cost of the project, just
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the gain from it). The expected cost is less than the expected gain (by

$828,000). Since the company is not risk averse, it should begin the

project. Note that this is not the only way to do the calculation. An

alternate approach would be to aggregate the costs and benefits of each

possible outcome:

08 · 08 · 08 · (4 000 000− 500 000− 500 000− 500 000)
+08 · 08 · 02(−500 000− 500 000− 500 000)
+08 · 02(−500 000− 500 000) + 02(−500 000)

= $828 000

Either way, the expected net gain is $828 000. ¥

(e) Once the research has begun, should the firm quit at any point even if

it has had no failures? should it ever continue the research even if it has

had a failure?

Answer: NO to both. Obviously, if one stage fails, then the project

cannot be completed successfully, so any more expenditures on it are a

waste. If no stage has failed and at least one has succeeded, then the

benefit/cost comparison of going forward with the project is even more

favorable than when the project began. ¥

After the firm has successfully completed steps one and two, it discov-

ers an alternate production process that would cost $150 000 and would

lower production costs by $1 000 000 with certainty. This process, how-

ever, is a substitute for the three-step cost-saving process; they cannot

be used simultaneously. Furthermore, to have this process available, the

firm must spend the $150 000 before it knows if it will successfully

complete step three of the three-step research project.

(f) Draw the augmented decision tree that includes the possibility of pur-

suing this alternate production process.

Answer:
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(g) If the firm continues the three-step project, what is the chance it would

get any value from also developing the alternate production process?

Answer: The alternate process would be used only if step three of the

current project failed, which has a 0.2 probability. ¥

(h) If developing the alternate production process were costless and if the

firm continues the three-step project, what is the expected value that

it would get from having the alternate production process available (at

the beginning of research step 3)? (This is known as the option value of

having this process available.)

Answer: There is a 0.2 probability that the alternate process would be

used and a $1,000,000 value if it is used, so the option value of having

the alternate process available is $200,000. ¥

(i) Should the firm:

i. Pursue only the third step of the three-step project

ii. Pursue only alternate production process

iii. Pursue both the third step of the three-step project and the alter-

nate process
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Answer: Since the option value of the alternate process is greater

than the cost of having this option, the alternate process should

be developed if one continues with the three-step project. The net

value of developing this option is $200 000− $150 000 = $50 000.
Of course, the alternate process would also be developed if the

three-step project were unavailable, since it will be used with cer-

tainty and the net value of the alternate process would then be

$850,000. The remaining question is whether AK should drop the

three-step project rather than attempting the third step. Given

that the alternate process will be developed, the extra (or mar-

ginal) value of successfully completing the three-step project would

be $3,000,000, because it would save $3,000,000 more than the al-

ternate process. The expected value of attempting the third step

is then 08 · $3 000 000 = $2 400 000. This is greater than the

$500,000 cost of the third step, so AK should proceed with the

three-step project as well as the alternate process, i.e., take strat-

egy (iii). ¥

(j) If the firm had known of the alternate production process before it began

the three-step research project, what should it have done?

Answer: We know that AK should pursue the alternate process: It

was worth doing after successful completion of steps one and two (see

(i)) and would have greater expected value if the probability of the

three-step project failing were higher. In fact, the option value of the

alternative process declines with each step of success in the three-step

project. At the beginning of step three AK would pay up to $200,000

for the alternate process. Convince yourself that it would be willing to

pay up to $360,000 for the alternate process at the beginning of step

two and up to $488,000 for the alternate process at the beginning of

step one, assuming in each case that it couldn’t wait to develop the

alternate later. In fact, the option to wait until the beginning of the

third period to develop the alternate process could itself be valuable,

but it isn’t in this case, when the process costs $150,000. The other
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question is whether AK should pursue the three-step project given that

it will have the alternate process available with certainty. As in (i), the

marginal value of successfully completing the three-step project would

be $3,000,000, because it would save $3,000,000 more than the alternate

process. The expected value of attempting the three-step project is then

0512 · $3 000 000 = $1 536 000. This is greater than the the expected
cost of pursuing the three-step project, which is 02 · 500 000+08 ·02 ·
1 000 000 + 08 · 08 · 1 500 000 = 1 220 000, so AK should proceed

with the three-step project as well as the alternate process. This is the

same calculation as in (c) and (d) except the benefit of success is now

$3,000,000 instead of $4,000,000. ¥

10. Surgery: A patient is very sick, and will die in 6 months if he goes untreated.

The only available treatment is risky surgery. The patient is expected to live

for 12 months if the surgery is successful, but the probability that the surgery

fails and the patient dies immediately is 0.3.

(a) Draw a decision tree for this decision problem.

Answer: Using () to denote the value of living  more months, the

following is the decision tree:

¥

(b) Let () be the patient’s payoff function, where  is the number of

months till death. Assuming that (12) = 1 and (0) = 0, what is the

lowest payoff the patient can have for living 3 months so that having

surgery is a best response?

Answer: The expected value of the surgery given the payoffs above is

[(surgery)] = 07(12) + 03(0) = 07
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which implies that if (3)  07 then the surgery should be performed.¥

For the rest of the problem, assume that (3) = 08.

(c) A test is available that will provide some information that predicts

whether or not surgery will be successful. A positive test implies an

increased likelihood that the patient will survive the surgery as follows:

True-positive rate: The probability that the results of this test will

be positive if surgery is to be successful is 0.90.

False-positive rate: The probability that the results of this test will

be positive if the patient will not survive the operation is 0.10.

What is the probability of a successful surgery if the test is positive?

Answer: The easiest way to think about this is to imagine that the

original 0.7 probability of success is true because for 70% of the sick

population, call these the “treatable” patients, the surgery is success-

ful, while for the other 30% (“untreatable”) it is not, and previously

the patient did not know which population he belongs to. The test can

be thought of as detecting which population the patient belongs to.

The above description means that if the patient is treatable then the

test will claim he is treatable with probability 0.9, while if the patient

is untreatable then the test will claim he is treatable with probability

0.1. Hence, 63% of the population are treatable and detected as such

(0.7×09), while 3% of the population are untreatable but are detected

as treatable (0.3×01). Hence, of the population of people for whom the
test is positive, the probability of successful surgery is 63

63+3
= 0955 ¥

(d) Assuming that the patient has the test done, at no cost, and the result

is positive, should surgery be performed?

Answer: The value from not having surgery is (3) = 08, and a positive

test updates the probability of success to 0955 with the expected payoff

being 0955× 1 so the patient should have surgery done. ¥
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(e) It turns out that the test may have some fatal complications, i.e., the

patient may die during the test. Draw a decision tree for this revised

problem.

Answer: Given the data above, we know that without taking the test

the patient will not have surgery because the expected value of surgery

is 0.7 while the value of living 3 months is 0.8. Also, we showed above

that after a positive test the patient will choose to have surgery, and it

is easy to show that after a negative test he won’t (the probability of

a successful outcome is 7
7+27

= 0206) Hence, the decision tree can be

collapsed as follows 9the decision to have surgery have been collapsed

to the relevant payoffs):

¥

(f) If the probability of death during the test is 0.005, should the patient

opt to have the test prior to deciding on the operation?

Answer: From the decision tree in part (e), the expected value condi-

tional on surviving the test is equal to

07(09× 1 + 01× 08) + 03(01× 0 + 09× 08) = 0902

which implies that if the test succeeds with probability 0.995 then the

expected payoff from taking the test is

0995× 0902 + 0005× 0 = 0897
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which implies that the test should be taken because 0897  08. ¥

11. To Run or not to Run: You’re a sprinter, and in practice today you fell

and hurt your leg. An x-ray suggests that it’s broken with probability 0.2.

Your problem is whether you should participate in next week’s tournament.

If you run, you think you’ll win with probability 0.1. If your leg is broken

and you run, then it will be further damaged and your payoffs are as follows:

+100 if you win the race and your leg isn’t broken;

+50 if you win and your leg is broken;

0 if you lose and your leg isn’t broken;

−50 if you lose and your leg is broken;
−10 if you don’t run and if your leg is broken;
0 if you don’t run and your leg isn’t broken.

(a) Draw the decision tree for this problem.

Answer:

¥

(b) What is your best choice of action and its expected payoff?

Answer: The expected payoff from not running is

[(not run)] = 08× 0 + 02(−10) = −2
and the expected payoff from running is

[(run)] = 08×(01×100+09×0)+02×(01×50+09×(−50)) = 0
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so the best choice is to run and have an expected payoff of 0. ¥

You can gather some more information by having more tests, and you

can gather more information about whether you’ll win the race by talk-

ing to your coach.

(c) What is the value of perfect information about the state of your leg?

Answer: If you knew your leg is broken then running yields an expected

payoff of 01×50+09×(−50) = −40 while not running yields a payoff
of −10, so you would not run and get −10. If you knew your leg is not
broken then the expected payoff from running is 01×100+09×0 = 10,
while the payoff from not running is 0, and hence you would run and

get 10. Before getting the information you know your leg is broken

with probability 0.2, so before getting the perfect information, your

expected payoff from being able to then act on the perfect information

is 02(−10) + 08× 10 = 6. Recall from (b) that the expected payoff of

not having perfect information is 0, so the value of being able to obtain

the perfect information is 6− 0 = 6. ¥

(d) What is the value of perfect information about whether you’ll win the

tournament?

Answer: In this case we know that you will run if you know you will

win and you will not if you know you will lose. Hence, with probability

01 you will learn that you’ll win and your expected payoff (depending

on the state of your leg) is 02 × 100 + 08 × 50 = 60Similarly, with

probability 0.9 you learn that you’ll lose in which case your expected

payoff is 02× (−10)+08×0 = −2. Before getting the information you
know you will win with probability 0.1, so before getting the perfect

information, your expected payoff from being able to then act on the

perfect information is 01×60+09(−2) = 42. Recall from (b) that the
expected payoff of not having perfect information is 0, so the value of

being able to obtain the perfect information is 42− 0 = 42. ¥
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(e) As stated above, the probability that your leg is broken and the proba-

bility that you will win the tournament are independent. Can you use a

decision tree in the case that the probability that you will win the race

depends on whether your leg is broken?

Answer: Yes. All you need to do is have different probabilities of win-

ning that depend on whether or not your leg is broken. ¥

12. More Oil: Chevron, the No. 2 US oil company, is facing a tough decision.

The new oil project dubbed “Tahiti” is scheduled to produce its first commer-

cial oil in mid-2008, yet it is still unclear how productive it will be. “Tahiti

is one of Chevron’s five big projects,” told Peter Robertson, vice chairman

of the company’s board to the Wall Street Journal.5 Still, it was unclear

whether the project will result in the blockbuster success Chevron is hoping

for. As of June 2007, $4-billion has been invested in the high-tech deep sea

platform, which suffices to perform early well tests. Aside from offering in-

formation on the type of reservoir, the tests will produce enough oil to just

cover the incremental costs of the testing (beyond the $4 billion investment).

Following the test wells, Chevron predicts one of three possible scenarios.

The optimistic one is that Tahiti sits on one giant, easily accessible oil reser-

voir, in which case the company expects to extract 200,000 barrels a day

after expending another $5 billion in platform setup costs, with a cost of

extraction at about $10 a barrel. This will continue for 10 years, after which

the field will have no more economically recoverable oil. Chevron believes

this scenario has a 1 in 6 chance of occurring. A less rosy scenario, that is

twice as likely as the optimistic one, is that Chevron would have to drill

two more wells at an additional cost of $0.5 billion each (above and beyond

the $5 billion set-up costs), and in which case production will be around

100,000 barrels a day with a cost of extraction at about $30 a barrel, and

the field will still be depleted after 10 years. The worst case scenario involves

5“Chevron’s Tahiti Facility Bets Big on Gulf Oil Boom.” Jun 27, 2007. pg. B5C.

http://proquest.umi.com/pqdweb?did=1295308671&sid=1&Fmt=3&clientId=1566&RQT=309&VName=PQD
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the oil tucked away in numerous pockets, requiring expensive water injection

techniques which would include up-front costs of another $4 billion (above

and beyond the $5 billion set-up costs), extraction costs of $50 a barrel, and

production is estimated to be at about 60,000 barrels a day, for 10 years.

Bill Varnado, Tahiti’s project manager, was quoted giving this least desir-

able outcome odds of 50-50.

The current price of oil is $70 a barrel. For simplicity, assume that the price

of oil and all costs will remain constant (adjusted for inflation) and that

Chevron’s faces a 0% cost of capital (also adjusted for inflation).

(a) If the test-wells would not produce information about which one of three

possible scenarios will result, should Chevron invest the set-up costs of

$5 billion to be prepared to produce at whatever scenario is realized?

Answer:We start by noticing that the $2 billion that were invested are

a sunk cost and hence irrelevant. Also, since the cost of capital is just

about the same as the projected increase in oil prices, we do not need to

discount future oil revenues to get the net present value (NPV) sine the

two effects (price increase and time discounting) will cancel each other

out. If the company invests the $2.5 billion dollars, then they will be

prepared to act upon whatever scenario arises (great with probability
1
6
, ok with probability 1

3
 or bad with probability 1

2
). Notice from the

table below that in each scenario the added costs of extraction that

Chevron needs to invest (once it becomes clear which scenario it is) is

worthwhile (e.g., even in the bad scenario, the profits are $2.19 billion,

which covers the added drilling costs of $2 billion in this case.) Hence,

Chevron would proceed to drill in each of the three scenarios, and the

expected profits including the initial $2.5 billion investment would be,

 =
1

6
×($21)+1

3
×($73−$05)+1

2
×($219−$2)−$25 = $3 511 666 667

(b) If the test-wells do produce accurate information about which of three

possible scenarios is true, what is the added value of performing these
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tests?

Answer: Now, if the test drilling will reveal the scenario ahead of time,

then in the event of the bad scenario the revenues would not cover the

total investment of $4.5 billion ($2.5 billion initially, and another $2

billion for the bad scenario.) In the great and ok scenarios, however,

the revenues cover all the costs. Hence, with the information Chevron

would not proceed with the investments at all when the bad scenario

happens (probability 1
2
), and proceed only when the scenario is great or

ok, yielding an expected profit of

 =
1

6
×($21−25)+1

3
×($73−$25−$05)+1

2
×0 = $4 666 666 667

Hence, the added value of performing the tests is,

info = $4 666 666 667− $3 511 666 667 = $1 155 000 000

¥

13. Today, Tomorrow or the Day after: A player has $100 today that need

to be consumed over the next three periods,  = 1 2 3. The utility over

consuming $ in period  is given by the utility function () = ln(), and

at period  = 1, the player values his net present value from all consumption

as (1) + (2) + 2(3), where  = 09
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(a) How will the player plan to spend the $100 over the three periods of

consumption?

Answer: The player will maximize

max
12

ln(1) +  ln(2) + 2 ln(100− 1 − 2)

which yields the following two first-order equations:

1

1
− 2

100− 1 − 2
= 0



2
− 2

100− 1 − 2
= 0 

From these two equations conclude that

1

1
=



2


or 2 = 1. We can then then substitute 2 with 1 in the first equa-

tion above to obtain,

1

1
− 2

100− 1 − 1
= 0

or

100− 1 − 1 − 21 = 0

and the solution is

1 =
100

 + 2 + 1

and in turn

2 =
100

 + 2 + 1
, and 3 =

2100

 + 2 + 1
. ¥

(b) Imagine that the player knows that in period  = 2 he will receive an

additional gift of $20 How will he choose to allocate his original $100

initially, and how will he spend the extra $20?
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Answer: After spending 1 ≤ 100, the player has 100− 1 + 20 in the

beginning of the second period. We can now solve this backward and

assume that the player has 100− 1 + 20 in the beginning of period 2

and has to choose between 2 and 3 so that he solve,

max
2
ln(2) +  ln(120− 1 − 2)

with the first order condition

1

2
− 

120− 1 − 2
= 0

which yields,

2 =
120− 1

1 + 
and 3 =

(120− 1)

1 + 


Now we can step back to the first period and solve the optimal choice

of 1 given the way 2 and 3 will be chosen later. The player solves,

max
12

ln(1) +  ln(
120− 1

1 + 
) + 2 ln(

(120− 1)

1 + 
)

and the first order condition is,

1

1
− (1 + )

120− 1
× 1

1 + 
− 2(1 + )

120− 1
× 1

1 + 
= 0

or

1 =
120

1 +  + 2
.

Notice, however, that as  drops, 1 increases, and for a small enough

 this equation will call for 1  100. In particular, the value of  for

which 1 = 100 can be solved as follows,

100 =
120

1 +  + 2


or,  = 3
10

√
5 − 1

2
≈ 017. However, 1  100 is not possible, so the

solution is,

1 =
120

1++2
if  ≥ 017

100 if   017
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and from the calculations earlier,

2 =
120− 1

1 + 
and 3 =

(120− 1)

1 + 


¥
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Preliminaries

1. eBay: Hundreds of millions of people bid on eBay auctions to purchase goods

from all over the world. Despite being done online, in spirit these auctions

are similar to those conducted centuries ago. Is an auction a game? Why or

why not?

Answer: An auction is indeed a game. A bidder’s payoff depends on his bid

and on the bid of other bidders, and hence there are players, actions (which

are bids) and payoffs that depend on all the bids. The winner gets the item

and pays the price (which on eBay is the second highest bid plus the auction

increment), while the losers all pay nothing and get nothing. ¥

2. Penalty Kicks: Imagine a kicker and a goalie who confront each other in a

penalty kick that will determine the outcome of the game. The kicker can kick

the ball left or right, while the goalie can choose to jump left or right. Because

of the speed of the kick, the decisions need to be made simultaneously. If the

goalie jumps in the same direction as the kick, then the goalie wins and the

kicker loses. If the goalie jumps in the opposite direction of the kick then the

kicker wins and the goalie loses. Model this as a normal form game and write

down the matrix that represents the game you modeled.
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Answer: There are two players, 1 (kicker) and 2 (goalie). Each has two

actions,  ∈ {} to denote left or right. The kicker wins when they
choose opposite directions while the goalie wins if they choose the same

direction. Using 1 to denote a win and −1 to denote a loss, we can write
1() = 1() = 2() = 2() = 1 and 1() = 1() =

2() = 2() = −1. The matrix is therefore,

Player 1

Player 2

 





−1 1 1−1
1−1 −1 1

¥

3. Meeting Up: Two old friends plan to meet at a conference in San Francisco,

and agreed to meet by the tower. When arriving in town, each realizes that

there are two natural choices: Sutro Tower or Coit Tower. Not having cell

phones, each must choose independently which tower to go to. Each player

prefers meeting up to not meeting up, and neither cares where this would

happen. Model this as a normal form came, and write down the matrix form

of the game.

Answer: There are two players, 1 and 2. Each has two actions,  ∈ {}
to denote Sutro or Coit. Both players are happy if they choose the same

tower and unhappy if they don’t. Using 1 to denote happy and 0 to denote

unhappy, we can write ( ) = () = 1 and () = ( ) = 0

for  ∈ {1 2}. The matrix is therefore,

Player 1

Player 2

 





1 1 −1−1
−1−1 1 1

¥
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4. Hunting: Two hunters, players 1 and 2 can each choose to hunt a stag,

which provides a rather large and tasty meal, or hunt a hare, also tasty, but

much less filling. Hunting stags is challenging and requires mutual coopera-

tion. If either hunts a stag alone, then the stag will get away, while hunting

the stag together guarantees that the stag is caught. Hunting hares is an

individualistic enterprise that is not done in pairs, and whoever chooses to

hunt a hare will catch one. The payoff from hunting a hare is 1, while the

payoff to each from hunting a stag together is 3. The payoff from an unsuc-

cessful stag-hunt is 0. Represent this game as a matrix.

Answer: This is the famous “stag hunt” game. Using  for stag and  for

hare, the matrix is,

Player 1

Player 2

 





3 3 0 1

1 0 1 1

¥

5. Matching Pennies: Players 1 and 2 both put a penny on a table simul-

taneously. If the two pennies come up the same side (heads or tails) then

player 1 gets both pennies, otherwise player 2 gets both pennies. Represent

this game as a matrix.

Answer: Letting  denote a choice of heads and  a choice of tails, and

letting winning give a payoff of 1 while losing gives −1, the matrix is there-
fore,

Player 1

Player 2

 





1−1 −1 1
−1 1 1−1

¥

6. Price Competition: Imagine a market with demand () = 100− . There

are two firms, 1 and 2, and each firm  has to simultaneously choose it’s price
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. If   , then firm  gets all of the market while no one demands the

good of firm . If the prices are the same then both firms equally split the

market demand. Imagine that there are no costs to produce any quantity

of the good. (These are two large dairy farms, and the product is manure.)

Write down the normal form of this game.

Answer: The players are  = {1 2} and the strategy sets are  = [0∞]
for  ∈ {1 2} and firms choose prices  ∈ . To calculate payoffs, we need

to know what the quantities will be for each firm given prices (1 2). Given

the assumption on ties, the quantities are given by,

( ) =

⎧⎪⎨⎪⎩
100−  if   

0 if   
100−
2

if  = 

which in turn means that the payoff function is given by quantity times price

(there are no costs):

( ) =

⎧⎪⎨⎪⎩
(100− ) if   

0 if   
100−
2

 if  = 

¥

7. Public Good Contribution: Three players live in a town and each can

choose to contribute to fund a street lamp. The value of having the street

lamp is 3 for each player and the value of not having one is 0. The Mayor

asks each player to either contribute 1 or nothing. If at least two players

contribute then the lamp will be erected. If one or less people contribute

then the lamp will not be erected, in which case any person who contributed

will not get their money back. Write down the normal form of this game.

Answer: The set of players is  = {1 2 3} and each has an strategy set
 = {0 1} where 0 is not to contribute and 1 is to contribute. The payoffs
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of player  from a profile of strategies (1 2 3) is given by,

(1 2 3) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 if  = 0 and  = 0 for some  6= 

3 if  = 0 and  = 1 for both  6= 

−1 if  = 1 and  = 0 for both  6= 

2 if  = 1 and  = 1 for some  6= 

¥
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Rationality and Common Knowledge

1. Prove Proposition ??: If the game Γ = h {}=1 {}=1i has a strictly
dominant strategy equilibrium , then  is the unique dominant strategy

equilibrium.

Answer: Assume not. That is, there is some other strategy profile ∗ 6= 

that is also a strictly dominant strategy equilibrium. But this implies that

for every , ∗   , which contradicts that 
 is a strictly dominant strategy

equilibrium. ¥

2. Weak dominance.We call the strategy profile  ∈  is a weakly domi-

nant strategy equilibrium if  ∈  is a weakly dominant strategy for all

 ∈  . That is if ( −) ≥ (
0
 −) for all 

0
 ∈  and for all − ∈ −.

(a) Provide an example of a game in which there is no weakly dominant

strategy equilibrium.

Answer:

Player 1

Player 2

 





1−1 −1 1
−1 1 1−1
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¥

(b) Provide an example of a game in which there is more than one weakly

dominant strategy equilibrium.

Answer: In the following game each player is indifferent between his

strategies and so each one is weakly dominated by the other. This means

that any outcome is a weakly dominant strategy equilibrium.

Player 1

Player 2

 





1 1 1 1

1 1 1 1

¥

3. Discrete first-price auction: An item is up for auction. Player 1 values

the item at 3 while player 2 values the item at 5 Each player can bid either

0 1 or 2. If player  bids more than player  then  win’s the good and pays

his bid, while the loser does not pay. If both players bid the same amount

then a coin is tossed to determine who the winner is, who gets the good and

pays his bid while the loser pays nothing.

(a) Write down the game in matrix form.

Answer: We need to determine what the payoffs are if the bidders

tie. The one who wins the coin toss bids his bid and the loser gets

and pays nothing. Hence, we can just calculate the expected payoff as a

50:50 lottery between getting nothing and winning. For example, if both

players bid 2 then player 1 gets 3−2 = 1 unit of payoff with probability
1
2
and player 2 gets 5− 2 = 3 units of payoff with probability 1

2
, so the
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pair of payoffs is (1
2
 3
2
)

Player 1

Player 2

0 1 2

0 3
2
 5
2
0 4 0 3

1 2 0 1 2 0 3

2 1 0 1 0 1
2
 3
2

(b) Does any player have a strictly dominated strategy?

Answer: Yes - for player 2 bidding 0 is strictly dominated by bidding

2. ¥

(c) Which strategies survive IESDS?

Answer: After removing the strategy 0 of player 2, player 1’s strategy

of 0 is dominated by 2, so we can remove that too. But then, in the

remaining 2 × 2 game where both players can choose 1 or 2, bidding
1 is strictly dominated by bidding 2 for player 2, and after this round,

bidding 1 is strictly dominated by bidding 2 for player 1. Hence, the

unique strategy that survives IESDS is (2 2) yielding expected payoffs

of (1
2
 3
2
). ¥

4. eBay’s recommendation: It is hard to imagine that anyone is not familiar

with eBay c°, the most popular auction website by far. The way a typical

eBay auction works is that a good is placed for sale, and each bidder places

a “proxy bid”, which eBay keeps in memory. If you enter a proxy bid that

is lower than the current highest bid, then your bid is ignored. If, however,

it is higher, then the current bid increases up to one increment (say, 1 cent)

above the second highest proxy bid. For example, imagine that three people

placed bids on a used laptop of $55, $98 and $112. The current price will be

at $98.01, and if the auction ended the player who bid $112 would win at a

price of $98.01. If you were to place a bid of $103.45 then the who bid $112

would still win, but at a price of $103.46, while if your bid was $123.12 then
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you would win at a price of $112.01.

Now consider eBay’s historical recommendation that you think hard about

your value of the good, and that you enter your true value as your bid, no

more, no less. Assume that the value of the good for each potential bidder is

independent of how much other bidders value it.

(a) Argue that bidding more than your valuation is weakly dominated by

actually bidding your valuation.

Answer: If you put in a bid  = 0   where  is your valuation, then

only the three following cases can happen: () All other bids are below .

In this case bidding  =  will yield the exact same outcome: you’ll win

at the same price. () Some bid is above 0. In this case bidding  = 

will yield the exact same outcome: you’ll lose to a higher bid. () No

bids are above 0 and some bid ∗ is in between  and 0. In this case

bidding 0 will cause you to win in and pay ∗   which means that

your payoff is negative, while if you would have bid  =  then you

would lose and get nothing. Hence, in cases () and () bidding  would

do as well as bidding 0, and in case () it would do strictly better,

implying that bidding more than your valuation is weakly dominated

by actually bidding your valuation. ¥

(b) Argue that bidding less than your valuation is weakly dominated by

actually bidding your valuation.

Answer: If you put in a bid  = 0   where  is your valuation, then

only the three following cases can happen: () Some other bid are above .

In this case bidding  =  will yield the exact same outcome: you’ll

lose to a higher bid. () All other bids are below 0. In this case bidding

 =  will yield the exact same outcome: you’ll win at the same price.

() No bids are above  and some bid ∗ is in between 0 and . In

this case bidding 0 will cause you to lose and get nothing, while if you

would have bid  =  then you would win and get a positive payoff of

−∗ . Hence, in cases () and () bidding  would do as well as bidding
0, and in case () it would do strictly better, implying that bidding
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less than your valuation is weakly dominated by actually bidding your

valuation. ¥

(c) Use your analysis above to make sense of eBay’s recommendation.Would

you follow it?

Answer: The recommendation is indeed supported by an analysis of

rational behavior.1

5. In the following normal-form game, which strategy profiles survive iterated

elimination of strictly dominated strategies?

Player 1

Player 2

  

 6 8 2 6 8 2

 8 2 4 4 9 5

 8 10 4 6 6 7

Answer: First,  is dominated by for player 1. In the remaining game, 

is dominated by for player 2. No more strategies are strictly dominated, and

hence () () () and () all survive IESDS. (Note: after the

last stage above,  is weakly dominated by  for player 1, after which  is

dominated by for player 1, so that () would be the only strategy profile

that would survive iterated elimination of weakly dominated strategies. ¥

6. Roommates: Two roommates need to each choose to clean their apartment,

and each can choose an amount of time  ≥ 0 to clean. If their choices are 
and , then player ’s payoff is given by (10− )− 2 . (This payoff function
implies that the more one roommate cleans, the less valuable is cleaning for

the other roommate.)

1Those familiar with eBay know about sniping, which is bidding in the last minute. It still is a weakly dominated

strategy to bid your valuation at that time, and waiting for the last minute may be a “best response” if you believe

other people may respond to an early bid. More on this is discussed in chapter 13.
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(a) What is the best response correspondence of each player ?

Answer: Player  maximizes (10− )− 2 given a belief about , and
the first-order optimality condition is 10 −  − 2 = 0 implying that

the best response is  =
10−
2

 ¥

(b) Which choices survive one round of IESDS?

Answer: The most player  would choose is  = 5, which is a BR to

 = 0. Hence, any   5 is dominated by  = 5.
2 Hence,  ∈ [0 5] are

the choices that survive one round of IESDS.

(c) Which choices survive IESDS?

Answer: The analysis follows the same ideas that were used for the

Cournot duopoly in section 4.2.2. In the second round of elimination,

because 2 ≤ 5 the best response  =
10−
2

implies that firm 1 will

choose 1 ≥ 25, and a symmetric argument applies to firm 2. Hence,

the second round of elimination implies that the surviving strategy sets

are  ∈ [25 5] for  ∈ {1 2}. If this process were to converge to an
interval, and not to a single point, then by the symmetry between both

players, the resulting interval for each firm would be [min max] that

simultaneously satisfy two equations with two unknowns: min =
10−max

2

and max =
10−min

2
. However, the only solution to these two equations is

min = max =
10
3
 Hence, the unique pair of choices that survive IESDS

for this game are 1 = 2 =
10
3
. ¥

7. Campaigning: Two candidates, 1 and 2, are running for office. They each

have one of three choices in running their campaign: focus on the positive

aspects of one’s own platform, call this a positive campaign (or  ), focus on

the positive aspects of one’s own platform while attacking one’s opponent’s

2This can be shown directly: The payoff from choosing  = 5 when the opponent is choosing  is (5 ) =

(10− )5− 25 = 25− 5 . The payoff from choosing  = 5 +  where   0 when the opponent is choosing  is

(5+ ) = (10−)(5+)−(5+)2 = 25−5−2− , and because   0 it follows that (5+ )  (5 )


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campaign, call this a balanced campaign (or ), and finally, focus only on at-

tacking one’s opponent, call this a negative campaign (or ). All a candidate

cares about is the probability of winning, so assume that if a candidate ex-

pects to win with probability  ∈ [0 1], then his payoff is . The probability
that a candidate wins depends on his choice of campaign and his opponent’s

choice. The probabilities of winning are given as follows:

• — If both choose the same campaign, each wins with probability 0.5.

— If candidate  uses a positive campaign while  6=  uses a balanced

one, then  loses for sure.

— If candidate  uses a positive campaign while  6=  uses a negative

one, then  wins with probability 0.3.

— If candidate  uses a negative campaign while  6=  uses a balanced

one, then  wins with probability 0.6.

(a) Model this story as a normal form game. (It suffices to be specific about

the payoff function of one player, and explaining how the other player’s

payoff function is different and why.)

Answer: There are two players  ∈ {1 2}, each has three strategies
 = {} and the payoffs are ( ) = () = () =

05; 1( ) = 2() = 1; 2( ) = 1() = 0; 1() =

2( ) = 03; 2() = 1( ) = 07; 1() = 2() = 06;

and 2() = 1() = 04. ¥

(b) Write the game in matrix form.

Answer:

Player 1

Player 2

  

 05 05 0 1 03 07

 1 0 05 05 04 06

 07 03 06 04 05 05

¥
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(c) What happens at each stage of elimination of strictly dominated strate-

gies? Will this procedure lead to a clear prediction?

Answer: Notice that for each player  strictly dominates  . In the

remaining 2× 2 game without the strategies  ,  strictly dominates 

for each player. Hence, the unique clear prediction is that both candi-

dates will engage in negative campaigns. ¥

8. Consider the -Beauty contest presented in section 4.3.5.

(a) Show that if player  believes that everyone else is choosing 20 then 19

is not the only best response for any number of players .

Answer: If everyone else is choosing 20 and if player  chooses 19 then
3
4
of the average will be somewhere below 15, and 19 is closer to that

number, and therefore is a best response. But the same argument holds

for any choice of player  that is between 15 and and 20 regardless of

the number of players. (In fact, you should be able to convince yourself

that this will be true for any choice of  between 10 and 20.) ¥

(b) Show that the set of best response strategies to everyone else choosing

the number 20 depends on the number of players .

Answer: Imagine that  = 2. If one player  is choosing 20, then any

number  between 0 and 19 will beat 20. This follows because the target

number (3
4
of the average) is equal to 3

4
× 20+

2
= 15

2
+ 3

8
, the distance

between 20 and the target number is 25
2
− 3
8
 (this will always be positive

because the target number is less than 20) while the distance between

 and the target number is
¯̄
5
8
 − 15

2

¯̄
. The latter will be smaller than

the former if and only if
¯̄
5
8
 − 15

2

¯̄
 25

2
− 3

8
, or −20    20. Given

the constraints on the choices,  ∈ {0 1 19}. Now imagine that
 = 5. The target number is equal to 3

4
× 80+

5
= 12+ 3

20
, the distance

between 20 and the target number is 8− 3
20
 while the distance between

 and the target number is
¯̄
17
20
 − 12

¯̄
. The latter will be smaller than
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the former if and only if
¯̄
17
20
− 12

¯̄
 8− 3

20
, or 40

7
   20. Hence,

 = {6 7  19}. You should be able to convince yourself that as
→∞, if everyone but  chooses 20 then ’s best response will converge
to  = {10 11  19}. ¥

9. Consider the -Beauty contest presented in section 4.3.5. Show that if the

number of players   2 then the choices {0 1} for each player are both
Rationalizable, while if  = 2 then only the choice of {0} by each player is
Rationalizable.

Answer: We start with  = 2. If player 2 chooses 0 then player 1’s best

response is clearly 0. Now imagine that player 2 is choosing 1. If player 1

chooses 1 = 1 then they tie and he wins with probability 05, while if he

chooses 1 = 0 then the target number is
3
8
and he wins for sure. Hence, 0 is

a best reply to 1 and only the choice of 0 by both players is Rationalizable.

Now assume that   2. If all player’s but  choose 0, then ’s best response

is 0, and hence choosing 0 is Rationalizable. Now assume that everyone but

 chooses 1. If player 1 chooses 1 = 1 then he ties. If he chooses 1 = 0 then

the target number is 3
4
× 

+1
≥ 1

2
because  ≥ 2 (it is equal to 1

2
when  = 2

and greater when   2). Hence, for  ≥ 2 the set of Rationalizable choices is
{0 1}. The analysis in the text shows that no other choice is Rationalizable
when  = 3

4
. ¥

10. Popsicle stands: There are five lifeguard towers lined along a beach, where

the left-most tower is number 1 and the right most tower is number 5. Two

vendors, players 1 and 2, each have a popsicle stand that can be located next

to one of five towers. There are 25 people located next to each tower, and

each person will purchase a popsicle from the stand that is closest to him or

her. That is, if player 1 locates his stand at tower 2 and player 2 at tower

3, then 50 people (at towers 1 and 2) will purchase from player 1, while 75

(from towers 3,4 and 5) will purchase from vendor 2. Each purchase yields a

profit of $1.
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(a) Specify the strategy set of each player. Are there any strictly dominated

strategies?

Answer: The strategy sets for each player are  = {1 2  5} where
each choice represents a tower. To see whether there are any strictly

dominated strategies it is useful to construct the matrix representation

of this game. Assume that if a group of people are indifferent between

the two places (equidistant) then they will split between the two vendors

(e.g., if the vendors are at the same tower then their payoffs will be 62.5

each, while if they are located at towers 1 and 3 then they split the

people from tower 2 and their payoffs are 37.5 and 87.5 respectively.)

Otherwise they get the people closest to them, so payoffs are:

Player 1

Player 2

1 2 3 4 5

1 625 625 25 100 375 875 50 75 625 625

2 100 25 625 625 50 75 625 625 75 50

3 875 375 75 50 625 625 75 50 875 375

4 75 50 625 625 50 75 625 625 100 25

5 625 625 50 75 375 875 25 100 625 625

Notice that the choices of 1 and 5 are strictly dominated by any other

choice for both players 1 and 2. ¥

(b) Find the set of strategies that survive Rationalizability.

Answer: Because the strategies 1 and 5 are strictly dominated then

they cannot be a best response to any belief (Proposition 4.3). In the

reduced game in which these strategies are removed, both strategies 2

and 4 are dominated by 3, and therefore cannot be a best response in

this second stage. Hence, only the choice {3} is rationalizable. ¥
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Pinning Down Beliefs: Nash Equilibrium

1. Prove Proposition ??.

Answer: (1) Assume that ∗ is a strict dominant strategy equilibrium. This

implies that for any player , ∗ is a best response to any choice of his oppo-

nents including ∗−, which in turn implies that 
∗ is a Nash equilibrium.

(2) Assume that ∗ is the unique survivor of IESDS. By construction of the

IESDS procedure, there is no round in which ∗ is strictly dominated against

the surviving strategies of ’s opponents, an in particular, against ∗−, imply-

ing that ∗ is a best response to 
∗
−, which in turn implies that 

∗ is a Nash

equilibrium.

(3) Assume that ∗ is the unique Rationalizable strategy profile. By construc-

tion of the Rationalizability procedure, any strategy of player  that survives

a round of rationalizability can be a best response to some strategy of ’s op-

ponents that survives that round. Hence, by definition, ∗ is a best response

to ∗−, which in turn implies that 
∗ is a Nash equilibrium. ¥

2. A strategy  ∈  is a weakly dominant strategy equilibrium if  ∈
 is a weakly dominant strategy for all  ∈  . That is if (


  −) ≥

(
0
 −) for all 

0
 ∈  and for all − ∈ −. Provide an example of a game
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for which there is a weakly dominant strategy equilibrium, as well as another

Nash equilibrium.

Answer: Consider the following game:

Player 1

Player 2

 





1 1 1 1

1 1 2 2

In this game, () is a weakly dominant strategy equilibrium (and of

course, a Nash equilibrium), yet () is a Nash equilibrium that is not

a weakly dominant strategy equilibrium. ¥

3. Consider a 2 player game with  pure strategies for each player that can be

represented by a × matrix. Assume that for each player no two payoffs

in the matrix are the same.

(a) Show that if  = 2 and the game has a unique pure strategy Nash

equilibrium then this is the unique strategy profile that survives IESDS.

Answer: Consider a general 2× 2 game as follows,

Player 1

Player 2

2 2

1

1

1  2 1  

2

1  

2 1  


2

and assume without loss of generality that (1 2) is the unique pure

strategy Nash equilibrium.1 Two statements are true: first, because

(1 2) is a Nash equilibrium and no two payoffs are the same for

each player then 1  1 and 2  2 . Second, because (1 2) is

not a Nash equilibrium then 1  1 and 2  2 cannot hold to-

gether (otherwise it would have been another Nash equilibrium). These

1The term “without loss of generality” means that we are choosing one particular strategy profile but there is

nothing special about it and we could have chosen any one of the others using the same argument.



5. Pinning Down Beliefs: Nash Equilibrium 63

two statements imply that either () 1  1 and 1  1 } in which
case 1 is dominated by 1, or () 


2  2 and 2  2 in which

case 2 is strictly dominated by 2. This implies that either 1 or 2

(or both) will be eliminated in the first round of IESDS, and from the

fact that 1  1 and 

2  2 it follows that if only one of the strate-

gies was removed in the first round of IESDS then the remaining one

will be removed in the second and final round, leaving (1 2) as the

unique strategy that survives IESDS. ¥

(b) Show that if = 3 and the game has a unique pure strategy equilibrium

then it may not be the only strategy profile that survives IESDS.

Answer: Consider this following game:

Player 1

Player 2

  

 7 6 3 0 6 5

 1 3 4 4 0 2

 8 7 2 1 5 8

Notice that for both players none of the strategies are strictly dominated

implying that IESDS does not restrict any strategy profile survives

IESDS. However, this game has a unique Nash equilibrium: ().

¥

4. Splitting Pizza:You and a friend are in an Italian restaurant, and the owner

offers both of you an 8-slice pizza for free under the following condition. Each

of you must simultaneously announce how many slices you would like; that

is, each player  ∈ {1 2} names his desired amount of pizza, 0 ≤  ≤ 8.

If 1 + 2 ≤ 8 then the players get their demands (and the owner eats any
leftover slices). If 1 + 2  8, then the players get nothing. Assume that

you each care only about how much pizza you individually consume, and the

more the better.

(a) Write out or graph each player’s best-response correspondence.
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Answer: Restrict attention to integer demands (more on continuous

demands is below). If player  demands  ∈ {0 1  7} then ’s best

response is to demand the complement to 8 slices. If  asks for more

then both get nothing while if  asks for less then he is leaving some

slices unclaimed. If instead player  demands  = 8 then player  gets

nothing regardless of his request so any demand is a best response. In

summary,

() =

(
8−  if  ∈ {0 1  7}

{0 1  8} if  = 8


Note: if the players can ask for amounts that are not restricted to

integers then the same logic applies and the best response is

() =

(
8−  if  ∈ [0 8)
[0 8] if  = 8



¥

(b) What outcomes can be supported as pure-strategy Nash equilibria?

Answer: It is easy to see from the best response correspondence that

any pair of demands that add up to 8 will be a Nash equilibrium, i.e.,

(0 8) (1 7)  (8 0). However, there is another Nash equilibrium: (8,8)

in which both players get nothing. It is a Nash equilibrium because

given that each player is asking for 8 slices, the other player gets noth-

ing regardless of his request, hence he is indifferent between all of his

requests including 8.

Note: The pair  = 8 and  =  where  ∈ {1 2  7} is not a Nash
equilibrium because even though player  is playing a best response to

, player  is not playing a best response to  because by demanding

8 player  received nothing, but if he instead demanded 8−   0 then

he would get those amount of slices and get something. ¥

5. Public Good Contribution: Three players live in a town and each can

choose to contribute to fund a street lamp. The value of having the street
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lamp is 3 for each player and the value of not having one is 0. The Mayor

asks each player to either contribute 1 or nothing. If at least two players

contribute then the lamp will be erected. If one or less people contribute

then the lamp will not be erected, in which case any person who contributed

will not get their money back.

(a) Write out or graph each player’s best-response correspondence.

Answer: Consider player  with beliefs about the choices of players

 and . If neither  nor  contribute then player  does not want to

contribute because the lamp would not be erected and he would lose

his contribution. Similarly, if both  and  contribute then player  does

not want to contribute because the lamp would be erected without his

contribution so he can “free ride” on their contributions. The remaining

cases is where only one of the players  and  contribute, in which case by

contributing 1 player  receives 3, while by not contributing he receives

0, and hence contributing is a best response. In summary,

( ) =

(
0 if  = 

1 if  6= 


(b) What outcomes can be supported as pure-strategy Nash equilibria?

Answer: The best response correspondence described in (a) above im-

plies that there are two kinds of Nash equilibria: one kind (which is

unique) is where no player contributes, and the other kind has two of

the three players contributing and the third free riding. Hence, either

the lamp being erected with two players contributing or the lamp not

being erected with no player contributing can be supported as Nash

equilibria. ¥

6. Hawk-Dove: The following game has been widely used in evolutionary biol-

ogy to understand how “fighting” and “display” strategies by animals could

coexist in a population. For a typical Hawk-Dove game there are resources to
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be gained (i.e. food, mates, territories, etc.) denoted as . Each of two players

can chooses to be aggressive, called “Hawk” (), or can be compromising,

called “Dove” (). If both players choose  then they split the resources,

but loose some payoff from injuries, denoted as . Assume that   
2
. If

both choose  then they split the resources, but engage in some display of

power that a display cost , with   
2
. Finally, if player  chooses  while

 chooses , then  gets all the resources while  leaves with no benefits and

no costs.

(a) Describe this game in a matrix

Answer:

Player 1

Player 2

 

 
2
−  

2
−   0

 0  
2
−  

2
− 

¥

(b) Assume that  = 10,  = 6 and  = 4. What outcomes can be supported

as pure-strategy Nash equilibria?2

Answer: The game is:

Player 1

Player 2

 

 −1−1 10 0

 0 10 1 1

and the two strategy profiles that can be supported as pure strategy

Nash equilibria are () and (), leading to outcomes (10 0) and

(0 10) respectively. ¥

2 In the evolutionary biology literature, the analysis performed is of a very different nature. Instead of considering

the Nash equilibrium analysis of a static game, the analysis is a dynamic analysis where successful strategies

“replicate” in a large population. This analysis is part of a methodology called “evolutionary game theory.” For

more on this see Gintis (2000).
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7. The  player Tragedy of the Commons: Suppose there are  players in

the Tragedy of the Commons example in section 5.2.2.

(a) Find the Nash equilibrium of this game. How does  affect the Nash

outcome?

Answer: The analysis in section 2 concluded that in the -player game

the best response of player  is given by

(−) =
 −P 6= 

2


First, let’s consider a symmetric Nash equilibrium where each player

chooses the same level of consumption ∗. Because the best response

must hold for each  and they all choose the same level ∗ then in the

Nash equilibrium the best response reduces to,

∗ =
 − (− 1)∗

2


or,

∗ =


+ 1


The way in which  affects the outcome is that first, as there are more

firms, each will consume less clean air. Second, as there are more firms,

the sum of clean air consumed by the firms is 
−1 , which increases with

.

It is more subtle to show that there cannot be other Nash equilibria. To

show this we will show that conditional on whatever is chosen by all but

two players, the two players must choose the same amount in a Nash

equilibrium. Assume that there is another asymmetric Nash equilibrium

in which two players,  and , choose two different equilibrium levels

∗ 6= ∗ . Let  =
P

6= 
∗
 be the sum of all the other equilibrium

choices of the players who are not  or . Because we assumed that this

is a Nash equilibrium, the best response function of both  and  must

hold simultaneously, that is,

∗ =
 −  − ∗

2
 (5.1)



68 5. Pinning Down Beliefs: Nash Equilibrium

and

∗ =
 −  − ∗

2
 (5.2)

If we substitute (5.2) into (5.1) we obtain,

∗ =
 −  − −−∗

2

2


which implies that ∗ =
−
3
. If we substitute this back into (5.2) we

obtain,

∗ =
 −  − −

3

2
=

 − 

3
= ∗ ,

which contradicts the assumption we started with, that ∗ 6= ∗ . Hence,

the unique Nash equilibrium has all the players choosing the same level

∗ = 
+1
. ¥

(b) Find the socially optimal outcome with  players. How does  affect

this outcome?

Answer: The socially optimal outcome is found my maximizing,

max
(12)

X
=1

ln() +  ln( −
X
=1

) 

The  first order conditions for this problem are,

1


− 

 −P

=1 
= 0 for  = 1 2   .

Just as for the analysis of the Nash equilibrium in part (a), the solution

here is also symmetric. Therefore the optimal solution, , can be found

using the following equation:

1


− 

 − 
= 0 ,

or,  = 
2
, and the socially optimal total consumption of clean air will

be equal to 
2
regardless of the number of players. This implies that the

socially optimal solution is for the players to equally divide up half of

the clean air. ¥
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(c) How does the Nash equilibrium outcome compare to the socially effi-

cient outcome as  approaches infinity?

Answer: The Nash equilibrium outcome always has the firms consume

too much clean air as compared to the total 
2
amount that social opti-

mality requires. Furthermore, as  approaches infinity the Nash levels of

consumption approach the total amount of clean air  and the payoffs

of the players approaches −∞. ¥

8. The  firm Cournot Model: Suppose there are  firms in the Cournot

oligopoly model. Let  denote the quantity produced by firm , and let

 = +···+ denote the aggregate production. Let  () denote the market
clearing price (when demand equals ) and assume that inverse demand

function is given by  () = − (where   ). Assume that firms have

no fixed cost, and the cost of producing quantity  is  (all firms have the

same marginal cost, and assume that   ).

(a) Model this as a Normal form game

Answer: The players are  = {1 2  }, each player chooses  ∈ 

where the strategy sets are  = [0∞) for all  ∈  , and the payoffs of

each player are given by,

( −) =

⎧⎪⎪⎨⎪⎪⎩
(−

P
=1

) −  if
P

=1

  

− if
P

=1

 ≥ 

¥

(b) What is the Nash (Cournot) Equilibrium of the game where firms choose

their quantities simultaneously?

Answer: Let’s begin by assuming that there is a symmetric “interior

solution” where each firm chooses the same positive quantity as a Nash

equilibrium, and then we will show that this is the only possible Nash
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equilibrium. Because each firm maximizes

( −) = (−
X

=1

) −  ,

the first order condition is

−
X
 6=

 − 2 −  = 0 

which yields the best response of player  to be

(−) =

−P
 6=

 − 

2
.

Imposing symmetry in equilibrium implies that all  best response con-

ditions will hold with the same values ∗ = ∗ for all  ∈  , and can be

solved using the best response function as follows,

∗ =
− (− 1)∗ − 

2
,

which yields

∗ =
− 

+ 1


It is more subtle to show that there cannot be other Nash equilibria. To

show this we will show that conditional on whatever is chosen by all but

two players, the two players must choose the same amount in a Nash

equilibrium. Assume that there is another asymmetric Nash equilibrium

in which two players,  and , choose two different equilibrium quantities

∗ 6= ∗ . Let  =
P

6= 
∗
 be the sum of all the other equilibrium

quantity choices of the players who are not  or . Because we assumed

that this is a Nash equilibrium, the best response function of both  and

 must hold simultaneously, that is,

∗ =
−  − ∗ − 

2
 (5.3)

and

∗ =
−  − ∗ − 

2
 (5.4)
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If we substitute (5.4) into (5.3) we obtain,

∗ =
−  − −−∗−

2
− 

2


which implies that ∗ =
−−
3
. If we substitute this back into (5.4) we

obtain,

∗ =
−  − −−

3
− 

2
=

−  − 

3
= ∗ ,

which contradicts the assumption we started with, that ∗ 6= ∗ . Hence,

the unique Nash equilibrium has all the players choosing the same level

∗ = −
+1
. ¥

(c) What happens to the equilibrium price as  approaches infinity? Is this

familiar?

Answer: First consider the total quantity in the Nash equilibrium as

a function of ,

∗ = ∗ =
(− )

+ 1

and the resulting limit price is

lim
→∞

 (∗) = lim
→∞

µ
− (− )

+ 1

¶
= .

This means that as the number of firms grow, the Nash equilibrium

price will also fall and will approach the marginal costs of the firms as

the number of firms grows to infinity. Those familiar with a standard

economics class know that in perfect competition price will equal mar-

ginal costs, which is what happens here when  approaches infinity. ¥

9. Tragedy of the Roommates: You and your − 1 roommates each have 5
hours of free time you could spend cleaning your apartment. You all dislike

cleaning, but you all like having a clean room: each person’s payoff is the
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total hours spent (by everyone) cleaning, minus a number  times the hours

spent (individually) cleaning. That is,

(1 2     ) = − ·  +
X

=1



Assume everyone chooses simultaneously how much time to spend cleaning.

(a) Find the Nash equilibrium if   1.

Answer: The payoff function is linear in one’s own time spent  and

in the time spent by the other roommates , and we can rewrite the

payoff function as

( −) =  −  +
X
 6=

 

Considering this payoff function, if   1 then every additional amount 

of time that  spends cleaning gives him an extra payoff of (1−)  0 so
that each player  would choose to spend all the 5 hours cleaning. Note

that using a first-order condition would not work here because taking

the derivative of ( −) with respect to  will just yield 1 −  = 0

which is not true for   1. This implies that there is a “corner” solution

in the range  ∈ [0 5], in this case the Nash equilibrium is at the corner
∗ = 5 for all  = 1 2  . ¥

(b) Find the Nash equilibrium if   1.

Answer: Similarly to (a) above, every additional amount  of time

that  spends cleaning gives him an extra payoff of (1 − )  0, so

that each player  would choose to spend no time cleaning and the Nash

equilibrium is ∗ = 0 for all  = 1 2  . ¥

(c) Set  = 5 and  = 2. Is the Nash equilibrium Pareto efficient? If not,

can you find an outcome where everyone is better off than at the Nash

equilibrium outcome?

Answer: Following the analysis in part (b), the unique Nash equilib-

rium is where everyone chooses to spend no time cleaning and everyone’s
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payoff is equal to zero. Consider the case where everyone is somehow

forced to choose  = 1. Each player’s payoff will be

( −) =  −  +
X
 6=



= 1− 2× 1 + 4× 1 = 3  0 

so that all the players will be better off if they all chose  = 1. In fact,

each amount of time   0 that player  chooses to clean cause him

a personal loss of  − 2 = , but increases the payoff of each of the

other players by . Hence, if we can get each player to increase his time

cleaning by , this yields an increase of value for each player that equals

his own loss, but the former is multiplied by the number of players.

Hence, the best symmetric outcome is when each player chooses  = 5.

¥

10. Synergies: Two division managers can invest time and effort in creating a

better working relationship. Each invests  ≥ 0, and if both invest more then
both are better off, but it is costly for each manager to invest. In particular,

the payoff function for player  from effort levels ( ) is ( ) = ( +

) − 2 .

(a) What is the best response correspondence of each player?

Answer: If player  believes that player  chooses  then ’s first order

optimality condition for maximizing his payoff is,

+  − 2 = 0 

yielding the best response function,

() =
+ 

2
for all  ≥ 0

¥
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(b) In what way are the best response correspondences different from those

in the Cournot game? Why?

Answer: Here the best response function of player  is increasing in

the choice of player  whereas in the Cournot model it is decreasing in

the choice of player . This is because in this game the choices of the

two players are strategic complements while in the Cournot game they

are strategic substitutes. ¥

(c) Find the Nash equilibrium of this game and argue that it is unique.

Answer: We solve two equations with two unknowns,

1 =
+ 2

2
and 2 =

+ 1

2
,

which yield the solution 1 = 2 = . It is easy to see that it is unique

because it is the only point at which these two best response functions

cross. ¥

11. Wasteful Shipping Costs. Consider two countries,  and  each with a

monopolist that owns the only coal mine in the country, and it produces coal.

Let firm 1 be the one located in country , and firm 2 the one in country

. Let 

   ∈ {1 2} and  ∈ {} denote the quantity that firm  sells in

country . Consequently, let  =  +  be the total quantity produced by

firm  ∈ {1 2}, and let  = 

1 + 


2 be the total quantity sold in country

 ∈ {}. The demand for coal in countries  and  is given respectively

by,

 = 90−   ∈ {}
and the costs of production for each firm is given by,

() = 10   ∈ {1 2}

(a) Assume that the countries do not have a trade agreement and, in fact,

imports in both countries are prohibited. This implies that 2 = 1 = 0

is set as a political constraint. What quantities 1 and 2 will both
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firms produce?

Answer: Each firm is a monopolist in its own country. Let and maxi-

mizes,

max


≥0

(90− 

 )


 − 10

where either  = 1 and  =  or  = 2 and  =  (so that 2 =

1 = 0 is set by assumption.) The first order maximization condition is

90− 2 − 10 = 0, which yields 1 = 2 = 40 The payoff for each firm

is 1 600. ¥

Now assume that the two countries sign a free-trade agreement that

allows foreign firms to sell in their countries without any tariffs. There

are, however shipping costs. If firm  sells quantity 

 in the foreign

country (i.e., firm 1 selling in  or firm 2 selling in ) then shipping

costs are equal to 10

 . Assume further that each firm chooses a pair of

quantities   

 simultaneously,  ∈ {1 2} so that a profile of actions

consists of four quantity choices.

(b) Model this as a normal form game and find a Nash equilibrium of the

game you described. Is it unique?

Answer: This game has two players,  ∈ {1 2}, each choosing a strategy
that consists of two non-negative quantities, (  


 ) ∈ R2+, and the

payoff of the two players are given by,

1(

1  


1  


2  


2 ) = (90− 1 − 2 )


1 + (90− 1 − 2 )


1 − 10(1 + 1 )− 101 

2(

1  


1  


2  


2 ) = (90− 1 − 2 )


2 + (90− 1 − 2 )


2 − 10(2 + 2 )− 102 

where the first term is the firm’s revenue in market , the second is the

revenue in market , the third is the total production cost and the last

is the shipping cost. Given beliefs (2  

2 ) about what firm 2 chooses

to produce, firm 1’s optimization requires two partial derivatives with
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respect to 1 and 1 as follows,

1(

1  


1  


2  


2 )

1
= 90− 2 − 21 − 10 = 0

1(

1  


1  


2  


2 )

1
= 90− 2 − 21 − 20 = 0

which in turn lead to the two parts of firm 1’s best response function,3

1 =
80− 2
2

 (5.5)

1 =
70− 2
2

 (5.6)

It is easy to see that the objective of firm 2 is symmetric to that of firm

1 and hence we can directly write down firm 2’s best responses as,

2 =
70− 1
2

 (5.7)

2 =
80− 1
2

 (5.8)

The Nash equilibrium is solved by finding a profile of strategies (1  

1  


2  


2 )

for which (5.5), (5.6), (5.7) and (5.8) all hold simultaneously. From (5.5)

and (5.7) we obtain 1 = 30 and , 

2 = 20. Similarly, from (5.6) and

(5.8) we obtain 1 = 20 and , 

2 = 30. The payoff of each firms would

be equal to 1 300.

Now assume that before the game you described in (b) is played, the

research department of firm 1 discovered that shipping coal with the

current ships causes the release of pollutants. If the firm would disclose

this report to the World-Trade-Organization (WTO) then the WTO

would prohibit the use of the current ships. Instead, a new shipping

3Because the payoff function has no interactions between the markets (i.e., it is separable in the two markets

so that there are no interactions through the cost function) then 1 depends only on 2 and 1 depends only

on 2 (and vice versa for firm 2). If costs were not linear then this would not be the case and the solution would

involve solving four equations wit four unknowns simultaneously.



5. Pinning Down Beliefs: Nash Equilibrium 77

technology would be offered that would increase shipping costs to 40



(instead of 10

 as above).

(c) Would firm 1 be willing to release the information to the WTO? Justify

your answer with an equilibrium analysis.

Answer: To answer this we need to solve the Nash equilibrium with the

more expensive shipping technology and compare the profits to that of

the current cheaper technology. We know that a monopolist (or compet-

itive firm) would never prefer a more expensive technology to a cheaper

one, but here there may be interesting strategic effects: the more ex-

pensive shipping technology will dampen competition. The new payoff

functions are

1(

1  


1  


2  


2 ) = (90− 1 − 2 )


1 + (90− 1 − 2 )


1 − 10(1 + 1 )− 401 

2(

1  


1  


2  


2 ) = (90− 1 − 2 )


2 + (90− 1 − 2 )


2 − 10(2 + 2 )− 402 

and following the same arguments in part (b) above, the four equations

that will define the best responses of both firms are,

1 =
80− 2
2

 (5.9)

1 =
40− 2
2

 (5.10)

and,

2 =
40− 1
2

 (5.11)

2 =
80− 1
2

 (5.12)

From (5.9) and (5.11) we obtain 1 = 40 and , 

2 = 0. Similarly, from

(5.10) and (5.12) we obtain 1 = 0 and , 

2 = 40. The payoff of each

firms would be equal to 1 600, as we calculated in part (a) above. Hence,

the firm would like to disclose the information and let the WTO impose

a ban that would effectively kill cross-border competition. ¥
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12. Asymmetric Bertrand: Consider the Bertrand game with 1(1) = 1 and

2(2) = 22, demand equal to  = 100 − , and where firms must choose

prices in increments of one cent. We have seen in section ?? that one possible

Nash equilibrium is (∗1 
∗
2) = (199 200).

(a) Show that there are other Nash equilibria for this game.

Answer: Another Nash equilibrium is (01 
0
2) = (150 151)In this

equilibrium firm 1 fulfills market demand at a price of 1.50 and has no

incentive to change the price in either direction. Firm 2 is indifferent

between the current price and any higher price, and strictly prefers it

to lower prices. ¥

(b) How many Nash equilibria does this game have?

Answer: There are 100 Nash equilibria of this game starting with

(1 2) = (100 101) and going all the way up with one-cent increases

to (∗1 
∗
2) = (199 200). The same logic explains why each of these is

a Nash equilibrium. ¥

13. Comparative Economics: Two high tech firms (1 and 2) are considering

a joint venture. Each firm  can invest in a novel technology, and can choose

a level of investment  ∈ [0 5] at a cost of () = 2
4
(think of  as how

many hours to train employees, or how much capital to buy for R&D labs).

The revenue of each firm depends both on its investment, and of the other

firm’s investment. In particular, if firm  and  choose  and  respectively,

then the gross revenue to firm  is

( ) =

⎧⎪⎨⎪⎩
0 if   1

2 if  ≥ 1and   2

 ·  if  ≥ 1and  ≥ 2

(a) Write down mathematically, and draw the profit function (gross rev-

enue minus costs) of firm  as a function of  for three cases: ()   2,

()  = 2, and ()  = 4
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Answer: For the case where   2 the payoff (profit) function of firm

 is,

( ) =

(
0− 2

4
if   1

2− 2
4
if  ≥ 1



for the case where  = 2 the payoff function of firm  is,

( ) =

(
0− 2

4
if   1

2 − 2
4
if  ≥ 1



and for the case where  = 4 the payoff function of firm  is,

( ) =

(
0− 2

4
if   1

4 − 2
4
if  ≥ 1



The three profit functions are depicted in the following figure:

1 2 3 4 5
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All three share the same profits in the range  ∈ [0 1) which is the red
line. The black line depicts the rest of the payoff function for the case

of   2, the green line depicts the rest of the payoff function for the

case of  = 2, and the blue line depicts the rest of the payoff function

for the case of  = 4. ¥

(b) What is the best response function of firm  ?

Answer: It is easy to see (and calculate) that when   2 then firm

’s best response is to choose  = 1, and when   4 then firm ’s best
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response is to choose  = 5 (a “corner” solution.) When  = 2 then

firm ’s best response solves

max
∈[05]

2 − 2
4



and the first order optimality condition is 2− 
2
= 0 which yields  = 4.

More generally, as  grows above 2 the best response of firm  will grow

above 4 until it hits the corner solution of  = 5. In the range in which

player ’s best response in between 4 and 5 he maximizes his payoff

function which is,

max
∈[05]

 − 2
4



and his best response is derived form the first order condition −
2
= 0,

which yields,

() = 2 .

It is easy to see that for any  ∈ [2 25] the best response of firm 

is within the range [4 5] and for any   25 the best response of  is

“stuck” at the corner solution  = 5̇. Hence, we can write down the

general best response function of firm  as,

() =

⎧⎪⎨⎪⎩
1 if   2

2 if  ∈ [2 25]
5 if   25



¥

(c) It turns out that there are two identical pairs of such firms (that is,

the technology above describes the situation for both pairs). One pair

in Russia where coordination is hard to achieve and business people

are very cautious, and the other pair in Germany where coordination

is common and business people expect their partners to go the extra

mile. You learn that the Russian firms are earning significantly less

profits than the German firms, despite the fact that their technologies

are identical. Can you use Nash equilibrium analysis to shed light on
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this dilemma? If so, be precise and use your previous analysis to do so.

Answer: The best response function described in part (b) leads to two

Nash equilibria: in the first (∗  
∗
) = (1 1) and (

∗∗
  

∗∗
 ) = (5 5). In

the first Nash equilibrium the profits of each firm are ∗ = 175, while

in the second Nash equilibrium ∗∗ = 1875. This is an example where

“self fulfilling expectations” can lead to two Nash equilibria, one with

high payoffs and one with low payoffs. This is an example of a game

with strategic complements (see page 93) where the complementarity

cause multiple equilibria. ¥

14. Negative Ad Campaigns: Each one of two political parties can choose

to buy time on commercial radio shows to broadcast negative ad campaigns

against their rival. These choices are made simultaneously. Due to govern-

ment regulation it is forbidden to buymore than 2 hours of negative campaign

time so that each party cannot choose an amount of negative campaigning

above 2 hours. Given a pair of choices (1 2), the payoff of party  is given

by the following function: (1 2) =  − 2 +  − ()2 

(a) What is the normal form representation of this game?

Answer: Two players  = {1 2}, for each player the strategy space is
 = [0 2] and the payoff of player  is given by (1 2) =  − 2 +
 − ()2. ¥

(b) What is the best response function for each party?

Answer: Each player maximizes (1 2) resulting in the first order

optimality condition 1 +  − 2 = 0 resulting in the best response

function,

() =
1 + 

2


¥

(c) What is the pure strategy Nash equilibrium? is it unique?



82 5. Pinning Down Beliefs: Nash Equilibrium

Answer: Solving the two best response functions simultaneously,

1 =
1 + 2

2
and 2 =

1 + 1

2

yields the Nash equilibrium 1 = 2 = 1, and this is the unique solution

to these equations implying that this is the unique equilibrium. ¥

(d) If the parties could sign a binding agreement on how much to campaign,

what levels would they choose?

Answer: Both parties would be better off if they can choose not to

spend money on negative campaigns. The payoffs for each player from

the Nash equilibrium solved in part (c) are (1 1) = −1 while of they
agreed not to spend anything they each would obtain zero. This is a

variant of the Prisoners’ Dilemma. ¥

15. Hotelling’s Continuous Model: Consider Hotelling’s model where the

citizens are a continuum of voters on the interval  = [− ], with uniform
distribution ().

(a) What is the best response of candidate  if candidate  is choosing

  0.

Answer: Player ’s best response will depend on the position of 

relative to the choice 1
2
. For example, if  = − ∈ [− 0) then any

choice  ∈ ( ) will guarantee player  victory. This follows because
player  will get more than  −  of the vote from the interval ( )

on his “right” (it is more because   ), and he will split the inner

interval (− ) with player  so that his total share of the vote is

  − +
 − (−)

2
=
2+  − 

2


while the total share of player  is the interval (−−) on his “left”
plus splitting the inner interval (− ), which is,

 = −− (−) +  − (−)
2

=
2+  − 

2

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which implies that    and  will win the vote. A symmetric argu-

ment works for any choice  =  ∈ (0 ]. The remaining case is  = 0.
In this case if  6=  then player  gets less tan half the vote while

if  =  then player  gets half the vote, making  =  the best

response to  = 0. We conclude that the best response correspondence

is,

() =

⎧⎪⎨⎪⎩
(−) if   0

0 if  = 0

(− ) if   0



¥

(b) Show that the unique Nash equilibrium is 1 = 2 = 0.

Answer: This follows immediately from the best response correspon-

dence in part (a) above: only at the pair ( ) = (0 0) are both players

playing a best response to each other. ¥

(c) Show that for a general distribution  (·) over [− ], the unique Nash
equilibrium is where is candidate chooses the policy associated with the

median voter.

Answer: This again follows from the analysis in part (a) above just

that instead of 0 being the point at which half the vote is obtained, it

is the median voter ∗ for which half the vote is at or above ∗ and half

the vote is at or below ∗.4 ¥

16. Hotelling’s Price Competition: Imagine a continuum of potential buyers,

located on the line segment [0 1], with uniform distribution. (Hence, the

4 If the distribution  () is continuous the there will be some ∗ such that  (∗) = 1
2
and that will be the

median voter. If there are “jumps” in the distribution  () then the median voter can be some ∗ for which
 (∗)  1

2
. For instance, if half the population is distributed Uniformly on [−1 1] and the other half are all

located at the point ∗ = 1
2
then 3

8
of the population are strictly below ∗, 1

8
of the population are strictly above

∗, and 1
2
of the population is exactly at ∗. In this case

 () =


1+
4

if − 1 ≤   1
2

3+
4

if 1
2
≤  ≤ 1 

so that  (∗) = 3
4
, but ∗ is still the median voter.
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“mass” or quantity of buyers in the interval [ ] is equal to − .) Imagine

two firms, players 1 and 2 who are located at each end of the interval (player

1 at the 0 point and player 2 at the 1 point.) Each player  can choose its price

, and each customer goes to the vendor who offers them the highest value.

However, price alone does not determine the value, but distance is important

as well. In particular, each buyer who buys the product from player  has

a net value of  −  −  where  is the distance between the buyer and

vendor , and represents the transportation costs of buying from vendor .

Thus, buyer  ∈ [0 1] buys from 1 and not 2 if −1−1  −2−2, and if
buying is better than getting zero. (Here 1 =  and 2 = 1− . The buying

choice would be reversed if the inequality is reversed.) Finally, assume that

the cost of production is zero.

(a) Assume that  is very large so that all the customers will be served by at

least one firm, and that some customer ∗ ∈ [0 1] is indifferent between
the two firms. What is the best response function of each player?

Answer: Because customer ∗’s distance from firm 1 is ∗ and his

distance from firm 2 is 1− ∗, his indifference implies that

 − 1 − ∗ =  − 2 − (1− ∗)

which gives the equation for ∗,

∗ =
1 + 2 − 1

2


It follows that under the assumptions above, given prices 1 and 2, the

demands for firms 1 and 2 are given by

1(1 2) = ∗ =
1 + 2 − 1

2


1(1 2) = 1− ∗ =
1 + 1 − 2

2


Firm 1’s maximization problem is

max
1

µ
1 + 2 − 1

2

¶
1
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which yields the first order condition

1 + 2 − 21 = 0 

implying the best response function

1 =
1

2
+

2

2
.

A symmetric analysis yields the best response of firm 2,

2 =
1

2
+

1

2
.

¥

(b) Assume that  = 1. What is the Nash equilibrium? Is it unique?

Answer: If we use the best response functions calculated in part (a)

above then we obtain a unique Nash equilibrium 1 = 2 = 1, and this

implies that ∗ = 1
2
so that each firm gets half the market. However,

when  = 1 then the utility of customer ∗ = 1
2
is −1− 1

2
= 1−1− 1

2
=

−1
2
, implying that he would prefer not to buy, and by continuity, an

interval of customers around ∗ would also prefer not to buy. his violated

the assumptions we used to calculate the best response functions.5 So,

the analysis in part (a) is invalid when  = 1. It is therefore useful to

start with the monopoly case when  = 1 and see how each firm would

have priced if the other is absent. Firm 1 maximizes

max
1

(1− 1)1

which yields the solution 1 =
1
2
so that everyone in the interval  ∈

[0 1
2
] wished to buy from firm 1 and no other customer would buy. By

symmetry, if firm 2 were a monopoly then the solution would be 2 =
1
2

so that everyone in the interval  ∈ [1
2
 1] would buy from firm 2 and no

other customer would buy. But this implies that if both firms set their

5We need  ≥ 15 for customer ∗ = 1
2
to be just indifferent between buying and not buying when 1 = 2 = 1.

All the other customers will strictly prefer buying.
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monopoly prices 1 = 2 =
1
2
then each would maximize profits ignoring

the other firm, and hence this is the (trivially) unique Nash equilibrium.

¥

(c) Now assume that  = 1 and that the transportation costs are 1
2
, so

that a buyer buys from 1 if and only if  − 1 − 1
2
1   − 2 − 1

2
2.

Write the best response function of each player and solve for the Nash

Equilibrium.

Answer: Like in part (a), assume that customer ∗’s distance from

firm 1 is ∗ and his distance from firm 2 is 1− ∗, and he is indifferent

between buying from either, so his indifference implies that

 − 1 − 1
2
∗ =  − 2 − 1

2
(1− ∗)

which gives the equation for ∗,

∗ =
1

2
+ 2 − 1 

It follows that under the assumptions above, given prices 1 and 2, the

demands for firms 1 and 2 are given by

1(1 2) = ∗ =
1

2
+ 2 − 1 

1(1 2) = 1− ∗ =
1

2
+ 1 − 2 

Firm 1’s maximization problem is

max
1

µ
1

2
+ 2 − 1

¶
1

which yields the first order condition

1

2
+ 2 − 21 = 0 

implying the best response function

1 =
1

4
+

2

2
.
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A symmetric analysis yields the best response of firm 2,

2 =
1

4
+

1

2
.

The Nash equilibrium is a pair of prices for which these two best re-

sponse functions hold simultaneously, which yields 1 = 2 =
1
2
, and

∗ = 1
2
. To verify that this is a Nash equilibrium notice that for cus-

tomer ∗, the utility form buying from firm 1 is −1− 1
2
= 1− 1

2
− 1
2
= 0

implying that he is indeed indifferent between buying or not, which in

turn implies that every other customer prefer buying over not buying.

¥

(d) Following your analysis in (c) above, imagine that transportation costs

are , with  ∈ [0 1
2
]. What happens to the Nash equilibrium as

→ 0? What is the intuition for this result?

Answer: Using the assumed indifferent customer ∗, his indifference

implies that

 − 1 − ∗ =  − 2 − (1− ∗)

 − 1 −  =  − 2 − (1− )

which gives the equation for ∗,

∗ =
1

2
+
1

2
(2 − 1) 

It follows that under the assumptions above, given prices 1 and 2, the

demands for firms 1 and 2 are given by

1(1 2) = ∗ =
1

2
+
1

2
(2 − 1) 

1(1 2) = 1− ∗ =
1

2
+
1

2
(1 − 2) 

Firm 1’s maximization problem is

max
1

µ
1

2
+
1

2
(2 − 1)

¶
1
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which yields the first order condition

1

2
+

2

2
− 1


= 0 

implying the best response function

1 =


2
+

2

2
.

A symmetric analysis yields the best response of firm 2,

2 =


2
+

1

2
.

2 =


2
+


2
+ 2

2

2
.

The Nash equilibrium is a pair of prices for which these two best re-

sponse functions hold simultaneously, which yields 1 = 2 = , and

∗ = 1
2
. From the analysis in (c) above we know that for any  ∈ [0 1

2
)

customer ∗ will strictly prefer to buy over not buying and so will every

other customer. We see that as  decreases, so do the equilibrium prices,

so that at the limit of  = 0 the prices will be zero. The intuition is that

the transportation costs  cause firms 1 and 2 to be differentiated, and

this “softens” the Bertrand competition between the two firms. When

the transportation costs are higher this implies that competition is less

fierce and prices are higher, and the opposite holds for lower transporta-

tion costs.¥

17. To vote or not to vote: Two candidates,  and , are running for mayoral

election in a town with  residents. A total of 0     residents support

candidate  while the remainder  = −  support candidate . The value

for each resident for having their candidate win is 4, for having him tie is 2,

and for having him lose is 0. Going to vote costs each resident 1

(a) Let  = 2 and  = 1. Write down this game as a matrix and solve for

the Nash equilibrium.

Answer: The game is between the residents as the candidates seem not
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to play a role and the question is whether to vote or not to vote. Letting

 denote “yes” vote and  denote “no” vote, the matrix representation

of this two player game is

Player 1

Player 2

 

 1 1 3 0

 0 3 2 2

If both vote or both don’t vote then there is a tie and the only difference

is the cost of voting. If only one votes then his candidate wins and he

exerts the voting costs, while the other gains and expends nothing.

Voting is a dominant strategy so (  ) is the unique Nash equilibrium.

¥

(b) Let   2 be an even number and let  =  = 
2
. Find all the Nash

equilibria.

Answer: Observe that everyone voting is a Nash equilibrium. Like in

part (a) there will be a tie and every player’s payoff is 1, while if he

chose not to vote then his candidate will lose and his payoff will be

0, hence it is a Nash equilibrium. We now show that no other profile

of strategies is a Nash equilibrium in three steps. Let 0 and 0 denote

the number of member of each group that plan on voting. () Assume

that an identical number of voters from each side votes so that there

is a tie but some voters are not voting, that is, 0 = 0  
2
. In this

case any one of the voters who is not voting would prefer to deviate,

expend a voting cost of 1 and increase his payoff from 2 to 3 because he

would tip the election. Hence, this cannot be a Nash equilibrium. ()

Now assume that the number of supporters of candidate  is is at least

2 more than that of candidate , that is, 0 ≥ 0 + 2. (A symmetric

argument will apply to the case of 0 ≥ 0 + 2.) In this case any one of

the  supporters who plans to vote knows that his vote is redundant,

and hence he would prefer not to vote and save the voting costs. Hence,

this cannot be a Nash equilibrium. () Now assume that the number
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of supporters of candidate  is is exactly 1 more than that of candidate

, that is, 0 = 0 + 1. (A symmetric argument will apply to the case

of 0 = 0 + 1.) In this case any one of the  supporters who does not

plan to vote knows that his vote can turn a loss into a tie, and hence

he would prefer to vote and change the election giving him a payoff of 1

instead of 0. Hence, this too cannot be a Nash equilibrium. This covers

all the possible scenarios and shows that everyone voting is the unique

Nash equilibrium. ¥

(c) Assume now that the costs of voting are equal to 3. How does your

answer to (a) and (b) change?

Answer: The two player game is now

Player 1

Player 2

 

 −1−1 1 0

 0 1 2 2

and the dominated strategy is voting, implying that the unique Nash

equilibrium is for the players not to vote, (). A similar argument

to part (b) above shows that all players not voting is the unique Nash

equilibrium. ¥

18. Political Campaigning: Two candidates are competing in a political race.

Each candidate  can spend  ≥ 0 on adds that reach out to voters, which
in turn increases the probability that candidate  wins the race. Given a pair

of spending choices (1 2), the probability that candidate  wins is given

by 
1+2

. If neither spends any resources then each wins with probability 1
2
.

Each candidate values winning at a payoff of   0, and the cost of spending

 is just .

(a) Given two spend levels (1 2), write the expected payoff of a candidate


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Answer: Player ’s payoff function is

(1 2) =


1 + 2
−  

¥

(b) What is the function that represents each player’s best response func-

tion?

Answer: Player 1 maximizes his payoff 1(1 2) shown in (a) above

and the first order optimality condition is,

(1 + 2)− 1

(1 + 2)2
− 1 = 0

and if we use 1(2) to denote player 1’s best response function then

it explicitly solves the following equality that is derived from the first-

order condition,

[1(2)]
2 + 21(2)2 + (2)

2 − 2 = 0 

Because this is a quadratic equation we cannot write an explicit best

response function (or correspondence). However, if we can graph 1(2)

as shown in the following figure (the values correspond for the case of

 = 1).
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Similarly we can derive the symmetric function for player 2. ¥
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(c) Find the unique Nash equilibrium.

Answer: The best response functions are symmetric mirror images and

have a symmetric solution where 1 = 2 in the unique Nash equilibrium.

We can therefore use any one of the two best response functions and

replace both variables with a single variable ,

2 + 22 + 2 −  = 0 

or,

 =


4

so that the unique Nash equilibrium has ∗1 = ∗2 =

4
¥

(d) What happens to the Nash equilibrium spending levels if  increases?

Answer: It is easy to see from part (c) that higher values of  cause

the players to spend more in equilibrium. As the stakes of the prize rise,

it is more valuable to fight over it. ¥

(e) What happens to the Nash equilibrium levels if player 1 still values

winning at , but player 2 values winning at  where   1?

Answer: Now the two best response functions are not symmetric. The

best response function of player 1 remains as above, but that of player

2 will now have  instead of ,

(1)
2 + 212 + (2)

2 − 2 = 0  ((BR1))

and

(2)
2 + 212 + (1)

2 − 1 = 0  ((BR2))

Subtracting (BR2) from (BR1) we obtain,

1 = 2,

which implies that the solution will no longer be symmetric and, more-

over, 2  1 which is intuitive because now player 2 cares more about

the prize. Using 1 = 2 we substitute for 2 in (BR1) to obtain,

(1)
2 + 2(1)

2 + 2(1)
2 − 1 = 0
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which results in,

1 =


1 + 2 + 2




1 + 2 + 2




4

where both inequalities follow from the fact that   1. From 1 = 2

above we have

2 =
2

1 + 2 + 2


2

2 + 22 + 2
=



4

where the inequality follows from   1. ¥
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Mixed Strategies

1. Use the best response correspondences in the Battle of the Sexes game to

find all the Nash equilibria. (Follow the approach used for the example in

section 6.2.3.)

Answer: The Battle of the Sexes game is described by the following matrix,

player 1

Player 2

 

 2 1 0 0

 0 0 1 2

Let  denote the probability that player 1 plays  and let  be the probability

that player 2 plays . The expected payoff of player 1 from playing  is

1( ) = 2 and of playing  is 1( ) = 1− . It is easy to see that  is

better than  if and only if 2  1 − , or   1
3
. Hence, the best response

correspondence of player 1 is:

1() =

⎧⎪⎨⎪⎩
 = 1 if   1

3

 ∈ [0 1] if  = 1
3

 = 0 if   1
3


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The best response of player 2 is derived analogously: 2()  2(  ) if

and only if   2(1− ), or,   2
3
, implying that,

2() =

⎧⎪⎨⎪⎩
 = 1 if   2

3

 ∈ [0 1] if  = 2
3

 = 0 if   2
3



It is now easy to see that there are three Nash equilibria: ( ) ∈ {(1 1) (2
3
 1
3
) (0 0)}.

¥

2. Let  be a mixed strategy of player  that puts positive weight on one strictly

dominated pure strategy. Show that there exists a mixed strategy 0 that puts

no weight on any dominated pure strategy and that dominates .

Answer: Let player  have  pure strategies  = {1 2  } and let 
be a pure strategy which is strictly dominated by 0, that is, (0  −) 

(0  −) for any strategy profile of ’s opponents −. Let  = (1 2  )

be a mixed strategy that puts some positive weight   0 on  and let 
0


be identical to  except that it puts weight 0 on  and diverts that weight

over to 0. That is, 
0
 = 0 and 00 = 0 + , and 0 =  for all  6= 

and  6= 0. It follows that for all −,

(
0
 −) =

X
=1

0( −) 
X
=1

( −) = (
0
 −)

because (0  −)  (0  −) and the way in which 0 was constructed.

Hence,  is strictly dominated by 
0
. ¥

3. Consider the game used in section ?? as follows:

Player 1

Player 2

  

 5 1 1 4 1 0

 3 2 0 0 3 5

 4 3 4 4 0 3
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(a) Find a strategy different from (2() 2() 2()) = (0 1
2
 1
2
) that

strictly dominates the pure strategy  for player 2. Argue that you can

find an infinite number of such strategies.

Answer: The expected payoff of any player in a matrix game is con-

tinuous in the probabilities of his mixed strategy (because it is a lin-

ear function of the probability weights), and hence if we “tweak” the

strategy (2() 2() 2()) = (0
1
2
 1
2
) just a little bit then the pay-

offs will be the same for any choice of player 1. For example, take

02 = (
0
2() 

0
2() 

0
2()) = (0

4
10
 6
10
). The expected payoff of player

2 from 02 against any one of the three strategies of player 1 are,

2( 
0
2) = 04× 4 + 06× 0 = 16  1 = 2()

2( 
0
2) = 04× 0 + 06× 5 = 3  2 = 2()

2( 
0
2) = 04× 4 + 06× 3 = 34  3 = 2()

which shows that 02 strictly dominates . It is therefore follows by the

continuity of the expected payoff function that any one of the infinitely

many mixed strategies that puts weights close to 0.5 on  and the

remaining probability on  will dominate .1 ¥

(b) Find a strategy different from (1() 1() 1()) = (0 1
2
 1
2
) that

strictly dominates the pure strategy  for player 1 in the game remain-

ing after one stage of elimination. Argue that you can find an infinite

number of such strategies.

Answer: This is an identical procedure as for part (a).

4. Monitoring: An employee (player 1) who works for a boss (player 2) can

either work ( ) or shirk (), while his boss can either monitor the employee

() or ignore him (). Like most employee-boss relationships, if the em-

ployee is working then the boss prefers not to monitor, but if the boss is not

1A more elegant way 0f writing this would be to choose a mixed strategy 02 = (0
1
2
+  1

2
− ) and show that

for small enough values of  it follows that 02 strictly dominates , and it follows that there are infinitely many
such values of .
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monitoring then the employee prefers to shirk. The game is represented in

the following matrix:

player 1

Player 2

 

 1 1 1 2

 0 2 2 1

(a) Draw the best response functions of each player.

Answer: Let  be the probability that player 1 chooses  and  the

probability that player 2 chooses  . It follows that 1( )  1( )

if and only if 1  2(1− ), or   1
2
, and 2()  2( ) if and only

if + 2(1− )  2+ (1− ), or   1
2
. It follows that for player 1,

1() =

⎧⎪⎨⎪⎩
 = 0 if   1

2

 ∈ [0 1] if  = 1
2

 = 1 if   1
2

and for player 2,

2() =

⎧⎪⎨⎪⎩
 = 1 if   1

2

 ∈ [0 1] if  = 1
2

 = 0 if   1
2



Notice that these are identical to the best response functions for the

matching pennies game (see Figure 6.3). ¥

(b) Find the Nash equilibrium of this game. What kind of game does this

game remind you of?

Answer: From the two best response correspondences the unique Nash

equilibrium is ( ) = (1
2
 1
2
) and the game’s strategic forces are identical

to those in the Matching Pennies game. ¥

5. Cops and Robbers: Player 1 is a police officer who must decide whether to

patrol the streets or to hang out at the coffee shop. His payoff from hanging

out at the coffee shop is 10, while his payoff from patrolling the streets
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depends on whether he catches a robber, who is player 2. If the robber prowls

the streets then the police officer will catch him and obtain a payoff of 20.

If the robber stays in his hideaway then the officer’s payoff is 0. The robber

must choose between staying hidden or prowling the street. If he stays hidden

then his payoff is 0, while if he walks the street his payoff is (−10) if the officer
is patrolling the streets, and it is 10 if the officer is at the coffee shop.

(a) Write down the matrix form of this game.

Answer: Let  denote patrol and  coffee shop for player 1, and  is

the robber’s choice of prowling while  is remaining hidden. The game

is therefore

player 1

Player 2

 

 20−10 0 0

 10 10 10 0

¥

(b) Draw the best response functions of each player.

Answer: Let  be the probability that player 1 chooses  and  the

probability that player 2 chooses . It follows that 1( )  1( )

if and only if 20  10, or   1
2
, and 2( )  2() if and only if

−10+ 10(1− )  0, or   1
2
. It follows that for player 1,

1() =

⎧⎪⎨⎪⎩
 = 0 if   1

2

 ∈ [0 1] if  = 1
2

 = 1 if   1
2

and for player 2,

2() =

⎧⎪⎨⎪⎩
 = 1 if   1

2

 ∈ [0 1] if  = 1
2

 = 0 if   1
2



Notice that these are identical to the best response functions for the

matching pennies game (see Figure 6.3). ¥
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(c) Find the Nash equilibrium of this game. What kind of game does this

game remind you of?

Answer: From the two best response correspondences the unique Nash

equilibrium is ( ) = (1
2
 1
2
) and the game’s strategic forces are identical

to those in the Matching Pennies game. ¥

6. Declining Industry: Consider two competing firms in a declining indus-

try that cannot support both firms profitably. Each firm has three possible

choices as it must decide whether or not to exit the industry immediately, at

the end of this quarter, or at the end of the next quarter. If a firm chooses

to exit then its payoff is 0 from that point onward. Every quarter that both

firms operate yields each a loss equal to −1, and each quarter that a firm
operates alone yields a payoff of 2 For example, if firm 1 plans to exit at the

end of this quarter while firm 2 plans to exit at the end of the next quarter

then the payoffs are (−1 1) because both firms lose −1 in the first quarter
and firm 2 gains 2 in the second. The payoff for each firm is the sum of its

quarterly payoffs.

(a) Write down this game in matrix form.

Answer: Let  denote immediate exit,  denote exit this quarter, and

 denote exit next quarter.

Player 1

Player 2

  

 0 0 0 2 0 4

 2 0 −1−1 −1 1
 4 0 1−1 −2−2

(b) Are there any strictly dominated strategies? Are there any weakly dom-

inated strategies?

Answer: There are no strictly dominated strategies but there is a

weakly dominated one:  . To see this note that choosing both  and
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 with probability 1
2
each yields the same expected payoff as choos-

ing  against  or  , and a higher expected payoff against  and

hence  = (() ( ) ()) = (1
2
 0 1

2
) weakly dominates  . The

reason there is no strictly dominated strategy is that, starting with ,

increasing the weight on  causes the mixed strategy to be worse than

 against , while increasing the weight on  causes the mixed strat-

egy to be worse than  against  , implying it is impossible to find a

mixed strategy that strictly dominates  . ¥

(c) Find the pure strategy Nash equilibria.

Answer: Because  is weakly dominated, it is suspect of never being

a best response. A quick observation should convince you that this is

indeed the case: it is never a best response to any of the pure strategies,

and hence cannot be part of a pure strategy Nash equilibrium. Removing

 from consideration results in the reduced game:

Player 1

Player 2

 

 0 0 0 4

 4 0 −2−2
for which there are two pure strategy Nash equilibria, () and ().

¥

(d) Find the unique mixed strategy Nash equilibrium (hint: you can use

your answer to (b) to make things easier.)

Answer: We start by ignoring  and using the reduced game in part

(c) by assuming that the weakly dominated strategy  will never be

part of a Nash equilibrium. We need to find a pair of mixed strategies,

(1() 1()) and (2() 2()) that make both players indifferent

between  and  . For player 1 the indifference equation is,

0 = 42()− 2(1− 2())

which results in 2() =
1
3
, and for player 2 the indifference equation

is symmetric, resulting in 1() =
1
3
. Hence, the mixed strategy Nash
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equilibrium of the original game is (() ( ) ()) = (1
3
 0 2

3
).

Notice that at this Nash equilibrium, each player is not only indifferent

between  and  , but choosing  gives the same expected payoff of

zero. However, choosing  with positive probability cannot be part of

a mixed strategy Nash equilibrium. To prove this let player 2 play the

mixed strategy 2 = (2() 2( ) 2()) = (2 2  1− 2 − 2 )

The strategy  for player 1 is at least as good as  if and only if,

0 ≤ 22 − 2 − (1− 2 − 2 )

or, 2 ≥ 1
3
. The strategy  for player 1 is at least as good as  if and

only if,

42 − 2 − 2(1− 2 − 2 ) ≤ 22 − 2 − (1− 2 − 2 )

or, 2 ≤ 1−32. But if 2 ≥ 1
3
(when  is as good as ) then 2 ≤

1 − 32 reduces to 2 ≤ 0, which can only hold when 2 =
1
3
and

2 = 0 (which is the Nash equilibrium we found above). A symmetric

argument holds to conclude that (() ( ) ()) = (
1
3
 0 2

3
) is the

unique mixed strategy Nash equilibrium. ¥

7. Grad School Competition: Two students sign up for an honors thesis

with a Professor. Each can invest time in their own project: either no time,

one week, or two weeks (these are the only three options). The cost of time is

0 for no time, and each week costs 1 unit of payoff. The more time a student

puts in the better their work will be, so that if one student puts in more time

than the other there will be a clear “leader”. If they put in the same amount

of time then their thesis projects will have the same quality. The professor,

however, will give out only one “A” grade. If there is a clear leader then he

will get the A, while if they are equally good then the professor will toss a

fair coin to decide who gets the A grade. The other student gets a “B”. Since

both wish to continue to graduate school, a grade of A is worth 3 while a

grade of B is worth zero.

(a) Write down this game in matrix form.
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Answer: Let  denote no time,  denote one week, and  denote two

weeks. The matrix game is,

Player 1

Player 2

  

 15 15 0 2 0 1

 2 0 05 05 −1 1
 1 0 1−1 −05−05

The payoffs are derived by the fact that a tie is an equal chance of

getting 3 so each player gets 1.5 in expectation. ¥

(b) Are there any strictly dominated strategies? Are there any weakly dom-

inated strategies?

Answer: Each one of the three strategies can be a strict best response:

 is a best response to  ,  is a best response to  , and  is a best

response to . Hence, no strategy is strictly or weakly dominated. ¥

(c) Find the unique mixed strategy Nash equilibrium.

Answer: Let  = (   1− −) denote a mixed strategy for

player . Because the game is symmetric it suffices to solve the indiffer-

ence conditions for one player. For player  to be indifferent between 

and ,

15 = 2 + 05 − (1−  − )

and for him to be indifferent between  and  ,

15 =  +  − 05(1−  − )

Solving these two equations with two unknowns yields  =  =
1
3
implying that the unique mixed strategy Nash equilibrium has the

players mixing between all three pure strategies with equal probability.

¥

8. Market entry: There are 3 firms that are considering entering a newmarket.

The payoff for each firm that enters is 150

where  is the number of firms

that enter. The cost of entering is 62.
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(a) Find all the pure strategy Nash equilibria.

Answer: The costs of entry are 62 so the benefits of entry must be at

least that for a firm to choose to enter. Clearly, if a firm believes the

other two are not entering then it wants to enter, and if it believes that

the other firms are entering then it would stay out (it would only get

50). If a firm believes that only one other firm is entering then it prefers

to enter and get 75. Hence, there are three pure strategy Nash equilibria

in which two of the three firms enter and one stays out. ¥

(b) Find the symmetric mixed strategy equilibrium where all three players

enter with the same probability.

Answer: Let  be the probability that a firm enters. In order to be

willing to mix the expected payoff of entering must be equal to zero.

If a firm enters then with probability 2 it will face two other entrants

and receive  = 50 − 62 = −12 with probability (1 − )2 it will face

no other entrants and receive  = 150− 62 = 88 and with probability
2(1 − ) it will face one other entrant and receive  = 75 − 62 = 13
Hence, to be willing to mix the expected payoff must be zero,2+1−2

(1− )288 + 2(1− )13− 212 = 0

which results in the quadratic equation 252 − 75 + 44 = 0, and the
relevant solution (between 0 and 1) is  = 4

5
. ¥

9. Discrete all pay auction: In section 6.1.4 we introduced a version of an all

pay auction that worked as follows: Each bidder submits a bid. The highest

bidder gets the good, but all bidders pay there bids. Consider an auction in

which player 1 values the item at 3 while player 2 values the item at 5 Each

player can bid either 0 1 or 2. The twist is that each player pays his bid

regardless of whether he wins the good. If player  bids more than player 

then  win’s the good and both pay. If both players bid the same amount

then a coin is tossed to determine who gets the good but again, both pay.
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(a) Write down the game in matrix form. Which strategies survive IESDS?

Answer: Let  denote zero,  denote one, and  denote two. The

matrix game is,

Player 1

Player 2

  

 15 25 0 4 0 3

 2 0 05 15 −1 3
 1 0 1−1 −05 05

The payoffs are derived by the fact that a tie is an equal chance of

winning so player 1 gets 1.5 and player 2 gets 2.5 in expectation. It is

easy to see that for player 2, playing  is dominated by playing  , so

it is eliminated in the first stage of IESDS. In the second stage  is

dominated by  for player 1 and we are left with the following reduced

game that survives IESDS,

Player 1

Player 2

 

 0 4 0 3

 1−1 −05 05

¥

(b) Find the Nash equilibria of this game.

Answer: From the reduced game it is easy to see that there is no pure

strategy Nash equilibrium. Let 1 = (1  1 ) and 2 = (2 2 )

denote the mixed strategies for the players in the reduced game. For

player 1 to be indifferent between  and  ,

0 = 2 − 05(1− 2)

which yields 2 =
1
3
. For player 2 to be indifferent between  and  ,

41 − (1− 1) = 31 + 05(1− 1)
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which yields 1 = 06. Thus, the unique mixed strategy Nash equilib-

rium has the players mixing 1 = (
3
5
 2
5
) and 2 = (

1
3
 2
3
) in the reduced

game, or 1 = (
3
5
 0 2

5
) and 2 = (0

1
3
 2
3
) in the original game. ¥

10. Continuous all pay auction: Consider an all-pay auction for a good worth

1 to each of the two bidders. Each bidder can choose to offer a bid from the

unit interval so that  = [0 1]. Players only care about the expected value

they will end up with at the end of the game (i.e., if a player bids 0.4 and

expects to win with probability 0.7 then his payoff is 07× 1− 04).

(a) Model this auction as a normal-form game.

Answer: There are two players,  = {1 2}, each has a strategy set
 = [0 1], and assuming that the players are equally likely to get the

good in case of a tie, the payoff to player  is given by

( ) =

⎧⎪⎨⎪⎩
1−  if   
1
2
−  if  = 

− if   

(b) Show that this game has no pure strategy Nash Equilibrium.

Answer: First, it cannot be the case that  =   1 because then each

player would benefit from raising his bid by a tiny amount  in order to

win the auction and receive a higher payoff 1− −  
1
2
− . Second,

it cannot be the case that  =  = 1 because each player would prefer

to bid nothing and receive 0  −1
2
. Last, it cannot be the case that

   ≥ 0 because then player  would prefer to lower his bid by 

while still beating player  and paying less money. Hence, there cannot

be a pure strategy Nash equilibrium. ¥

(c) Show that this game cannot have a Nash Equilibrium in which each

player is randomizing over a finite number of bids.

Answer: Assume that a Nash equilibrium involves player 1 mixing



6. Mixed Strategies 107

between a finite number of bids, {11 12 1} where 11 ≥ 0 is the
lowest bid, 1 ≤ 1 is the highest, 1  1(+1) and each bid 1 is

being played with some positive probability 1. Similarly assume that

player 2 is mixing between a finite number of bids, {21 22 2}
and each bid 2 is being played with some positive probability 2. ()

First observe that it cannot be true that 1  2 (or the reverse by

symmetry). If it were the case then player 2 will win for sure when he

bids 2 and pay his bid, while if he reduces his bid by some  such that

1  2 −  then he will still win for sure and pay less, contradicting

that playing 2 was part of a Nash equilibrium. () Second observe

that when 1 = 2 then the expected payoff of player 2 from bidding

2 is

2 = Pr{1  2}(1− 2) + Pr{1 = 2}(1
2
− 2)

= (1− 1)(1− 2) + 1(
1

2
− 2)

= 1− 2 − 1
2
 ≥ 0

where the last inequality follows from the fact that 2  0 (he would

not play it with positive probability if the expected payoff were nega-

tive.) Let 02 = 2+  where  = 1
4
 . If instead of bidding 2 player

2 bids 02 then he wins for sure and his utility is

2 = 1− 02 = 1− 2 − 1
4
  1− 2 − 1

2


contradicting that playing 2 was part of a Nash equilibrium. ¥

(d) Consider mixed strategies of the following form: Each player  chooses

and interval, [ ] with 0 ≤    ≤ 1 together with a cumulative
distribution () over the interval [ ] (Alternatively you can think

of each player choosing () over the interval [0 1], with two values 

and  such that () = 0 and () = 1.)

i. Show that if two such strategies are a mixed strategy Nash equilib-

rium then it must be that 1 = 2 and 1 = 2
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Answer: Assume not. There are two cases: () 1 6= 2: With-

out loss assume that 1  2. This means that there are values

of 01 ∈ (1 2) for which 01  0 but for which player 1 loses

with probability 1. This implies that the expected payoff from this

bid is negative, and player would be better off bidding 0 instead.

Hence, 1 = 2 must hold. () 1 6= 2: Without loss assume that

1  2. This means that there are values of 
0
2 ∈ (1 2) for which

1  02  1 but for which player 2 wins with probability 1. But

then player 2 could replace 02 with 
00
2 = 02−  with  small enough

such that 1  002  02  1, he will win with probability 1 and pay

less than he would pay with 02. Hence, 1 = 2 must hold. ¥

ii. Show that if two such strategies are a mixed strategy Nash equilib-

rium then it must be that 1 = 2 = 0

Answer: Assume not so that 1 = 2 =   0. This means that

when player  bids  then he loses with probability 1, and get

an expected payoff of −  0. But instead of bidding  player 

can bid 0 and receive 0 which is better than −, implying that
1 = 2 =   0 cannot be an equilibrium. ¥

iii. Using the above, argue that if two such strategies are a mixed strat-

egy Nash equilibrium then both players must be getting an expected

payoff of zero.

Answer: As proposition 6.1 states, if a player is randomizing be-

tween two alternatives then he must be indifferent between them.

Because both players are including 0 in the support of their mixed

strategy, their payoff from 0 is zero, and hence their expected payoff

from any choice in equilibrium must be zero. ¥

iv. Show that if two such strategies are a mixed strategy Nash equilib-

rium then it must be that 1 = 2 = 1

Answer: Assume not so that 1 = 2 =   1. From () above the

expected payoff from any bid in [0 ] is equal to zero. If one of the
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players deviates from this strategy and choose to bid +  1 then

he will win with probability 1 and receive a payoff of 1−(+)  0,
contradicting that 1 = 2 =   1 is an equilibrium. ¥

v. Show that () being uniform over [0 1] is a symmetric Nash equi-

librium of this game.

Answer: Imagine that player 2 is playing according to the pro-

posed strategy 2() uniform over [0 1]. If player 1 bids some value

1 ∈ [0 1] then his expected payoff is

Pr{1  2}(1−1)+Pr{1  2}(−1) = 1(1−1)+(1−1)(−1) = 0

implying that player 1 is willing to bid any value in the [0 1] interval,

and in particular, choosing a bid according to 1() uniform over

[0 1]. Hence, this is a symmetric Nash equilibrium. ¥

11. Bribes: Two players find themselves in a legal battle over a patent. The

patent is worth 20 for each player, so the winner would receive 20 and the

loser 0. Given the norms of the country they are in, it is common to bribe

the judge of a case. Each player can offer a bribe secretly, and the one whose

bribe is the largest is awarded the patent. If both choose not to bribe, or

if the bribes are the same amount, then each has an equal chance of being

awarded the patent. If a player does bribe, then bribes can be either a value

of 9 or of 20. Any other number is considered to be very unlucky and the

judge would surely rule against a party who offers a different number.

(a) Find the unique pure-strategy Nash equilibrium of this game.

Answer: The game is captured in the following two player matrix,

where  represents no payment,  represents a bribe of 9 and  a

bribe of 20. For example, if both choose 9 then they have an equal
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chance of getting 20, so the expected payoff is 1
2
× 20− 9 = 1,

Player 1

Player 2

  

 10 10 0 11 0 0

 11 0 1 1 −9 0
 0 0 0−9 −10−10

It is easy to see that  is strictly dominated by  . In the remaining

game,  is strictly dominated by  , and hence () is the unique

Nash equilibrium. ¥

(b) If the norm were different so that a bribe of 15 were also acceptable, is

there a pure strategy Nash equilibrium?

Answer: Now the game is as follows (where  denotes a bribe of 15),

Player 1

Player 2

   

 10 10 0 11 0 5 0 0

 11 0 1 1 −9 5 −9 0
 5 0 5−9 −5−5 −15 0
 0 0 0−9 0−15 −10−10

Using the best responses of each player it is easy to see that there is no

pure strategy Nash equilibrium. ¥

(c) Find the symmetric mixed-strategy Nash equilibrium for the game with

possible bribes of 9 15 and 20

Answer: Note first that  is weakly dominated by , so consider the

game without  ,

Player 1

Player 2

  

 10 10 0 11 0 5

 11 0 1 1 −9 5
 5 0 5−9 −5−5
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Let  = (     ) denote a mixed strategy for player  where

 = 1 −  −  . The game is symmetric so for player 1 to be

indifferent between  and  it must be that,

102 = 112 + 2 − 9(1− 2 − 2)

which implies that 2 =
9
10
−2 . For player 1 to be indifferent between

 and  it must be that,

102 = 52 + 52 − 5(1− 2 − 2)

which implies that 2 =
1
2
. Hence, the unique (mixed strategy) Nash

equilibrium has each player play  = (
2
5
 1
2
 1
10
). ¥

12. The Tax Man: A citizen (player 1) must choose whether or not to file taxes

honestly or whether to cheat. The tax man (player 2) decides how much effort

to invest in auditing and can choose  ∈ [0 1], and the cost to the tax man of
investing at a level  is () = 1002. If the citizen is honest then he receives

the benchmark payoff of 0, and the tax man pays the auditing costs without

any benefit from the audit, yielding him a payoff of (−1002). If the citizen
cheats then his payoff depends on whether he is caught. If he is caught then

his payoff is (−100) and the tax man’s payoff is 100 − 1002. If he is not
caught then his payoff is 50 while the tax man’s payoff is (−1002) If the
citizen cheats and the tax man chooses to audit at level  then the citizen is

caught with probability  and is not caught with probability (1− ).

(a) If the tax man believes that the citizen is cheating for sure, what is his

best response level of ?

Answer: The tax man maximizes (100−1002)+(1−)(0−1002) =
100 − 1002. The first-order optimality condition is 100 − 200 = 0,

yielding  = 1
2
. ¥

(b) If the tax man believes that the citizen is honest for sure, what is his

best response level of ?



112 6. Mixed Strategies

Answer: The tax man maximizes −1002 which is maximized at  = 0.
¥

(c) If the tax man believes that the citizen is honest with probability ,

what is his best response level of  as a function of ?

Answer: The tax man maximizes (−1002)+(1−)(100−1002) =
100(1−)−1002. The first-order optimality condition is 100(1−)−
200 = 0, yielding the best response function ∗() = 1−

2
. ¥

(d) Is there a pure strategy Nash equilibrium of this game? Why or why

not?

Answer: There is no pure strategy Nash equilibrium. To see this, con-

sider the best response of player 1 who believes that player 2 chooses

some level  ∈ [0 1]. His payoff from being honest is 0 while his payoff

from cheating is (−100) + (1− )50 = 50− 150. Hence, he prefers to
be honest if and only if 0 ≥ 50 − 150 or  ≥ 1

3
. Letting ∗() denote

the best response correspondence of player 1 as the probability that he

is honest, we have that

∗() =

⎧⎪⎨⎪⎩
1 if   1

3

[0 1] if  = 1
3

0 if   1
3

and it is easy to see that there are no values of  and  for which both

players are playing mutual best responses. ¥

(e) Is there a mixed strategy Nash equilibrium of this game? Why or why

not?

Answer: From (d) above we know that player 1 is willing to mix if

and only if  = 1
3
, which must therefore hold true in a mixed strategy

Nash equilibrium. For player 2 to be willing to play  = 1
3
we use his

best response from part (c), 1
3
= 1−

2
, which yields,  = 1

3
. Hence, the

unique mixed strategy Nash equilibrium has player 1 being honest with

probability 1
3
and player 2 choosing  = 1

3
. ¥
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Preliminaries

1. Strategies: Imagine an extensive form game in which player  has  infor-

mation sets.

(a) If the player has an identical number of  possible actions in each

information set, how many pure strategies does he have?

Answer: The player has  pure strategies.

(b) If the player has  actions in information set  ∈ {1 2  }, how
many pure strategies does the player have?

Answer: The player has 1 ×2 × · · · ×  pure strategies. ¥

2. Strategies and equilibrium: Consider a two player game in which player

1 can choose  or . The game ends if he chooses  while it continues to

player 2 if he chooses . Player 2 can then choose  or , with he game

ending after  and continuing again with player 1 after . Player 1 then can

choose  or  , and the game ends after each of these choices.

(a) Model this as an extensive form game tree. Is it a game of perfect or

imperfect information?
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Answer:

This game is a game of perfect information. ¥

(b) How many terminal nodes does the game have? How many information

sets?

Answer: The game has 4 terminal nodes (after choices A, C, E and F)

and 3 information sets (one for each player. ¥

(c) How many pure strategies does each player have?

Answer: Player 1 has 4 pure strategies and player 2 has 2. ¥

(d) Imagine that the payoffs following choice  by player 1 are (2 0), fol-

lowing  by player 2 are (3 1), following  by player 1 are (0 0) and

following  by player 1 are (1 2). What are the Nash equilibria of this

game? Does one strike you as more “appealing” than the other? If so,

explain why.

Answer: We can write down the matrix form of this game as follows

( denotes a strategy for player 1 where  ∈ {} is what he does
in his first information set and  ∈ {} in his second one),

Player 1

Player 2

 

 2 0 2 0

 2 0 2 0

 3 1 0 0

 3 1 1 2
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It’s easy to see that there are three pure strategy Nash equilibria:

() () and (). The equilibria () () are

Pareto dominated by the equilibrium (), and hence it would be

tempting to argue that () is the more “appealing” equilibrium.

As we will see in Chapter 8 it is actually () that has properties

that are more appealing (sequential rationality). ¥

3. Tick-tack-toe: The extensive form representation of a game can be cumber-

some even for very simple games. Consider the game of Tick-tack-toe where

2 players mark “” or “” in a 3 × 3 matrix. Player 1 moves first, then
player 2, and so on. If a player gets three of his kind in a row, column, or

one of the diagonals then he wins, and otherwise it is a tie. For this question

assume that even after a winner is declared, the players must completely fill

the matrix before the game ends.

(a) Is this a game of perfect or imperfect information? Why?

Answer: This is a game of perfect information because each player

knows exactly what transpired before he moves, and hence every infor-

mation set contains one node. ¥

(b) How many information sets does player 2 have after player 1’s first

move?

Answer: Player 2 has 9 information sets, one for each of the moves of

player 1. ¥

(c) How many information sets does player 1 have after each of player 2’s

first move?

Answer: Player 2 has 8 possible moves in his first turn, and this is

true for each one of the 9 possible moves that player 1 has in hid first

turn. Hence, player 1 has 9×8 = 72 information sets in his second move
(after player 2’s first move).
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(d) How many information sets does each player have in total? (Hint: For

this and the next part you may want to use a program like Excel.)

Answer: Continuing the logic of part (c), after player 1’s second move,

player 2 has 9× 8× 7 = 504 information sets, then player 1 has 9× 8×
7× 6 = 3 024 information sets, and so on (15 120; 60 480; 181 440 and
362 880). We add the alternating numbers to get how many information

set each player has, and we have to remember to add the root which

belongs to player 1. Hence, player 1 has 426,457 information sets while

player 2 has 197,073. ¥

(e) How many terminal nodes does the game have?

Answer: The number of terminal nodes is equal to the number of

information sets in player 1’s last turn because at that pint he just has

one move, to complete the tick-tack-toe matrix, which is 362 880. ¥

4. Centipedes: Imagine a two player game that proceeds as follows. A pot of

money is created with $6 in it initially. Player 1 moves first, then player 2,

then player 1 again and finally player 2 again. At each player’s turn to move,

he has two possible actions: grab () or share (). If he grabs, he gets 2
3
of

the current pot of money, the other player gets 1
3
of the pot and the game

ends. If he shares then the size of the current pot is multiplied by 3
2
and the

next player gets to move. At the last stage in which player 2 moves, if he

chooses share then the pot is still multiplied by 3
2
, player 2 gets 1

3
of the pot

and player 1 gets 2
3
of the pot.

(a) Model this as an extensive form game tree. Is it a game of perfect or

imperfect information?

Answer:
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This is a game of perfect information. Note that we draw the game from

left to right (which is the common convention for “centipede games” of

this sort.) We use capital letters for player 1 and lower case for player

2. ¥

(b) How many terminal nodes does the game have? How many information

sets?

Answer: The game has five terminal nodes and four information sets.

¥

(c) How many pure strategies does each player have?

Answer: Each player has four pure strategies (2 actions in each of his

2 information sets). ¥

(d) Find the Nash equilibria of this game. How many outcomes can be

supported in equilibrium?

Answer: Using the convention of  to denote a strategy of player

where he chooses  in his first information set and  in his second, we

can draw the following matrix representation of this game,

Player 1

Player 2

   

 4 2 4 2 4 2 4 2

 4 2 4 2 4 2 4 2

 3 6 3 6 9 45 9 45

 3 6 3 6 675 135 2025 10125

We see that only one outcome can be supported as a Nash equilibrium:

player 1 grabs immediately and the players’ payoffs are (4 2). ¥

(e) Now imagine that at the last stage in which player 2 moves, if he chooses

to share then the pot is equally split among the players. Does your

answer to part (d) above change?

Answer: The answer does change because the payoffs from the pair of



120 7. Preliminaries

strategies ( ) changes from (2025 10125) to (151875 151875) in

which case player 2’s best response to  will be , and player 1’s best

response to  remains , so that ( ) is another Nash equilibrium

in which they split 30375 equally (the previous Nash equilibria are still

equilibria). ¥

5. Veto Power: Two players must choose between three alternatives,   and

. Player 1’s preferences are given by  Â1  Â1  while player 2’s preferences
are given by  Â2  Â2 . The rules are that player 1 moves first and can

veto one of the three alternatives. Then, player two chooses which of the

remaining two alternatives will be chosen.

(a) Model this as an extensive form game tree (choose payoffs that repre-

sent the preferences).

Answer: Assume that the payoff of the best option is 3, the second best

2 and the worst is 1. Player1’s actions are which alternative to remove

and player 2’s which of the remaining two to choose.

¥

(b) How many pure strategies does each player have?

Answer: Player 1 has three pure strategies while player 2 has eight (2

actions in each of three information sets.) ¥

(c) Find all the Nash equilibria of this game.
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Answer: Let  be a strategy for player 2 where  is what he does

following the removal of ,  for  and  for  so that we can use the

following matrix,

Player 1

Player 2

       

 2 2 2 2 2 2 2 2 1 3 1 3 1 3 1 3

 3 1 3 1 1 3 1 3 3 1 3 1 1 3 1 3

 3 1 2 2 3 1 2 2 3 1 2 2 3 1 2 2

and we see that  is the only outcome that an be supported as an

equilibrium via two Nash equilibria, ( ) and ( )¥

6. Entering an Industry: A firm (player 1) is considering entering an estab-

lished industry with one incumbent firm (player 2). Player 1 must choose

whether to enter or to not enter the industry. If player 1 enters the industry

then player 2 can either accommodate the entry, or fight the entry with a

price war. Player 1’s most preferred outcome is entering with player 2 not

fighting, and his least preferred outcome is entering with player 2 fighting.

Player 2’s most preferred outcome is player 1 not entering, and his least

preferred outcome is player 1 entering with player 2 fighting.

(a) Model this as an extensive form game tree (choose payoffs that repre-

sent the preferences).

Answer:
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(b) How many pure strategies does each player have?

Answer: Each player has two pure strategies. ¥

(c) Find all the Nash equilibria of this game.

Answer: There are two Nash equilibria which can be seen in the matrix,

Player 1

Player 2

 

 0 2 0 2

 1 1 −1−1

Both ( ) and () are Nash equilibria of this game. ¥

7. Roommates Voting: Three roommates need to vote on whether they will

adopt a new rule and clean their room once a week, or stick to the current

once a month rule. Each votes “yes” for the new rule or “no” for the current

rule. Imagine that players 1 and 2 prefer the new rule while player 3 prefers

the old rule.

(a) Imagine that the players require a unanimous vote to adopt the new

rule. Player 1 votes first, then player 2, and then player 3, each one

observing the previous votes. Draw this as an extensive form game and

find the Nash equilibria.

Answer: The game is,
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and there are many Nash equilibria. Player 1 has two pure strategies: 

and  . Player 2 has 4: {   } (where the left entry corre-
sponds to his left information set) and player 3 has 16 (again, with the

natural left to right interpretation): {   
                     

      }. Because
a unanimous vote is needed, the only strategy profiles that are not a

Nash equilibrium are those for which players 1 or 2 can change a “no”

vote to a “yes” vote, or player 3 can change a “yes” vote to a “no”

vote. These profiles are () (   ) where     ∈ {}
from which player 1 can profitably deviate from  ; () (  )

from which player 2 can profitably deviate from  to  ; and ()

(    ) from which player 3 can profitably deviate from  

to . Thus, the Nash equilibria are profiles of strategies that belong

to one of two classes: () player 3 votes  and players 1 and 2 vote

anything (a total of 64 strategy profiles which include 8 of player 3, 4

of player 2 and 2 of player 1); () player 3 votes  , player 2 votes

 and player 1 votes  (a total of 16 strategy profiles which include 8

of player 3, 2 of player 2 and 1 of player 1). All the outcomes have the

current rule surviving. ¥

(b) Imagine now that the players require a majority vote to adopt the new

rule (at least two “yes” votes). Again, player 1 votes first, then player

2, and then player 3, each one observing the previous votes. Draw this

as an extensive form game and find the Nash equilibria.

Answer: The game’s payoff now change as follows,
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Now only a majority vote is needed, but still, the only strategy profiles

that are not a Nash equilibrium are those for which players 1 or 2 can

change a “no” vote to a “yes” vote, or player 3 can change a “yes” vote

to a “no” vote. These profiles are () (  ) or (  )

where      ∈ {} from which player 1 can profitably devi-

ate from  ; () ( ) or (   ) from which player 2

can profitably deviate from  to   or from  to  ; and ()

(  ) or (  ) from which player 3 can profitably de-

viate from   to  or from   to . Thus, the Nash

equilibria are profiles of strategies that belong to one of two classes: ()

player 3 votes , player 1 votes  and 2 votes   (a total of 32

strategy profiles which include 16 of player 3, 2 of player 2 and 1 of

player 1). These all have players 1 and 2 voting  and support the new

rule; () player 3 votes , player 2 votes  and player 1 votes 

(a total of 8 strategy profiles which include 4 of player 3, 2 of player 2

and 1 of player 1). These have players 1 and 3 or 1 and 2 (or all three)

vote  and support the current rule surviving, and neither player 1 nor

2 can change the outcome by deviating unilaterally. ¥

(c) Now imagine that the game is like in part (b), but the players put their

votes in a hat, so that the votes of earlier movers are not observed by

the votes of later movers, and at the end the votes are counted. Draw

this as an extensive form game and find the Nash equilibria. In what
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way is this different from the result in (b) above?

Answer: This game is one of imperfect information where each player

has one information set,

Like part (b), any strategy in which both players 1 and 2 are vot-

ing  or one in which there are at least 2 no votes that cannot be

changed to only one by players 1 and 2 will be an equilibrium, but

the strategy sets are small because players 2 and 3 cannot condition

their play on the history of what the “previous” players did. Hence,

for each player the strategy set is  = {} and the Nash equilibria
are (1 2 3) ∈ {(   ) ( ) ()}. Like in part (b) both
outcomes can be supported by a Nash equilibrium, just that now the

strategy combinations that support it are fewer. ¥

8. Brothers: Consider the following game that proceeds in two steps: In the

first stage one brother (player 2) has two $10 bills and can choose one of two

options: he can give his younger brother (player 1) $20, or give him one of

the $10 bills (giving nothing is inconceivable given the way they were raised.)

This money will be used to buy snacks at the show they will see, and each

one dollar of snack yields one unit of payoff for a player who uses it. The
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show they will see is determined by the following “battle of the sexes” game:

Player 1

Player 2

 

 16,12 0,0

 0,0 12,16

(a) Present the entire game in extensive form (a game tree).

Answer: Let the choices of player 1 first be  for spliting the $20 and

 for giving it all away. The entire game will have the payoffs from the

choice of how to split the money added to the payoffs from the Battle

of the Sexes part of the game as follows,

Because the latter is simultaneous, it does not mater which player moves

after player 1 as long as the last player cannot distinguish between the

choice of the player who moves just before him. ¥

(b) Write the (pure) strategy sets for both players.

Answer: Both players can condition their choice in the Battle of the

Sexes game on the initial split/give choice of player 1. For player 2,

2 = { } where 2 =  means that player 2 chooses

 ∈ {} after player 1 chose  while player 2 chooses  ∈ {}
after player 1 chose . For player 1, however, even though he chooses

first between  or , he must specify his action for each information

set even if he knows it will not happen (e.g., what he will do following
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 even when he plans to play ). Hence, he has 8 pure strategies,

1 = {  } where 1 =

 means that player 1 first chooses  ∈ {} and then chooses
 ∈ {} if he played  and  ∈ {} if he played . ¥

(c) Present the entire game in one matrix.

Answer: This will be a 8× 4 matrix as follows,

Player 1

Player 2

   

 26 22 26 22 10 10 10 10

 26 22 26 22 10 10 10 10

 10 10 10 10 22 26 22 26

 10 10 10 10 22 26 22 26

 16 32 0 20 16 32 0 20

 0 20 12 36 0 20 12 36

 16 32 0 20 16 32 0 20

 0 20 12 36 0 20 12 36

(d) Find the Nash equilibria of the entire game (pure and mixed strategies).

Answer: First note that for player 1, mixing equally between  and

 will strictly dominate the four strategies  and

 . Hence, we can consider the reduced 4× 4 game,

Player 1

Player 2

   

 26 22 26 22 10 10 10 10

 26 22 26 22 10 10 10 10

 10 10 10 10 22 26 22 26

 10 10 10 10 22 26 22 26

The simple overline-underline method shows that we have eight pure

strategy Nash equilibria, four yielding the payoffs (26 22) and the other
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four yielding (22 26). Because of each players indifference between the

ways in which the payoffs are reached, there are infinitely many mixed

strategies that yield the same payoffs. For example, any profile where

player 1 mixes between  and  and where player 2 mixes be-

tween  and  will be a Nash equilibrium that yields (26 22). Sim-

ilarly, any profile where player 1 mixes between  and  and

where player 2 mixes between  and  will be a Nash equilibrium

that yields (22 26). There is, however, one more class of mixed strategy

Nash equilibria that are similar to the one found in section 6.2.3. To see

this, focus on an even simpler game where we eliminate the duplicate

payoffs as follows,

Player 1

Player 2

 

 26 22 10 10

 10 10 22 26

which preserve the nature of the game. For player 1 to be indifferent

between  and  it must be that player 2 chooses  with

probability  such that

26 + 10(1− ) = 10 + 22(1− )

which yields  = 3
7
. Similarly, for player 2 to be indifferent between 

and  it must be that player 1 chooses  with probability  such

that

22+ 10(1− ) = 10+ 26(1− )

which yields  = 4
7
. Hence, we found a mixed strategy Nash equilibrium

that results in each player getting an expected payoff of 26× 3
7
+10× 4

7
=

166
7
 Notice, however, that player 1 is always indifferent between 

and  , as well as between  and  so there are infinitely

many ways to achieve this kind of mixed strategy, and similarly for

player 2 because of his indifference between  and  as well as 

and  . ¥
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9. The Dean’s Dilemma: A student stole the DVD from the student lounge.

The dean of students (player 1) suspects the student (player 2) and engages

in evidence collection. However, evidence collection is a random process, and

concrete evidence will be available to the dean only with probability 1
2
. The

student knows the evidence generating process, but does not know whether

the dean received evidence or not. The game proceeds as follows: The dean

realizes if he has evidence or not, and then can choose his action, whether to

Accuse the student (), or Bounce the case () and forget it. Once accused,

the student has two options: he can either Confess () or Deny ().

Payoffs are realized as follows: If the dean bounces the case then both players

get 0. If the dean accuses the student, and the student confesses, the dean

gains 2 and the student loses 2. If the dean accuses the student and the

student denies, then payoffs depend on the evidence: If the dean has no

evidence then he loses face which is losing 4, while the student gains glory

which gives him a payoff 4. If, however, the dean has evidence then he is

triumphant and gains 4, while the student is put on probation and loses 4.

(a) Draw the game-tree that represents the extensive form of this game.

Answer: Letting the Dean be player 1 and the student player 2,

¥

(b) Write down the matrix that represents the normal form of the extensive

form you did in (a) above.
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Answer: Because player 1 can condition whether or not to accuse

on whether or not there is evidence, he has four pure strategies. Let

 ∈ {} be the strategy of player 1 where  follows
“evidence” and  follows “no evidence.” Player 2 does not know whether

there is evidence and can only respond by confessing or not:

Player 1

Player 2

 

 2−2 0 0

 1−1 2−2
 1−1 −2 2
 0 0 0 0

¥

(c) Solve for the Nash Equilibria of the game.

Answer: It is easy to see that  is strictly dominated by  and

 is strictly dominated by . The reduced game is therefore,

Player 1

Player 2

 

 2−2 0 0

 1−1 2−2
Let player 1 choose  with probability  and player 2 choose  with

probability . For player 2 to be indifferent it must be that

(−2) + (1− )(−1) = (0) + (1− )(−2)

and the solution is  = 1
3
. Similarly, for player 1 to be indifferent it must

be that

(2) + (1− )(0) = (1) + (1− )(2)

and the solution is  = 2
3
. Hence, ( ) = (1

3
 2
3
) is the unique mixed

strategy Nash equilibrium of this game. As you will see in chapter 15,

this is a dynamic game of incomplete information. ¥
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10. Perfect and Imperfect Recall: Consider the game depicted in Figure ??

Exercise

(a) What are the pure strategies sets for each player?

Answer: T

(b) Show that for any behavioral strategy for player 1, there is a mixed

strategy that leads to the same distribution over the terminal nodes

regardless of the strategy chosen by player 2.

Answer: T

(c) Show that for any behavioral strategy for player 2, there is a mixed

strategy that leads to the same distribution over the terminal nodes

regardless of the strategy chosen by player 1.

Answer: T

(d) Now imagine that the game does not have perfect recall so that player

2’s two bottom information sets are now one large information set. Can

you find an example showing that the claim in (a) above is no longer

true?

Answer: T
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8

Credibility and Sequential Rationality

1. Find the mixed strategy subgame perfect equilibrium of the Sequential Battle

of the Sexes game depicted in Figure ??

Answer: The subgame starting with player 1 choosing between  and  is

given in the following matrix:

Player 1

Player 2

 

 2 1 0 0

 0 0 1 2

Let player 1 choose  with probability  and player 2 choose  with proba-

bility . For player 2 to be indifferent it must be that

(1) + (1− )(0) = (0) + (1− )(2)

and the solution is  = 2
3
. Similarly, for player 1 to be indifferent it must be

that

(2) + (1− )(0) = (0) + (1− )(1)

and the solution is  = 1
3
. Hence, ( ) = (1

3
 2
3
) is the unique mixed strategy

Nash equilibrium of this subgame with expected payoffs of (1 2) = (
2
3
 2
3
).

Working backward, player 1 would prefer to choose  over  . ¥
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2. Mutually Assured Destruction (revisited): Consider the game in sec-

tion ??.

(a) Find the mixed strategy equilibrium of the war stage game and argue

that it is unique.

Answer: The war-game in the text has a weakly dominated Nash equi-

librium ( ) and hence does not have an equilibrium in which any

player is mixing. This exercise should have replaced the war-stage game

with the following game:

The subgame we called the war-stage game is given in the following ma-

trix:

Player 1

Player 2

 

 −5−5 −120−80
 −80−120 −100−100

Let player 1 choose  with probability  and player 2 choose  with

probability . For player 2 to be indifferent it must be that 4
19
(−5) +

(1− 4
19
)(−120) = −1820

19

(−5) + (1− )(−120) = (−80) + (1− )(−100)

and the solution is  = 4
19
. By symmetry, for player 1 to be indifferent

it must be that  = 4
19
. Hence, ( ) = ( 4

19
 4
19
) is the unique mixed

strategy Nash equilibrium of this subgame with expected payoffs of

(1 2) = (−9578−9579). ¥
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(b) What is the unique subgame perfect equilibrium that includes the mixed

strategy you found above?

Answer: Working backward, player 2 would prefer to choose  over 

and player 1 would prefer  over .

3. Brothers (revisited): Find all the subgame prefect equilibria in the “broth-

ers” exercise (exercise 7.8) from the previous chapter.

Answer: In part (d) of exercise 7.8 we found all the Nash equilibria as

follows: For player 2, 2 = {  } where 2 =  means that

player 2 chooses  ∈ {} after player 1 chose  while player 2 chooses
 ∈ {} after player 1 chose . For player 1,
1 = {  } where 1 = 

means that player 1 first chooses  ∈ {} and then chooses  ∈ {} if
he played  and  ∈ {} if he played . We first noted that for player

1, mixing equally between  and  will strictly dominate the four

strategies  and  . Hence, we can consider the reduced

4× 4 game,

Player 1

Player 2

   

 26 22 26 22 10 10 10 10

 26 22 26 22 10 10 10 10

 10 10 10 10 22 26 22 26

 10 10 10 10 22 26 22 26

The simple overline-underline method shows that we have eight pure strategy

Nash equilibria, four yielding the payoffs (26 22) and the other four yielding

(22 26).

Now we know that any subgame perfect equilibrium must be a Nash equi-

librium, so we can consider the set of Nash equilibria and see which survives

backward induction. Because the second stage of the game has players 1 and

2 move simultaneously, the only restriction of subgame perfection is that in

each of the simultaneous move games, the players are playing a Nash equi-

librium. This implies that the pairs of strategies ( ) and ()
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are not subgame perfect, which is also true for ( ) and ().

Hence, of the eight pure strategy Nash equilibria only four are subgame per-

fect: (),( ),() and (  ).

Because of each players indifference between the ways in which the payoffs

are reached, there are infinitely many mixed strategies that yield the same

payoffs. For example, any profile where player 1 mixes between  and

 and where player 2 mixes between  and  will be a Nash equilib-

rium that yields (26 22). Similarly, any profile where player 1 mixes between

 and  and where player 2 mixes between  and  will be a

Nash equilibrium that yields (22 26). But most of these will not be subgame

perfect because in the subgame following, which is off the equilibrium path,

the players are not playing a best response. There is, however, one more class

of mixed strategy Nash equilibria that are similar to the one found in section

6.2.3. To see this, focus on an even simpler game where we eliminate the

duplicate payoffs as follows,

Player 1

Player 2

 

 26 22 10 10

 10 10 22 26

which preserve the nature of the game. For player 1 to be indifferent between

 and  it must be that player 2 chooses  with probability  such

that

26 + 10(1− ) = 10 + 22(1− )

which yields  = 3
7
. Similarly, for player 2 to be indifferent between  and

 it must be that player 1 chooses  with probability  such that

22+ 10(1− ) = 10+ 26(1− )

which yields  = 4
7
. Hence, we found a mixed strategy Nash equilibrium that

results in each player getting an expected payoff of 26 × 3
7
+ 10 × 4

7
= 166

7


Notice, however, that player 1 is always indifferent between  and  ,

as well as between  and  so there are infinitely many ways to
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achieve this kind of mixed strategy, and similarly for player 2 because of

his indifference between  and  as well as  and  . The mixed

strategy subgame perfect equilibria will be those for which in each subgame

the players are playing a Nash equilibrium, and hence there will be only 6

such pairs: where they mix after  and play one of three Nash equilibria in

the subgame after , and similarly where they mix after  and play one of

the three Nash equilibria in the subgame after . In all of these player 1’s

backward induction choice is the play . ¥

4. The Industry Leader: Three oligopolists operate in a market with inverse

demand given by  () = − , where  = 1+2+3, and  is the quantity

produced by firm . Each firm has a constant marginal cost of production, ,

and no fixed cost. The firms choose their quantities dynamically as follows:

(1) Firm 1, who is the industry leader, chooses 1 ≥ 0 ; (2) Firms 2 and 3
observe 1 and then simultaneously choose 2 and 3 respectively.

(a) How many proper subgames does this dynamic game have? Explain

Briefly.

Answer: There are infinitely many proper subgames because every

quantity choice of payer 1 results in a proper subgame. ¥

(b) Is it a game of perfect or imperfect information? Explain Briefly.

Answer: This is a game of imperfect information because players 2 and

3 make their choice without observing each other’s choice first. ¥

(c) What is the subgame perfect equilibrium of this game? Show that it is

unique.

Answer: first we solve for the Nash equilibrium of the simultaneous

move stage in which players 2 and 3 make their choices as a function

of the choice made first by player 1. Given a choice of 1 and a belief

about 3 player 2 maximizes

max
2

(− (1 + 2 + 3)− )2
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which leads to the first order condition

− 1 − 3 − − 22 = 0

yielding the best response function

2 =
− 1 − 3 − 

2


and symmetrically, the best response function of player 3 is

3 =
− 1 − 2 − 

2
.

Hence, following any choice of 1 by player 1, the unique Nash equilib-

rium in the resulting subgame is the solution to the two best response

functions, which yields

∗2(1) = ∗3(1) =
− − 1

3


Moving back to player 1’s decision node, he will choose 1 knowing that

2 and 3 be be chosen using the best response function above, and

hence player 1 maximizes,

max
1

(− (1 + − − 1

3
+

− − 1

3
)− )1

which leads to the first order equation

1

3
(− − 21) = 0

resulting in a unique solution 1 =
−
2
. Hence, the unique subgame

perfect equilibrium dictates that ∗1 =
−
2
, and ∗2(1) = ∗3(1) =

−−1
3
.

¥

(d) Find a Nash equilibrium that is not a subgame perfect equilibrium.

Answer: There are infinitely many Nash equilibria of the form “if player

1 plays 01 then players 2 and 3 play 
∗
2(

0
1) = ∗3(

0
1) =

−−01
3
, and oth-

erwise they play 2 = 3 = .” In any such Nash equilibrium, players
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2 and 3 are playing a Nash equilibrium on the equilibrium path (fol-

lowing 01) while they are flooding the market and casing the price to

be zero off the equilibrium path. One example would be 01 = 0. In this

case, following 01 = 0 the remaining two players play the duopoly Nash

equilibrium, and player 1 gets zero profits. If player 1 were to choose

any positive quantity, his belief is that players 2 and 3 will flood the

market and he will earn −1  0, so he would prefer to choose 01 = 0
given those beliefs. Of course, the threats of players 2 and 3 are not

sequentially rational, which is the reason that this Nash equilibrium is

not a subgame perfect equilibrium. ¥

5. Technology Adoption: During the adoption of a new technology a CEO

(player 1) can design a new task for a division manager. The new task can

either be a high level () or low level (). The manager simultaneously

chooses to invest in good training () or bad training (). The payoffs from

this interaction is given by the following matrix:

player 1

Player 2

 





5 4 −5 2
2−2 0 0

(a) Present the game in extensive form (a game tree) and solve for all the

Nash Equilibria and subgame perfect equilibria.

Answer:
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It is easy to see in the matrix above that both () and () are

pure strategy Nash equilibria. To find the mixed strategy Nash equilib-

rium, let player 1 choose  with probability  and player 2 choose 

with probability . For player 2 to be indifferent it must be that

(4) + (1− )(−2) = (2) + (1− )(0)

and the solution is  = 1
2
. Similarly, for player 1 to be indifferent it must

be that

(5) + (1− )(−5) = (2) + (1− )(0)

and the solution is  = 5
8
. Hence, ( ) = (1

2
 5
8
) is the unique mixed

strategy Nash equilibrium of this game with expected payoffs of (1 2) =

(5
4
 1). ¥

(b) Now assume that before the game is played the CEO can choose not

to adopt this new technology, in which case the payoffs are (1 1), or to

adopt it and then the game above is played. Present the entire game in

extensive form. How many proper subgames does it have?

Answer:

The game has two proposer subgames. The first is the whole game and

the second starts at player 1’s second information set. ¥

(c) Solve for all the Nash Equilibria and subgame perfect equilibria of the

game described in (b) above.
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Answer: The game can be represented by the following matrix,

Player 1

Player 2

 

 5 4 −5 2
 2−2 0 0

 1 1 1 1

 1 1 1 1

and it is easy to see that there are three pure strategy Nash equilib-

ria: () () and (). From part (a) above we know that

player 1 choosing  followed by the mixed strategy Nash equilibrium

( ) = (1
2
 5
8
) will be a (subgame perfect) Nash equilibrium with ex-

pected payoffs of (1 2) = (
5
4
 1). Also, there are infinitely many mixed

strategy Nash equilibria in which player 1 is mixing between  and

 in any arbitrary way and player 2 chooses . Finally, there is an-

other infinite set of mixed strategy equilibria in which player 1 mixes

between ,  and, and player 2 mixes between  and . To see

this, ignore  for the moment (as it yields the same payoffs as ),

and let player 1 choose  with probability  and  with probability

(1− ), and let player 2 choose  with probability . For player 2 to be

indifferent it must be that

(4) + (1− )(−2) = (1) + (1− )(1)

and the solution is  = 1
2
. Similarly, for player 1 to be indifferent it must

be that

(5) + (1− )(−5) = (1) + (1− )(1)

and the solution is  = 3
5
. Hence, ( ) = (1

2
 3
5
) is a mixed strategy

Nash equilibrium of this game with expected payoffs of (1 2) = (1 1).

Of course, because of the identity between the  and  any pair of

the following strategies will also be a mixed strategy Nash equilibrium:

player 1 chooses  with probability 1
2
, chooses  and  with

probabilities that add up to the remaining 1
2
, and player 2 chooses 
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with probability 3
5
.

Turning to subgame perfect equilibria, of the three Nash equilibria only

two are subgame perfect: () and (). In the subgame starting

with player 1 choosing between and , part (a) above showed that the

unique (non-degenerate) mixed strategy Nash equilibrium was ( ) =

(1
2
 5
8
) with expected payoffs of (1 2) = (

5
4
 1). If this will be played by

the players after player 1 chooses , then player 1’s best reply at the

root is indeed to choose  because 5
4
 1. Hence, as suggested earlier,

player 1 choosing  followed by the mixed strategy Nash equilibrium

( ) = (1
2
 5
8
) is also a subgame perfect Nash equilibrium. ¥

6. Investment in the Future: Consider two firms that play a Cournot com-

petition game with demand  = 100 − , and costs for each firm given by

() = 10. Imagine that before the two firms play the Cournot game, firm

1 can invest in cost reduction. If it invests, the costs of firm 1 will drop to

1(1) = 51. The cost of investment is   0. Firm 2 does not have this

investment opportunity.

(a) Find the value  ∗ for which the unique subgame perfect equilibrium

involves firm 1 investing.

Answer: If firm 1 does not invest then they are expected to play the

Cournot Nash equilibrium where both firms have costs of 10. Each

firm solves,

max


(100− ( + )− 10)
which leads to the first order condition

90−  − 2 = 0
yielding the best response function

() =
90− 

2


and the unique Cournot Nash equilibrium is 1 = 2 = 30 with profits

1 = 2 = 900. If firm 1 does invest then for firm 1 the problem becomes

max
1

(100− (1 + 2)− 5)1
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which leads to the best response function

1(2) =
95− 2

2


For firm 2 the best response function remains the same as solved earlier

with costs 102, so the unique Cournot Nash equilibrium is now solved

using both equations,

1 =
95− 90−1

2

2


which yields 1 =
100
3
, 2 =

85
3
, and profits are 1 = 1 1111

9
while

2 = 8027
9
. Hence, the increase in profits from the equilibrium with

investment for player 1 are  ∗ = 1 1111
9
−900 = 2111

9
, which is the most

that player 1 would be willing to pay for the investment anticipating that

they will play the Cournot Nash equilibrium after any choice of player

1 regarding investment. If    ∗ then the unique subgame perfect

equilibrium is that first, player 1 invests, then they players choose 1 =
100
3
, 2 =

85
3
, and if player 1 did not invest the payers choose 1 = 2 = 30.

(Note that if    ∗ then the unique subgame perfect equilibrium is

that first, player 1 does not invest, then they players choose 1 = 2 =

30, and if player 1 did invest the payers choose 1 =
100
3
, 2 =

85
3
.) ¥

(b) Assume that    ∗. Find a Nash equilibrium of the game that is not

subgame perfect.

Answer: We construct a Nash equilibrium in which player 1 will invest

despite    ∗. Player 2’s strategy will be, play 2 =
85
3
if player 1

invests, and 2 = 100 if he does not invest. With this belief, if player 1

does not invest then he expects the price to be 0, and his best response

is 1 = 0 leading to profits 1 = 0. If he invests then his best response

to 2 =
85
3
is 1 =

100
3
, which together are a Nash equilibrium in the

Cournot game after investment. For any   1 1111
9
this will lead to

positive profits, and hence, for  ∗    1 1111
9
the strategy of player 2

described above, together with player 1 choosing to invest, play 1 =
100
3

if he invests and 1 = 0 if he does not is a Nash equilibrium. It is not
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subgame perfect because in the subgame following no investment, the

players are not playing a Nash equilibrium. ¥

7. Debt and Repayment: A project costing $100 yields a gross return of

$110. A lender (player 1) is approached by a debtor (player 2) requesting a

standard loan contract to complete the project. If the lender chooses not to

offer a loan, then both parties earn nothing. If the lender chooses to offer

a loan of $100, the debtor can realize the projects gains, and is obliged by

contract to repay $105. For simplicity, assume that money is continuous, and

that the debtor can choose to return any amount of money  ≤ 110. Also,
ignore the time value of money. Assume first that no legal system is in place

that can cause the lender to repay, so that default on the loan (less than full

repayment) carries no repercussions for the debtor.

(a) Model this as an extensive form game tree as best as you can and find

a subgame perfect equilibrium of this game. Is it unique?

Answer: Player 1 has two choices first, lend () or don’t lend ().

After  both players get zero, while after  player 2 chooses a value

 ∈ [0 110] to repay. The game can be described as follows:

There is a unique subgame perfect equilibrium. If player 2 is offered the

loan then he suffers no penalty from repaying, and his best response is

to choose  = 0. Anticipating this behavior player 1 should choose .

¥
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(b) Now assume that there is a legal system in place that allows the lender

to voluntarily choose whether to sue or not to sue when the debtor de-

faults and repays an amount   105. Furthermore, assume that it is

costless to use the legal system (it is supplied by the state), and if the

lender sues a debtor that defaulted, the lender will get the $105 repaid

in full. After paying the lender, the borrower will pay a fine of $5 to the

court above and beyond the repayment. Model this as an extensive form

game tree as best as you can and find a subgame perfect equilibrium of

this game. Is it unique?

Answer: The game now distinguished between two conditions:  ≥ 105
in which case it is like the game in part (a) above, and   105 in which

case player 1 has a new decision node where he can choose to sue ()

or not sue ().

Starting at the last decision node of player 1, because it is relevant only

when   105, it follows that −100  5 implying that  dominates  .
Anticipating this, player 2’s best response in the repayment phase is to

choose  = 105 This is the lowest payment that does not trigger a suit.

At the root of the tree player 1 anticipates a payoff of 105−100 = 5  0
and hence prefers to choose . The resulting outcome yields the payoffs
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(5 5) This backward induction argument shows that this is the unique

subgame perfect equilibrium. ¥

(c) Are there Nash equilibria in the game described in (b) above that are

not subgame perfect equilibria?

Answer: For player 1, choosing  followed by  is a dominant strategy

because it guaranties him a payoff of at least 5 (exactly 5 when   105

and − 100 when  ≥ 105.) Given this strategy, player 2’s best reply is
to choose  = 105. Hence, the only Nash equilibrium is also the subgame

perfect Nash equilibrium. ¥

(d) Now assume that using the legal system is costly: if the lender sues,

he pays lawyers a legal fee of $105 (this is the lawyers price which is

unrelated to the contract above). The rest proceeds the same as before

(if the lender sues a debtor that defaulted, the lender will get repaid in

full; after paying the lender, the borrower will pay a fine of $5 above

and beyond the repayment.) Model this as an extensive form game tree

as best as you can and find a subgame perfect equilibrium of this game.

Is it unique?

Answer: The game is now,

Because − 100 ≥ −100 it follows that that  is weakly dominated by
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 . Anticipating this, player 2’s best response in the repayment phase

is to choose  = 0 At the root of the tree player 1 anticipates a payoff

of −100  0 and hence prefers to choose , and the outcome results in
payoffs (0,0). This backward induction argument shows that this is the

unique subgame perfect equilibrium. ¥
(e) Are there Nash equilibria in the game described in (d) above that are

not subgame perfect equilibria?

Answer: There are infinitely many. Any choice by player 2 of  ≤ 100,
for which playing  is a best response, will be a Nash equilibrium in

which player 2 is not playing a best response. ¥

(f) Now assume that a law change is proposed: upon default, if a debtor is

sued he has to first repay the lender $105, and then pay the legal fees

of $105 above and beyond repayment of the loan, and no extra fine is

imposed. Should the lender be willing to pay for this law change? If so,

how much?

Answer: The game is now as follows:

The backward induction argument follows the same logic as in part (b)

resulting in the outcome (5 5). This yields player 1 an extra payoffs of

5 relative to the solution in part (d), implying that he should be willing

to pay up to 5 in order to have the law implemented. ¥
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(g) If you were the “social planner”, would you implemented the suggested

law?

Answer: Yes because it results in a Pareto superior outcome of (5 5)

instead of (0 0). ¥

8. Entry Deterrence 1: NSG is considering entry into the local phone market

in the Bay Area. The incumbent S&P, predicts that a price war will result

if NSG enters. If NSG stays out, S&P earns monopoly profits valued at $10

million (net present value, or NPV of profits), while NSG earns zero. If NSG

enters, it must incur irreversible entry costs of $2 million. If there is a price

war, each firm earns $1 million (NPV). S&P always has the option of accom-

modating entry (i.e., not starting a price war). In such a case, both firms

earn $4 million (NPV). Suppose that the timing is such that NSG first has

to choose whether or not to enter the market. Then S&P decides whether

to “accommodate entry” or “engage in a price war.” What is the subgame

perfect equilibrium outcome to this sequential game? (Set up a game tree.)

Answer: Letting NSG be player 1 and S&P be player 2,

Backward induction implies that player 2 will Accommodate, and player 1

will therefore enter. Hence, the unique subgame perfect equilibrium is (En-

ter,Accommodate). ¥

9. Entry Deterrence 2: Consider the Cournot duopoly game with demand

 = 100− (1 + 2), and variable costs () = 0 for  ∈ {1 2}. The twist is
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that there is now a fixed cost of production   0 that is the same for both

firms.

(a) Assume first that both firms choose their quantities simultaneously.

Model this as a normal form game.

Answer: This is a standard Cournot game with two players:  =

{1 2}  = R+ (the non-negative real line) and we need to add the

fixed costs to the payoff function, (1 2) = (100 − 1 − 2) −  for

 ∈ {1 2}.

(b) Write down the firm’s best response function for  = 1000 and solve for

pure strategy Nash equilibrium. Is it unique?

Answer: Because the fixed costs do not affect the first order conditions,

from section 5.2.3 we know that the two best response functions ignoring

the fixed costs are,

() =
100− 

2
.

With fixed costs, however, each firm will produce only if it has positive

profits. For example, using firm 1’s best response function, its profits

conditional on playing a best response are

1(1(2) 2) = (100− (100− 2

2
+ 2))

100− 2

2
− 

= 2500 +
22
4
− 502 − 

= 1500 +
22
4
− 502 

where the last inequality follows from  = 1000. Now we can compute

the value of 2 for which playing a best response by firm 1 will yield

zero profits, which in turn will imply that for higher levels of 2 firm

1 will incur a loss even when it plays a best response conditional on

producing. We have,

1500 +
22
4
− 502 ≥ 0
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which holds when 2 ≤ 100 − 20
√
10 ≈ 3675. A symmetric argument

will hold for firm 2, which yields the best response function with a fixed

cost of  = 1000 to be,

() =

(
100−
2

if  ≤ 100− 20
√
10

0 if   100− 20
√
10

.

Using the first portion of the best response function to try and solve for

a Nash equilibrium, we obtain that 1 = 2 = 33
1
3
 3675. Thus, when

 = 1000, 1 = 2 = 33
1
3
is the unique Nash equilibrium of this game.

¥

(c) Now assume that firm 1 is a “Stackelberg leader” in the sense that it

moves first and chooses 1, and then after observing 1 firm 2 chooses

2. Also assume that if firm 2 cannot make strictly positive profits then

it will not produce at all. Model this as an extensive form game tree as

best as you can, and find a subgame perfect equilibrium of this game

for  = 25. Is it unique?

Answer: similar to the analysis in section 8.3.2 we know that, ignoring

fixed costs, firm 2 will choose 2(1) =
100−1
2

as derived above. With

 = 25 it will not produce for some values of 1 close to 100 (Similar

to the analysis in part (b), 1 must satisfy 2500 +
21
4
− 501 −   0

with  = 25. This will be satisfied when 1 ≤ 90.) Given firm 2’s best

response, firm 1 maximizes

max
1

(100− 1 − 100− 1

2
)1 − 25 

which yields the first order condition 50 − 1 = 0 or 
∗
1 = 50. Because

∗1  90 we know that firm 2 will indeed follow 2(1) =
100−1
2

= 25,

profits for firm 1 are 1 = 25 × 50 − 25 = 1 225, and for firm 2 are

2 = 25× 25 − 25 = 600. By construction, this is the unique subgame
perfect equilibrium. ¥

(d) How does your answer in (c) change for  = 725?

Answer: Now firm 2 will follow 2(1) =
100−1
2

as long as 1775 +
21
4
−
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501 ≥ 0, which holds for 1 ≤ 100− 10
√
29 ≈ 4615. As we saw in part

(c), if firm 1 anticipates firm 2 to produce according to 2(1) =
100−1
2

then firm 1 produces ∗1 = 50. It turns out that if firm 1 anticipates firm

2 to stay out then it will also produce ∗1 = 50 which is the monopolists

optimal choice for this market with only fixed costs. However, since

50  4615 this choice will indeed cause firm 2 to stay out, and the

unique subgame perfect equilibrium is now ∗1 = 50 and

2(1) =

(
100−1
2

if 1 ≤ 100− 10
√
29

0 if 1  100− 10
√
29

,

resulting in ∗2 = 0. ¥

10. Playing it safe: Consider the following dynamic game: Player 1 can choose

to play it safe (denote this choice by ), in which case both he and player 2 get

a payoff of 3 each, or he can risk playing a game with player 2 (denote this

choice by ). If he chooses , then they play the following simultaneous

move game:

player 1

Player 2

 





8 0 0 2

6 6 2 2

(a) Draw a game tree that represents this game. How many proper sub-

games does it have?

Answer:
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The game has two proper subgames: the whole game and the subgame

starting at the node where 1 chooses between  and . ¥

(b) Are there other game trees that would work? Explain briefly.

Answer: Yes - it is possible to have player 2 move after 1’s initial move,

and then have player 1 with an information set as follows:

(c) Construct the matrix representation of the normal form of this dynamic

game.
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Answer: The game can be represented by the following matrix,

Player 1

Player 2

 

 8 0 0 2

 6 6 2 2

 3 3 3 3

 3 3 3 3

¥

(d) Find all the Nash and subgame perfect equilibria of the dynamic game.

Answer: It is easy to see that there are two pure strategy Nash equi-

libria: () and (). It follows immediately that there are infi-

nitely many mixed strategy Nash equilibria in which player 1 is mixing

between  and  in any arbitrary way and player 2 chooses . It is

also easy to see that following a choice of , there is no pure strategy

Nash equilibrium in the resulting subgame. To find the mixed strategy

Nash equilibrium in that subgame, let player 1 choose  with proba-

bility  and  with probability (1−), and let player 2 choose  with
probability . For player 2 to be indifferent it must be that

(0) + (1− )(6) = (2) + (1− )(2)

and the solution is  = 2
3
. Similarly, for player 1 to be indifferent it must

be that

(8) + (1− )(0) = (6) + (1− )(2)

and the solution is  = 1
2
. Hence, ( ) = (1

2
 3
5
) is a mixed strategy

Nash equilibrium of the subgame after player 1 chooses , yielding

expected payoffs of (1 2) = (4 2). In any subgame perfect equilibrium

the players will have to play this mixed strategy equilibrium following

, and because 4  3 player 1 will prefer  over . Hence, choosing 

followed by the mixed strategy computed above is the unique subgame

perfect equilibrium. ¥
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11. RA Selection with a Twist: Two staff managers in the ΠBΦ sorority, the

house manager (player 1) and kitchen manager (player 2), are supposed to

select a resident assistant (RA) from a pool of three candidates: {  }.
Player 1 prefers  to  and  to . Player 2 prefers  to  and  to . The

process that is imposed on them is as follows: First, the house manager vetoes

one of the candidates, and announces the veto to the central office for staff

selection, and to the kitchen manager. Next, the kitchen manager vetoes

one of the remaining two candidates and announces it to the central office.

Finally, the director of the central office assigns the remaining candidate to

be an RA at ΠBΦ.

(a) Model this as an extensive form game (using a game tree) where a

player’s most preferred candidate gives a payoff of 2, the second gives a

payoff of 1, and the last gives 0.

Answer: Since first player 1 effectively removes a candidate, each of

the three choices (to veto) of player 1 are followed by two possible veto

choices of player 2:

¥

(b) Find the subgame perfect equilibria of this game. Is it unique?

Answer: If player 1 vetoes  or  then player 2 will veto , and if player 1

vetoes  then player 2 will veto . By backward induction, anticipating

player 2’s behavior player 1 will veto candidate . This is the unique
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subgame perfect equilibrium by backward induction resulting in payoffs

of (2 1). ¥

(c) Are there Nash Equilibria that are not subgame perfect equilibria.

Answer: Yes. Player 2 can threaten to veto candidate  whenever player

1 vetoes either  or , and veto candidate  when player 1 vetoes . Player

1’s best reply to this strategy is to veto either  or . The players will

both be playing best responses on the equilibrium path but player 2

is not playing a best response following the choice of player 1 to veto

candidate . Hence, this is a Nash equilibrium that is not subgame

perfect.

(d) Now assume that before the two players play the game, player 2 can

send an alienating E-mail to one of the candidates, which would result

in that candidate withdrawing her application. Would player 2 choose

to do this, and if so, with which candidate?

Answer: Player 2 would like to send the email to candidate . That

way, only candidates  and  will be in the pool and both players will

veto , resulting in the payoffs (1 2) which are better for player 2 than

the unique subgame perfect equilibrium payoffs derived in part (a). ¥

12. Agenda Setting:An agenda-setting game is described as follows. The “issue

space” (set of possible policies) is an interval  = [0 5]. An Agenda Setter

(player 1) proposes an alternative  ∈  against the status quo  = 4.

After player 1 proposes , the Legislator (player 2) observes the proposal

and selects between the proposal  and the status quo . Player 1’s most

preferred policy is 1 and for any final policy  ∈  his payoff is given by

1() = 10− | − 1|

where |− 1| denotes the absolute value of (− 1). Player 2’s most preferred
policy is 3 and for any final policy  ∈  her payoff is given by

2() = 10− | − 3|
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That is, each player prefers policies that are closer to their most preferred

policy.

(a) Write the game down as a normal form game. Is this a game of perfect

or imperfect information?

Answer: There are two players,  ∈ {1 2} with strategy sets 1 =  =

[0 5] and 2 = {} where  denotes accepting the proposal  ∈ 

and  means rejecting it and adopting the status quo  = 4. The payoffs

are given by

1(1 2) =

(
10− |1 − 1| if 2 = 

7 if 2 = 

and

2(1 2) =

(
10− |1 − 3| if 2 = 

9 if 2 = 

(b) Find a subgame perfect equilibrium of this game. Is it unique?

Answer: Player 2 can guarantee himself a payoff of 9 by choosing ,

implying that his best response is to choose if and only if 10−|1−3| ≥
9, which will hold for any 1 ∈ [2 4]. Player 1 would like to have an
alternative adopted that is closest to 1, which implies that his best

response to player 2’s sequentially rational strategy is to choose 1 = 2.

This is the unique subgame perfect equilibrium which results in the

payoffs of (1 2) = (9 9). ¥

(c) Find a Nash equilibrium that is not subgame perfect. Is it unique? If

yes, explain. If not, show all the Nash equilibria of this game.

Answer: One Nash equilibrium is where player 2 adopts the strategy

“I will reject anything except 1 = 3” If player 1 chooses 1 = 3 then

his payoff is 8, while any other choice of 1 is expected to yield player

1 a payoff of 7. Hence, player 1s best response to player 2’s proposed

strategy is indeed to choose 1 = 3 and the payoffs from this Nash
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equilibrium are (1 2) = (8 10). Since player 2 can guarantee himself

a payoff of 9, there are infinitely many Nash equilibria that are not

subgame perfect and that follow a similar logic: player 2 adopts the

strategy “I will reject anything except 1 = ” for some value  ∈ (2 4).
Player 1 would strictly prefer the adoption of  over 4, and hence would

indeed propose , and player 2 would accept the proposal. For  = 4

both players are indifferent so it would also be supported as a Nash

equilibrium. ¥

13. Junk Mail Advertising: Suppose there is a single good that is owned by a

single seller who values it at   0 (he can consume the good and get a payoff

of ). There is a single buyer who has a small transportation cost   0 to

get to and back from the seller’s store, and he values the good at   + .

The buyer first decides whether to make the commute or stay at home, not

buy the good and receive a payoff of 0. If the buyers commutes to the store,

the seller can then make the buyer a Take-It-Or-Leave-It price offer  ≥ 0.
The buyer can then accept the offer, pay  and get the good, or he can walk

out and not buy the good. Assume that   and , are common knowledge.

(a) As best as you can, draw the extensive form of this game. What is the

best response of the buyer at the node where he decides whether to

accept or reject the seller’s offer?

Answer: Let the buyer be player 1. Denote by  going to the store and

 staying home, and by  accepting or  rejecting the seller’s offer.

The game can be described as follows:The best response of player 1 after

the offer  is to choose  if and only if  − −  ≥ − or  ≤ . ¥

(b) Find the subgame perfect equilibrium of the game and show that it is

unique. Is it Pareto Optimal?

Answer: Given the buyer’s best response at the accept/reject node,

backward induction implies that the seller’s unique best response is to

offer  =  because    +   . Anticipating this, the buyer knows

that if he chooses  then his payoff will be −, so his unique best



158 8. Credibility and Sequential Rationality

FIGURE 8.1.

response is to choose and the payoffs from the unique subgame perfect

equilibrium are (1 2) = (0 ). This outcome is not Pareto optimal

because if the two players trade at any price  such that  −     

then they would both be better off. ¥

(c) Are there Nash equilibria that yield a higher payoff to both players as

compared to the subgame perfect equilibrium you found in (b) above?

Answer: There are infinitely many such Nash equilibria. Fix some ∗ ∈
(  − ) and let player 1’s strategy after the proposal stage be “I will

accept any offer  ≤ ∗ and reject anything else.” Given this strategy,

and given that ∗  , player 2’s best response is to offer ∗ and player

1 will therefore wish to choose  because ∗   −  The resulting

payoffs will be (1 2) = ( − ∗ −  ∗)  (0 ). ¥

(d) Now assume that before the game is played, the seller can, at a small

cost   ( − − ) send the buyer a postcard that commits the seller

to a certain price at which the buyer can buy the good (e.g., “bring this

coupon and get the good at a price ”). Would the seller choose to do

so? Justify your answer with an equilibrium analysis.

Answer: The seller would indeed benefit from sending such a postcard.
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To see this, let  = −−−  0 and imagine that the seller sends he
postcard with a price ∗ =  −  − 

2
. The buyer who receives this card

knows that he can go to the store at a cost of  and pay ∗ for the good

which would leave the buyer with a payoff of 1 =  −  − ∗ = 
2
 0,

and hence would prefer to go shopping. The seller would receive a payoff

of 2 = ∗ −  =  + 
2
 , which is better than no trade. This would

work for any price ∗ =  −  −  for any  ∈ (0 1). ¥

14. Hyperbolic Discounting: Consider the three period example of a player

with hyperbolic discounting described in section 8.3.4 with ln() utility in

each of the three periods and with discount factors 0    1 and 0    1.

(a) Solve the optimal choice of player 2, the second period self, as a function

of his budget 2,  and .

Answer: Player 2’s optimization problem is given by

max
2

2(2 − 2) = ln(2) +  ln( − 2)

for which the first order condition is

2

2
=
1

2
− 

2 − 2
= 0 

which in turn implies that player 2’s best response function is,

2(2) =
2

 + 1
,

which leaves 3 = 2 − 2(2) =
2

+1
for consumption in the third

period. ¥

(b) Solve the optimal choice of player 1, the first period self, as a function

of ,  and .

Answer: Player 1 decides how much to allocate between his own con-

sumption and that of player 2 taking into account that 2(2) =
2

+1
,

hence player 1 solves the following problem,

max
1

1(1
 − 1

 + 1

( − 1)

 + 1
) = ln(1)+ ln(

 − 1

 + 1
)+2 ln(

( − 1)

 + 1
)
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for which the first order condition is,

1

1
=
1

1
− 

 − 1
− 2

 − 1
= 0 

which in turn implies that player 1’s best response function is,

1() =


 + 2 + 1
.

¥

15. Time Inconsistency: Consider the three period example of a player with

hyperbolic discounting described in section 8.3.4 with ln() utility in each of

the three periods, with initial budget  and with discount factors  = 1 and

 = 1
2
.

(a) Solve the optimal plan of action of a “naive” player 1 who does not take

into account how his future self, player 2, will alter the plan. What is

player 1’s optimal plan ∗1, 
∗
2 and ∗3 as a function of ?

Answer: A naive player 1 will solve,

max
23

( − 2 − 3 2 3) = ln( − 2 − 3) +  ln(2) + 2 ln(3)

= ln( − 2 − 3) +
1

2
ln(2) +

1

2
ln(3)

when  = 1
2
and  = 1. The two fist order conditions are,



2
= − 1

 − 2 − 3
+

1

22
= 0 

and,


3
= − 1

 − 2 − 3
+

1

23
= 0 

Solving these two equations yields the solution

2 = 3 =


4


and using 1 =  − 2 − 3 gives,

1 =


2


¥
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(b) Let 2 be the amount left from the solution to part (a) above after

player 1 consumes his planned choice of ∗1. Given 2, what is the opti-

mal plan of player 2? In what way does it differ from the optimal plan

set out by player 1?

Answer: This was solved at the bottom of page 168 in the textbook.

After player 1 leave 2 for player 2, his optimization problem is given

by

max
2

2(2 2 − 2) = ln(2) +
1

2
ln( − 2)

for which the first order condition is

2

2
=
1

2
− 1

2(2 − 2)
= 0 

which in turn implies that player 2’s best response function is,

2(2) =
22

3
,

which leaves 3 = 2 − 2(2) =
2

3
for consumption in the third

period. From part (a) we know that 2 =

2
so player 2 will choose

2 =

3
and 3 =


6
. This is in contrast to what player 1 planned which

was 2 = 3 =

4
so player 2 is overconsuming relative to what player

1 would have wanted. ¥

16. The Value of Commitment: Consider the three period example of a player

with hyperbolic discounting described in section 8.3.4 with ln() utility in

each of the three periods and with discount factors  = 1 and  = 1
2
. We

solved the optimal consumption plan of a sophisticated player 1.

(a) Imagine that an external entity can enforce any plan of action that

player 1 chooses in  = 1 and will prevent player 2 from modifying it.

What is the plan that player 1 would choose to enforce?

Answer: Player 1 wants to maximize,

max
23

( − 2 − 3 2 3) = ln( − 2 − 3) +  ln(2) + 2 ln(3)

= ln( − 2 − 3) +
1

2
ln(2) +

1

2
ln(3)
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when  = 1
2
and  = 1. The two fist order conditions are,



2
= − 1

 − 2 − 3
+

1

22
= 0 

and,


3
= − 1

 − 2 − 3
+

1

23
= 0 

Solving these two equations yields the solution

2 = 3 =


4


and using 1 =  − 2 − 3 gives,

1 =


2


Thus, player 1 would choose to enforce 1 =

2
and 2 = 3 =


4
. ¥

(b) Assume that = 90. Up to how much of his initial budget will player

1 be willing to pay the external entity in order to enforce the plan you

found in part (a)?

Answer: If the external entity does not enforce the plan, then from the

analysis on pages 168-169 we know that player 2 will choose 2 =

3
= 30

and 3 =

6
= 15, and player 1 will choose 1 =


2
= 45. The discounted

value of the stream of payoffs for player 1 from this outcome is therefore,

ln(45) +
1

2
ln(30) +

1

2
ln(15) ≈ 686 

If, however, player 1 can have the plan in part (a) above enforced then

his discounted value of the stream of payoffs is

ln(45) +
1

2
ln(225) +

1

2
ln(225) ≈ 692 

We can therefore solve for the amount  of budget  = 90 that player

1 would be willing to give up which is found by the following equality,

ln(45−) +
1

2
ln(225) +

1

2
ln(225) = 686 

which yields  ≈ 263 Hence, player 1 will be willing to give up to 263
of his initial budget  = 90 in order to enforce the plan 2 =  3 =

4
= 225. ¥
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Multi-Stage Games

1. Consider the following simultaneous move game that is played twice (the

players observe the first period outcome prior to the second period play):

player 1

Player 2

  







10,10 2,12 0,13

12,2 5,5 0,0

13,0 0,0 1,1

(a) Find all the pure strategy subgame perfect equilibria with no discount-

ing ( = 1). Be precise in defining history contingent strategies for both

players.

Answer: The simultaneous move game has two pure strategy Nash

equilibria: () and (), which implies that one of these has to be

played in the second stage of the game. We know that any unconditional

play of these Nash equilibria in each stage is a subgame perfect equilib-

rium of the multistage game implying four pure strategy Nash equilibria

(e.g., player 1 plays  followed by regardless of what player 2 chose

and player 2 plays  followed by  regardless of what player 1 did.)
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We now construct other equilibria that are history contingent in which

the players will play the “reward” () in the second period if they

followed the first period proposed strategies giving each a payoff of 5,

while they will play the “punishment” () if one of the players de-

viated from the proposed strategy and both will receive a payoff of 1.

Note that the loss from not following the first stage proposed strategies

will be 5 − 1 = 4 in the second period, and because  = 1 then 4 is

also the discounted loss. It is therefore possible to support any payoff

in the first stage for which the best deviation is no greater then 4 with

 = 1 because the discounted loss from the second stage “punishment”

would be greater than the first period gain. The only pair of payoffs

from which there is a greater gain than 4 is from (0 0) because one

of the players can deviate to (5 5). Hence, pick any pure strategy pair

( ) that is not () or (). The following is a subgame perfect

equilibrium: player 1 plays  in the first stage followed by  if ( )

was followed and  if it was not. Similarly, player 2 plays  in the first

stage followed by  if ( ) was followed and  if it was not. For  = 1

this is a subgame perfect equilibrium. ¥

(b) For each of the equilibria you found above, find the smallest discount

factor that supports it.

Answer: The four subgame perfect equilibria that are just an uncon-

ditional sequence of one-stage Nash equilibria are equilibria for any dis-

count factor. The others, however, must guarantee that the discounted

loss from punishment is greater than the first period gain for the player

who has the most to benefit from the deviation. For the first stage

outcomes ( ) ∈ {() () (}, the player who gains most
can gain 3, and hence the discount factor must satisfy the inequal-

ity 3 − 4 ≤ 0 or  ≥ 3
4
for these outcomes to be played in the first

stage of the subgame perfect equilibrium. For the other two possibili-

ties, ( ) ∈ {() ()} the player who gains most can gain only 1,
and hence the discount factor must satisfy the inequality 1− 4 ≤ 0 or
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FIGURE 9.1. The Centipede Game

 ≥ 1
4
for these outcomes to be played in the first stage of the subgame

perfect equilibrium. ¥

2. Centipedes revisited: Two players are playing two consecutive games.

First, they play the centipede game described in Figure 9.1. After the cen-

tipede game they play the following coordination game:

Player 1

Player 2

 

 1 1 0 0

 0 0 3 3

(a) What are the Nash equilibria of each stage game?

Answer: The first stage game has a unique Nash equilibrium outcome

in which player 1 plays  in the first stage and payoffs are (1 1). This

can be supported in more than one Mash equilibrium (for example,

player 1 plays  always and player 2 does as well, which is the subgame

perfect equilibrium, or player 1 player  always and player 2 plays 

first and  later — there are more.) The second stage game have three

Nash equilibria. The two pure are ( ) and ( ) and the mixed one

has player 1 (respectively 2) play  (respectively ) with probability 3
4
.

¥

(b) Howmany pure strategies does each player have in the multistage game?

Answer: The players have four pure strategies in the first stage game
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(two information sets with two actions in each). The second stage strate-

gies can be conditional on the outcomes of the first stage, of which there

are 4. (We are defining an outcome is the payoffs of the first stage and

not the strategies that players chose to obtain the payoffs. Unlike a ma-

trix game, these will be different here because, as we saw in part a.

above, there are different combinations of pure strategies that can lead

to the same outcome.) Hence, there are 24 = 16 pure strategies for each

player in the second stage, which can follow each of the 4 first stage

pure strategies, giving every player a total of 64 pure strategies. ¥

(c) Find all the pure strategy subgame perfect equilibria with extreme dis-

counting ( = 0). Be precise in defining history contingent strategies for

both players.

Answer: In the second stage the players must play either ( ) or

( ) for any history. With extreme discounting we cannot support

play in the first stage that is not a Nash equilibrium because there is no

second stage “punishment” that can deter first stage deviations. Hence,

in the first stage the players must play a subgame perfect equilibrium

of the first stage game which is  always for player 1 and  always for

player 2. Hence, there are two possible outcomes that can be supported

by a subgame prefect equilibrium, (1 1) followed by (1 1) or by (3 3).

However, there are 24 = 16 pure strategy subgame perfect equilibria

because for each of the 4 outcomes of the first stage the players must

specify which of the 2 equilibria ( ) or ( ) will be played in the

second stage. ¥

(d) Now let  = 1. Find a subgame perfect equilibrium for the two-stage

game in which the players receive the payoffs (2 2) in the first stage-

game.

Answer: To get (2 2) in the first stage player 2 must overcome the

temptation to choose  at his first move and get 3 instead. Hence, we

can use the following conditional strategies in the second stage: player 1

(respectively 2) plays  (respectively ) if the outcome of the first stage
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was (2 2) while they play  and  otherwise. In the first stage player 1

will play  followed by  and player 2 will play  followed by . Player

1 has no reason to deviate in the first stage, and neither does player 2

because the gain of 1 from deviating in the first stage is less than the

loss of 2 in the second stage. ¥

(e) What is the lowest value of  for which the subgame perfect equilibrium

you found in (d) survives?

Answer: The pain from deviation will deter player 2 if and only if

1− 2 ≤ 0 or  ≥ 1
2
. ¥

(f) For  greater than the value you found in (e) above, are there other

outcomes of the first stage centipede game that can be supported as

part of a subgame perfect equilibrium?

Answer: Yes — the exact same idea can be used to support any of the

other outcomes because the player who is tempted to deviate will gain

1 in the first period. ¥

3. Campaigning Adds: Two political candidates are scheduled to campaign

in two states, in one in period  = 1 and in the other in  = 2. In each state

they can either choose a positive campaign that promotes their own agenda

( for player 1,  for player 2) or a negative one that attacks their opponent

( for player 1,  for player 2). Residents of the first period state do not

mind negative campaigns, which are generally effective, and payoffs in this

state are given by the following matrix:

Player 1

Player 2

 

 2 2 0 5

 5 0 3 3
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In the second period state, residents dislike negative campaigns despite their

effectiveness and the payoffs are given by the following matrix:

Player 1

Player 2

 

 6 6 1 0

 0 1 2 2

(a) What are the Nash equilibria of each stage game? Find all the pure

strategy subgame perfect equilibria with extreme discounting ( = 0).

Be precise in defining history contingent strategies for both players.

Answer: The first stage game has a unique dominant strategy Nash

equilibrium () while the second stage game has two pure strategy

equilibria, ( ) and () and a mixed strategy equilibrium in which

each player chooses the positive campaign with probability 1
5
. In the sec-

ond stage the players must play either ( ) or ( ) for any history in

a pure strategy subgame perfect equilibrium. With extreme discounting

we cannot support play in the first stage that is not a Nash equilib-

rium because there is no second stage “punishment” that can deter first

stage deviations. Hence, in the first stage the players must play ().

Hence, () followed by either ( ) or () will be the only out-

comes that can be supported as subgame perfect equilibria. However,

there are 24 = 16 pure strategy subgame perfect equilibria because for

each of the 4 outcomes of the first stage the players must specify which

of the 2 equilibria ( ) or () will be played in the second stage. ¥

(b) Now let  = 1. Find a subgame perfect equilibrium for the two-stage

game in which the players choose ( ) in the first stage-game.

Answer: We can use the conditional second stage strategies in which

player 1 (respectively 2) plays  (respectively ) if the choice in the

first stage was ( ) while they play  and  otherwise. In the first

stage neither player wants to deviate from ( ) because the gain of

switching actions is 3 (from 2 to 5) while the loss from the punishment
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in the second stage is 4 (and it is not discounted so it’s value remains

4). ¥

(c) What is the lowest value of  for which the subgame perfect equilibrium

you found in (b) survives?

Answer: The discounted punishment must be at least as high as the

gain from deviation, so the inequality is 3− 4 ≤ 0, and the solution is
 ≥ 3

4
 ¥

(d) Can you find an subgame perfect equilibrium of this game where the

players play something other than ( ) or () in the first stage?

Answer: The same logic as that for parts b. and c. follows to support

the pairs of actions ( ) and ( ) in the first stage. In each of these

profiles one player will gain 3 by deviating to his preferred choice, and

the loss in the second stage with properly defined contingent strategies

is 4, so if  ≥ 3
4
the punishment will suffice to support the desired first

stage behavior. ¥

4. Online Gaming: Consider a two-stage game between two firms that produce

online games. In the first stage, they play a Cournot competition game (each

chooses a quantity ) with demand function  = 100− , and zero marginal

production costs (() = 0 for  = 1 2) In the second stage, after observing

the pair (1 2) and after profits have been distributed, the players play a

simultaneous move “access” game where they can either keep their game

platforms closed, or each can open it’s platform to allow players on the other

platform to play online with players on their own platform ( for player

1,  for player 2), or choose to keep their platforms non-compatible ( for

player 1,  for player 2), in which case each platform’s players can only play

with others on their platform. If they choose () then second stage payoffs

are (0 0). If only one firm chooses to open its platform, it bears a cost of

(−10) with no benefit since the other firm did not allow to open access.

Finally, if both firms choose ( ) then each firm gets many more eyeballs
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for advertising, and payoffs for each firm are 2 500. Both players use the

same discount factor  to discount future payoffs.

(a) Find the unique Nash equilibrium in the first stage Cournot Game and

all of the pure strategy Nash equilibria of the second stage access game.

Find all the pure strategy subgame perfect equilibria with extreme dis-

counting ( = 0). Be precise in defining history contingent strategies for

both players.

Answer: The maximization problem in the Cournot game is

max


( ) = (100−  − )

and the first order condition is 100−  − 2 = 0 resulting in the best
response function  =

100−
2
, which in turn implies that the unique

Nash equilibrium is 1 = 2 = 33
1
3
. The second stage game is given by

the following matrix:

Player 1

Player 2

 

 250 250 −10 0
 0−10 0 0

and it is easy to see that both ( ) and () are Nash equilibria.

One of these two will have to be played in the second stage of the game

in any subgame perfect equilibrium. When  = 0 the only first stage

play that is possible in equilibrium is the unique Cournot equilibrium.

Therefore, only two outcomes can result from a subgame perfect equi-

librium: choose 1 = 2 = 33
1
3
in the first stage and choose either ( )

or () in the second stage.1

1There are infinitely many strategy profiles that will support this outcome and by a subgame perfect equilib-

rium. For example, have the players each choose  = 33 1
3
in the first stage followed by the following contingent

strategy for the second stage: if both 1 and 2 are below ∗ then choose “open” ( and ) while if either 1 or 2

are above ∗ then choose “not-open” ( and ). Notice that this is an equilibrium for any value of ∗. If ∗  33 1
3

then the second stage equilibrium will be () while if ∗ ≥ 33 1
3
then it will be ( ).
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(b) Now let  = 1. Find a subgame perfect equilibrium for the two-stage

game in which the players choose the monopoly (total profit maximiz-

ing) quantities and split them equally (a symmetric equilibrium).

Answer: Monopoly profits in the first stage are given by maximiz-

ing (100 − ) which yields  = 50, and an equal split means that

1 = 2 = 25 with each firm making (100 − 50)25 = 1250 in the first

stage. However, each firm  is tempted to deviate given that  = 25.

Using the best response derived in part a. we know that the best

deviation is 0 =
100−
2

= 100−25
2

= 375 and the deviator’s profits

would be (100 − 625)375 = 14063. Hence, the gain from deviating is

14063 − 1250 = 1563. Given the two equilibria in the second stage

game we can prevent the players from deviating by introducing the fol-

lowing contingent strategies: each player will play “open” if both played

 = 33
1
3
in the first stage and they will play “not open” if any other

choices were made. With  = 1 the losses from the punishment outweigh

the gains from deviation and hence it is a subgame perfect equilibrium.

¥

(c) What is the lowest value of  for which the subgame perfect equilibrium

you found in (b) survives?

Answer: It must be the case that the loss from deviation is at least as

painful as the gain, that is, 1563− 250 ≤ 0, or,  ≥ 06252 ¥

(d) Now let  = 04. Can you support a subgame perfect equilibrium for the

two-stage game in which the players choose the monopoly quantities and

split them equally? If not, what are the highest profits that the firms

can make in a symmetric equilibrium?

Answer: From the analysis in part c. we know that for   06252

we cannot support the split of monopoly profits as a subgame perfect

equilibrium. Finding the highest profits that can be supported is a bit

tricky. The easy part is starting with the discounted punishment value

when  = 04, which is 04×250 = 100. Next we need to find a symmetric
pair (1 2) = (

∗ ∗) for which the extra profits from deviating to the
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best response to ∗ given that the other firm sticks to ∗ is exactly equal

to 100. First, the profits from sticking to ∗ will be ∗ = (100− 2∗)∗.
Next, the best response to ∗ is 0 = 100−∗

2
and the profits from this

deviation are 0 = (100− ∗− 100−∗
2
)100−

∗
2
, and therefore ∗ must solve

0 − ∗ = 100, or

(100− ∗ − 100− ∗

2
)
100− ∗

2
− (100− 2∗)∗ = 100

which yields the solution ∗ = 262
3
. Hence, for  = 04 the best symmet-

ric equilibrium has both players earning (100− 2(262
3
))262

3
= 12444

9
in

the first period followed by 250 in the second. ¥

5. Campaign Spending: Two political candidates are destined to play the

following two stage game. Assume throughout that there is no discounting

( = 1). First, they compete in the primaries of their party. Each candidate

 can spend  ≥ 0 resources on adds that reach out to voters, which in

turn increases the probability that candidate  wins the race. Given a pair

of spending choices (1 2), the probability that candidate  wins is given by


1+2
. If neither spends any resources then each wins with probability 1

2
. Each

candidate values winning at a payoff of 16  0, and the cost of spending  is

equal to . After each player observes the resources spent by the other, and

a winner in the primaries is selected, they can choose how to interact. Each

can choose to be pleasant ( for player 1 and  for player 2) or nasty ( and

 respectively). At this stage, both players prefer that they be nice to each

other rather than nasty, but if a player is nasty then the other prefers to be

nasty too. The payoffs from this stage are given by the matrix where   0:

Player 1

Player 2

 

  −1 0
 0−1 0 0

(a) Find the unique Nash equilibrium of the first stage game and the two

pure strategy Nash equilibria of the second stage game.
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Answer: In the first stage player  maximizes

( ) =


 + 
16− 

and the first order condition is

16

( + )2
− 1 = 0

which is of course symmetric for both players and represents the best

response correspondence. Solving the two FOCs simultaneously yields

1 = 2 = 4 as the unique Nash equilibrium of the first stage game and

each candidate wins with probability 1
2
. The two pure strategy Nash

equilibria of the second stage game are ( ) and (). ¥

(b) What are the Pareto optimal outcomes of each stage game?

Answer: In the first stage the symmetric Pareto optimal outcome is

for both to choose 1 = 2 = 0. This way they win with probability
1
2

each without wasting any resources.2 It is easy to see that the Pareto

optimal outcome of the second stage is ( ). ¥

(c) For which value of  can the players support the path of Pareto optimal

outcomes as a subgame perfect equilibrium?

Answer: Because there is no discounting ( = 1) then the value of

the threat of contingent punishment in the second stage is  for each

player because the conditional strategies will be “we play ( ) if we

did the right thing in stage 1 and otherwise we play ().” If we wish

to support the Pareto optimal action of 1 = 2 = 0 in the first stage

we need to see what the deviation payoff is. A player  who deviates to

an infinitesimal value   0 will win for sure and get 16−  instead of

2Strictly speaking, there is no other Pareto optimal outcome because of the continuous action spaces. If player

 chooses  = 0 then if player  chooses  =   0 then this is better for player  than choosing  = 0, but it is

not Pareto optimal because if instead player  chooses  =

2
then he is better off without making player 1 worse

off. This is a technicality in the sense that the “Pareto frontier” includes the point (1 2) = (0 0) but any other

pair of feasible strategies is Pareto dominated for at least one player.
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getting 1
2
×16−0 = 8, so that the gains from deviating are infinitesimally

close to 8. Hence, if  = 8 then no player will wish to deviate from the

proposed path of play. ¥

(d) Assume that  = 1. What is the “best” symmetric subgame perfect

equilibrium that the players can support?

Answer: The most severe threat is that the players lose  = 1 so the

gain from deviating cannot be more than 1. We are therefore looking

for a symmetric choice in the fist stage, 1 = 2 = ∗ such that if some

player  deviates to the best response to  = ∗ then his gain in the first

period is an expected payoff of 1. First note that if both players choose

∗ then each gets a payoff in the first stage of 8− ∗ because they win

with equal probability. Now consider the first order condition derived in

part a. above. From it we can derive the best response function of each

player to be () = 4
√
 − . This implies that the best response to

 = ∗ is (∗) = 4
√
∗ − ∗, and if this is what player  deviates to

then his expected payoff in the first stage game is

((
∗) ∗) =

4
√
∗ − ∗

4
√
∗ − ∗ + ∗

16− (4
√
∗ − ∗)

= 16− 8
√
∗ + ∗

The best symmetric equilibrium will be achieved when the gains from

deviating are exactly equal to 1, or

16− 8
√
∗ + ∗ − (8− ∗) = 1,

which results in ∗ = 9
2
− 2√2 ≈ 16716. ¥

(e) What happens to the best symmetric subgame perfect equilibrium that

the players can support as  changes? In what way is this related to

the role played by a discount factor?

Answer: If  increases then we can have a harsher punishment, and

this can allow us to deter more attractive deviations that will happen

when we try to implement a smaller value of ∗ in the first stage. As 
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increases towards 8 we can get closer and closer to the Pareto optimal

outcome of ∗ = 0. This carries the same intuition as a higher discount

factor, which makes the punishment more severe for deviations in the

first stage. ¥

6. Augmented Competition: Consider two firms playing a two stage game

with discount factor . In the first stage they play a Cournot quantity setting

game where each firm has costs () = 10 for  ∈ {1 2} and the demand
is given by () = 100 −  where  = 1 + 2. In the second stage, after

the results of the Cournot game are observed, the firms play the following

standard setting game:

Player 1

Player 2

 

 100 100 0 0

 0 0 300 300

(a) Find the unique Nash equilibrium of the first stage game and the two

pure strategy Nash equilibria of the second stage game.

Answer: In the first stage game each player  maximizes (100 −  −
) − 10 which yields the best response function  =

90−
2

and the

unique Nash equilibrium is  =  = 30. The two pure strategy Nash

equilibria in the second stage are ( ) and ( ). ¥

(b) As far as the two firms are considered, what are the symmetric Pareto

optimal outcomes of each stage game?

Answer: In the first stage game it is splitting the monopoly profits and

in the second stage it is ( ) because 300  100. Monopoly profits in

the first stage are earned when we maximize (100−  − )( + )−
10( + ) which is obtained when  +  = 45. Hence, the symmetric

Pareto optimal outcome is 1 = 2 = 225 in the first stage, which yields

a payoff of 10125 for each player, and ( ) in the second, which yields

a payoff of 300 for each player. ¥
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(c) For which values of  can the Pareto optimal outcomes be supported as

a subgame perfect equilibrium?

Answer: In the Pareto optimal outcome of the first stage each firm

earns a profit of  is tempted to deviate given that  = 225. Using

the best response derived in part a. we know that the best deviation

is 0 =
90−
2

= 90−225
2

= 3375 and the deviator’s profits would be

(100−225−3375)3375−10(3375) = 11390625. Hence, the gain from
deviating is 11390625− 10125 = 1265625. Given the two equilibria in
the second stage game we can try and prevent the players from deviating

by using contingent strategies: each player will play  (or ) if both

played  = 225 in the first stage and they will play  (or ) if any

other choices were made. This will cause the deviating player a loss of

200 in the second stage, and for this to deter the best deviation in the

first stage it must be that 1265625 − 200 ≤ 0, and the solution is

 ≥ 063281. ¥

(d) Assume that  = 05. What is the “best” symmetric subgame perfect

equilibrium that the players can support?

Answer: Finding the highest profits (“best”) that can be supported as a

subgame perfect equilibrium is a bit tricky. The easy part is starting with

the discounted punishment value when  = 05, which is 05×200 = 100.
Next we need to find a symmetric pair (1 2) = (∗ ∗) for which

the extra profits from deviating to the best response to ∗ given that

the other firm sticks to ∗ is exactly equal to 100. First, the profits

from sticking to ∗ will be ∗ = (100 − 2∗)∗ − 10∗. Next, the best
response to ∗ is 0 = 90−∗

2
and the profits from this deviation are

0 = (100 − ∗ − 90−∗
2
)90−

∗
2
− 10(90−∗

2
), and therefore ∗ must solve

0 − ∗ = 100, or

(100−∗−90− ∗

2
)
90− ∗

2
−10

µ
90− ∗

2

¶
−[(100−2∗)∗−10∗] = 100
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and the solution is ∗ = 231
3
. Hence, for  = 05 the best symmetric

equilibrium has each player earning (100−2(231
3
))231

3
−10(231

3
) = 10111

9

in the first stage followed by 300 in the second. ¥

(e) What happens to the best symmetric subgame perfect equilibrium that

the players can support as  drops towards zero?

Answer: As  drops towards zero the ability to punish becomes less

effective and the best subgame perfect equilibrium quantities in the first

stage will grow until they reach the Nash (Cournot) equilibrium of the

first stage, 1 = 2 = 30. ¥
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Repeated Games

1. Medicare Drug Policy: In early 2005 there was a discussion of a proposed

policy of the US federal administration that supported the use of so called

“discount cards” that pharmaceutical firms can offer senior citizens for the

purchase of medications. These cards will have a subscription fee, and they

will in return offer discounts if prescription drugs are bought through the

issuing companies. The federal administration argued that any of the large

pharmaceutical companies can enter this market for discount cards, which in

turn will promote competition. To ensure this the government has a website

with posted prices and posted discounts that go with each card. Some con-

sumer advocates suggest that the companies will just hike up prices and offer

a discount over this higher prices, resulting in less welfare for consumers. The

administration argued that this does not make too much sense because there

is entry and competition. Can you argue, using some formal ideas on tacit

collusion, that the way things are set up it is in fact possible, and maybe even

easier, for the firms to squeeze more profits at the expense of consumers?

Answer: By having a central place in which prices are posted the govern-

ment makes it easy for companies to monitor each other’s prices, and this in

turn makes it easier to sustain tacit collusion because it companies who devi-
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ate from the tacit agreement will be easily detected by the other companies.

¥

2. Grim Trigger: Consider the infinitely repeated game with discount factor

  1 of the following variant of the Prisoner’s dilemma:

player 1

Player 2

  







6 6 −1 7 −2 8
7−1 4 4 −1 5
8−2 5−1 0 0

(a) For which values of the discount factor  can the players support the

pair of actions () played in every period?

Answer: The grim trigger strategy is to revert to playing () forever

yielding a discounted sum of payoffs (and an average payoff) equal to 0.

The discounted sum of payoffs from sticking to the pair () forever is
4
1− . A player who deviates gets 5 instead of 4 in the period of deviation,

but then gets 0 thereafter. Hence a deviation will not be profitable if
4
1− ≥ 5, or  ≥ 1

5
 ¥

(b) For which values of the discount factor  can the players support the pair

of actions ( ) played in every period? Why is your answer different

from part (a) above?

Answer: The discounted sum of payoffs from sticking to the pair ()

forever is 6
1− . A player who deviates gets 8 instead of 6 in the period

of deviation, but then gets 0 thereafter using grim trigger. Hence a

deviation will not be profitable if 6
1− ≥ 8, or  ≥ 1

4
 ¥
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3. Not so Grim Trigger: Consider the infinitely repeated Prisoner’s Dilemma

with discount factor   1 described by the following matrix:

Player 1

Player 2

 





4 4 −1 5
5−1 1 1

Instead of using “grim trigger” strategies to support a pair of actions (1 2)

other than ( ) as a subgame perfect equilibrium, assume that the player

wish to choose a less draconian punishment called a “length  punishment”

strategy. Namely, if there is a deviation from (1 2) then the players will play

( ) for  periods, and then resume playing (1 2). Let  be the critical

discount factor so that if    then the adequately defined strategies will

implement the desired path of play with length  punishment as the threat.

(a) Let  = 1. What is the critical value 1 to support the pair of actions

() played in every period?

Answer: The proposed one period punishment means that instead of

getting 4 for the period after deviation, the players will get 1, and after-

wards will resort to getting 4 forever. Hence, the punishment is of size

3 and the discounted value is 3. The gain from deviating in one period

is getting 5 instead of 4 so this will be deterred if 1 ≤ 3 or  ≥ 1
3
.1 ¥

(b) Let  = 2. What is the critical value  to support the pair of actions

() played in every period?2

Answer: The proposed two period punishment means that instead of

getting 4 for the two periods after deviation, the players will get 1,

1To see this using the whole stream of payoffs, sticking to () yields 4
1− while deviating with the threat

of a one period punishment will yield 5 + 1 + 2 4
1− and this is not profitable if

4
1− ≥ 5 + 1 + 2 4

1− , which
can be rewritten as 4 + 4 + 2 4

1− ≥ 5 + 1 + 2 4
1−  which in turn reduces to 3 ≥ 1.

2Helpful hint: You should encounter an equation of the form 3 − (+ 1) + 1 = 0 for which it is easy to see
that  = 1 is a root. In this case, you know that the equation can be written in the form (− 1)(2+− 1) = 0
and solve for the other relevant root of the cubic equation.
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and afterwards will resort to getting 4 forever. Hence, the discounted

punishment is (+2)3. The gain from deviating in one period is getting

5 instead of 4 so this will be deterred if 1 ≤ (+2)3, or  ≥ 1
6

√
3
√
7−1

2
≈

026376.3 ¥

(c) Compare the two critical values in parts (a) and (b) above. How do they

differ and what is the intuition for this?

Answer: The punishment in part b. last for two periods which is more

severe than the one period punishment in part a. This means that it

can be supported with a lower discount factor because the intensity of

the punishment is increasing either in the length or when we have less

discounting. ¥

4. Trust off-the-equilibrium-path: Recall the trust game depicted in Figure

10.1. We argued that for  ≥ 1
2
the following pair of strategies is a subgame

perfect equilibrium. For player 1: “in period 1 I will trust player 2, and as as

long as there were no deviations from the pair () in any period, then I

will continue to trust him. Once such a deviation occurs then I will not trust

him forever after.” For player 2: “in period 1 I will cooperate, and as as long

as there were no deviations from the pair () in any period, then I will

continue to do so. Once such a deviation occurs then I will deviate forever

after.” Show that if instead player 2 uses the strategy “as long as player 1

trusts me I will cooperate” then the path () played forever is a Nash

equilibrium for  ≥ 1
2
but is not a subgame perfect equilibrium for any value

of .

Answer: It is easy to see that this is a Nash equilibrium: the equilibrium

path is followed because neither player benefits from deviating as they both

believe that a deviation will call for the continuation of grim trigger. To

see that it is not subgame perfect consider the subgame that follows after

3To see this using the whole stream of payoffs, sticking to () yields 4
1− while deviating with the threat of

a two period punishment will yield 5+ 1+ 21+ 3 4
1− and this is not profitable if

4
1− ≥ 5+ 1+ 21+ 3 4

1− .
This can either be solved as a cubic inequality or can be rewritten as 4+4+24+3 4

1− ≥ 5+1+21+3 4
1− 

which in turn reduces to ( + 2)3 ≥ 1.
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a deviation of player 2 from  to . The strategy of player 1 is to not

trust forever which will revert the payoff to 0 in every period, but player 2’s

strategy is to cooperate as long as player 1 trusts. So, after a deviation by

player 2, if player 1 believes that player 2 will indeed cooperate then player

1 should continue to trust. ¥

5. Negative Ad Campaigns (revisited): Recall the exercise from chapter

?? in which each one of two political parties can choose to buy time on

commercial radio shows to broadcast negative ad campaigns against their

rival. These choices are made simultaneously. Due to government regulation

it is forbidden to buy more than 2 hours of negative campaign time so that

each party cannot choose an amount of negative campaigning above 2 hours.

Given a pair of choices (1 2), the payoff of party  is given by the following

function: (1 2) =  − 2 +  − ()2 

(a) Find the unique pure strategy Nash equilibrium of the one shot game.

Answer: Each player maximizes (1 2) =  − 2 +  − ()2
resulting in the first order optimality condition 1+−2 = 0, yielding
the best response function,

() =
1 + 

2


Solving the two best response functions simultaneously,

1 =
1 + 2

2
and 2 =

1 + 1

2

yields the Nash equilibrium 1 = 2 = 1, and this is the unique solution

to these equations implying that this is the unique equilibrium. Each

player obtains a payoff of −1. ¥

(b) If the parties could sign a binding agreement on how much to campaign,

what levels would they choose?

Answer: They would choose 1 = 2 = 0 and each would obtain a

payoff of 0. ¥
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(c) Now assume that this game is repeated infinitely often, and the above

demonstrates the choices and payoffs per period. For which discount fac-

tors  ∈ (0 1) can the levels you found in part (b) above be supported
as a subgame perfect equilibrium of the infinitely repeated game?

Answer: Consider the grim trigger strategy where the players will re-

vert to playing the one-shot Nash forever after a deviation. The temp-

tation to deviate from 0 is the value a player gains when he chooses the

best response to 0, which is  =
1
2
, which yields the one shot payoff of 1

4
.

Hence, the deviation will not be profitable if 1
4
−  1

1− ≤ 0, or  ∈ [15  1).

(d) Despite the parties ability to coordinate as you have demonstrated in

your answer to (c) above, the government is concerned about the parties

ability to place up to 2 hours a day of negative campaigning, and it is

considering limiting negative campaigning to 1
2
hour a day so that now

 ∈ [0 12 ] Is this a good policy to further limit negative campaigns?
Justify your answer with the relevant calculations. What is the intuition

for your conclusion?

Answer: If this were just a one shot game then the government’s regu-

lation would be beneficial. Instead of choosing 1 = 2 = 1 they would

choose 1 = 2 =
1
2
and receive −1

2
each instead of −1. However, for

the repeated game this regulation makes the grim trigger threat less

severe, and cooperation on spending nothing can only be achieved if
1
4
−  05

1− ≤ 0, which holds for  ∈ [13  1). Hence, for  ∈ [15  13) the play-
ers will no longer be able to achieve the Pareto optimal outcome using

repeated game cooperation, making this regulation a bad idea. ¥

6. RegulatingMedications:Consider a firm (player 1) that produces a unique

kind of drug that is used by a consumer (player 2). This drug is regulated by

the government so that the price of the drug is  = 6. This price is fixed, but

the quality of the drug depends on the manufacturing procedure. The “good”

() manufacturing procedure costs 4 to the firm, and yields a value of 7 to
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FIGURE 10.1.

the consumer. The “bad” () manufacturing procedure costs 0 to the firm,

and yields a value of 4 to the consumer. The consumer can choose whether

to buy or not at the price , and this decision must be made before the ac-

tual manufacturing procedure is revealed. However, after consumption, the

true quality is revealed to the consumer. The choice of manufacturing pro-

cedure, and the cost of production, is made before the firm knows whether

the consumer will buy or not.

(a) Draw the game tree and the matrix of this game, and find all the Nash

equilibria of this game.

Answer: Let player 1 be the firm who can choose  (good) or  (bad),

and player 2 is the consumer who can choose  (purchase) or  (not

purchase). If, for example, the players choose ( ) then the firm gets

6−4 = 2 and the consumer gets 7−6 = 1. In a similar way the complete
matrix of this one shot game can be represented as follows:

Player 1

Player 2

 

 2 1 −4 0
 6−2 0 0

The extensive form game tree is,¥

(b) Now assume that the game described above is repeated twice. (The con-

sumer learns the quality of the product in each period only if he con-
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sumes.) Assume that each player tries to maximize the (non-discounted)

sum of his stage payoffs. Find all the subgame-perfect equilibria of this

game.

Answer: It is easy to see that player 1 has a dominant strategy in the

stage game: choose , and player 2’s best response is to choose  . This

unique Nash equilibrium must be played in the second stage, and by

backward induction must also be played in the first stage. hence, it is

the unique subgame perfect equilibrium.

(c) Now assume that the game as repeated infinitely many times. Assume

that each player tries to maximize the discounted sum of his or her

stage payoffs, where the discount rate is  ∈ (0 1). What is the range
of discount factors for which the good manufacturing procedure will be

used as part of a subgame perfect equilibrium?

Answer: Consider the grim trigger strategies: player 1 chooses  and

continues to choose  as long as he chose  in the past and as long

as player 2 purchased. Otherwise he chooses  forever after. Player 2

chooses  and continues to choose  as long as he chose  and player 1

chose . Otherwise he plays  forever after. Player 2 has no incentive

to deviate at any stage, but player 1 can gain 4 from switching to  in

any period (get 6 instead of 2). He will not have an incentive to deviate

if 4 ≤ 2
1− , which holds for  ∈ [12  1) ¥

(d) Consumer advocates are pushing for a lower price of the drug, say 5.

The firm wants to approach the Federal trade Commission and argue

that if the regulated price is decreased to 5 then this may have dire

consequences for both consumers and the firm. Can you make a formal

argument using the parameters above to support the firm? What about

the consumers?

Answer: If the price of the drug is lowered to 5 then player 1 has a

stronger relative temptation to deviate from the grim trigger strategies

described in part c. above. His gain from deviation is still 4, but the

gain from continuing to choose  is only 1 per period and not 2. Hence,
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he will not have an incentive to deviate if 4 ≤ 1
1− , which holds for

 ∈ [3
4
 1). Hence, if the firm can argue that  ∈ [1

2
 3
4
) then increasing

the price from 4 to 5 will cause the good equilibrium to collapse and

no trade will occur. The argument in favor of raising the price can be

made if  ∈ [3
4
 1) because then the consumers benefit at the expense of

the firm but there is enough surplus to support the good outcome. ¥

7. Diluted Happiness: Consider a relationship between a bartender and a

customer. The bartender serves bourbon to the customer, and chooses  ∈
[0 1] which is the proportion of bourbon in the drink served, while 1 − 

is the proportion of water. The cost of supplying such a drink (standard 4

once glass) is  where   0. The Customer, without knowing , decides

on whether or not to buy the drink at the market price . If he buys the

drink, his payoff is −  and the bartender’s payoff is − . Assume that

  , and all payoffs are common knowledge. If the customer does not buy

the drink, he gets 0, and the bartender gets −(). because the customer
has some experience, once the drink is bought and he tastes it, he learns the

value of , but this is only after he pays for the drink.

(a) Find all the Nash equilibria of this game.

Answer: The customer has to buy the drink without knowing its con-

tent, implying that the bartender has a dominant strategy which is to

choose  = 0 once the customer pays for the drink. But anticipating

that, the customer would not buy the drink. Hence, the unique Nash

equilibrium is for the customer not to buy and the bartender to choose

 = 0 if he does buy. ¥

(b) Now assume that the customer is visiting town for 10 days, and this “bar

game” will be played for each of the 10 evenings that the customer is in

town. Assume that each player tries to maximize the (non-discounted)

sum of his stage payoffs. Find all subgame-perfect equilibria of this

game.

Answer: The game just unravels: in the last period they must play
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the unique Nash in part a. above. But then they will do the same in

the penultimate period, and so in until the beginning of the game. The

unique subgame perfect equilibrium is therefore for the customer not to

buy in any of the 10 periods and for the bartender to choose  = 0 in a

period where the customer buys. ¥

(c) Now assume that the customer is a local, and the players perceive the

game as repeated infinitely many times. Assume that each player tries

to maximize the discounted sum of his or her stage payoffs, where dis-

count rate is  ∈ (0 1). What is the range of prices  (expressed in the
parameters of the problem) for which there exists a subgame-perfect

equilibrium in which everyday the bartender chooses  = 1 and the

customer buys at the price ?

Answer: For a transaction to occur both have to get a non-negative

payoff, implying first that  ∈ [ ]. We will consider a subgame perfect
equilibrium with grim trigger strategies that reverts to no-purchase if

anyone ever deviates. Notice that the customer has no incentive to ever

deviate if  ≤  because he gains nothing or loses some positive value

from not buying. The bartender does benefit in the one shot game from

deviating to  = 0 and obtaining  instead of −. Given some value of
, the bartender will not deviate if  ≤ −

1− , or  ≥ 

(which is of course

greater than ). Hence, if 

≤  then for any price  ∈ [ 


 ] there exists

a subgame perfect equilibrium in which everyday the bartender chooses

 = 1 and the customer buys at the price . If, however, 

  then no

such price exists. ¥

(d) For which values of  (expressed in the parameters of the problem) can

such a price range that you found in (5) above exist?

Answer: The condition for such a subgame perfect equilibrium is that


≤  which implies that  must satisfy  ≥ 


. ¥
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8. Tacit Collusion: There are two firms that have zero marginal cost and no

fixed cost that produce some good, each producing  ≥ 0  ∈ {1 2}. The
demand for this good is given by  = 200−, where  = 1 + 2.

(a) First consider the case of Cournot competition, where each firm chooses

, and that this game is infinitely repeated with a discount factor   1.

Solve for the static stage-game Cournot-Nash equilibrium.

Answer: Each firm solves max (200 −  − ) so the first order

condition is 200− 2−  = 0 and the best response is  =
200−
2
. The

unique Nash equilibrium is therefore 1 = 2 = 66
2
3
. The profits of each

firm would be 4 4444
9
. ¥

(b) For which values of  can you support the firms equally splitting

monopoly profits in each period as a subgame perfect equilibrium that

uses “trigger strategies”? (i.e., after one deviates from the proposed

split, they resort to the static Cournot-Nash equilibrium thereafter).

Note: be careful in defining the strategies of the firms.

Answer: The monopoly profits is obtained frommaximizing (200−)
which occurs at  = 100 with combined profits being 10 000 or  = 50

and profits are 5 000 for each firm. If firm  is producing 50, however,

then the best deviation for firm  is given by the best response,  =
200−50
2

= 75, and firm ’s profits in the period when it deviates are

(200−75−50)75 = 5 625. Consider trigger strategies of the form “start
by choosing  = 50 and continue to choose so as long as both firms

follow this path, yet if any firm ever deviates form this path revert to

 = 66
2
3
forever after.” The deviation will not be worthwhile if

5625 +


1− 
(4444

4

9
) ≤ 5000

1− 

which holds if  ∈ [ 9
17
 1). ¥

(c) Now assume that the firms compete à la Bertrand, each choosing a price

 ≥ 0, where the lowest priced firm gets all the demand, and in case of a
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tie they split the market. Solve for the static stage-game Bertrand-Nash

equilibrium.

Answer: The static Bertrand-Nash equilibrium is for each form to

choose  = 0 because they have zero marginal costs. Profits will be

zero for each firm. ¥

(d) For which values of  can you support the firms splitting monopoly

profits in each period as a subgame perfect equilibrium that uses “trigger

strategies”? (i.e., after one deviates from the proposed split, they resort

to the static Bertrand—Nash equilibrium thereafter). Note: be careful in

defining the strategies of the firms!

Answer: The monopoly profits are obtained from choosing  = 100

with combined profits being 10 000 and profits are 5 000 for each firm if

they split production equally. If firm  is charges 100, however, then firm

 can deviate to some price  = 100−  for  infinitesimally small and

firm ’s profits in the period when it deviates will be infinitesimally close

to 10 000. Consider trigger strategies of the form “start by choosing

 = 100 and continue to choose so as long as both firms follow this

path, yet if any firm ever deviates form this path revert to  = 0

forever after.” The deviation will not be worthwhile if

10000 +


1− 
(0) ≤ 5000

1− 

which holds if  ∈ [1
2
 1). ¥

(e) Now instead of using trigger strategies, try to support the firms equally

splitting monopoly profits as a subgame perfect equilibrium where after

a deviation, firms would resort to the static Bertrand competition for

only two periods. For which values of  will this work? Why is this

different than your answer in (d) above?

Answer: Because we are only punishing for two periods, the deviation

will not be worthwhile if

10000 + (0) + 2(0) + 3
5000

1− 
≤ 5000

1− 
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or 2+ − 1 ≥ 0, which results in  ≥ 1
2

√
5− 1

2
≈ 0618. The reason we

need a larger discount factor is that the punishment is less severe as it

lasts for only two periods and not infinitely many. ¥

9. Negative Externalities: Two firms are located adjacent to one another

and each imposes an external cost on the other: the detergent that Firm 1

uses in it’s laundry business makes the fish that firm 2 catches in the lake

taste funny, and the smoke that firm 2 uses to smoke its caught fish makes

the clothes that firm 1 hands out to dry smell funny. As a consequence,

each firms profits are increasing it its own production and decreasing in the

production of its neighboring firm. In particular, if 1 and 2 are the firms’

production levels then their per-period (stage game) profits are given by

1(1 2) = (30− 2)1 − 21 and 2(1 2) = (30− 1)2 − 22.

(a) Draw the firms’ best response functions and find the Nash equilibrium

of the stage game. How does this compare to the Pareto optimal stage-

game profit levels?

Answer: Each firm maximizes 1( ) = (30− )− 2 and the first

order condition is 30−  − 2 = 0, resulting in the best response func-
tion  =

30−
2

as drawn in the following figure:

0 10 20 30
0

10

20

30

q_1

q_2

The unique Nash equilibrium is 1 = 2 = 10 giving each firm a profit

of 100. To solve for the Pareto optimal outcome we can maximize the

sum of profits,

max
12

(1 2) = (30− 2)1 − 21 + (30− 1)2 − 22
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and the two first order conditions are

(1 2)

1
= 30− 2 − 21 − 2 = 0

(1 2)

2
= 30− 1 − 22 − 1 = 0

and solving them together yields 1 = 2 = 7
1
2
and the profits of each

firm are 1121
2
. ¥

(b) For which levels of discount factors can the firms support the Pareto

optimal level of quantities in an infinitely repeated game?

Answer: We consider grim trigger strategies of the form “I will choose

 = 75 and continue to do so as long as both chose this value. If anyone

ever deviates I will revert to  = 10 forever.” The best deviation from

 = 75 given that  = 75 is to choose the best response to 75 which is
30−75
2

= 1125, and the profit from deviating is (30− 71
2
)111

4
− (111

4
)2 =

2025
16
= 126 9

16
. Thus, each player will not want to deviate if

126
9

16
+ 

100

1− 
≤ 1121

2

1− 

which holds for  ∈ [ 9
17
 1). ¥

10. Law Merchants (revisited): Consider the three person game described

in section ??. A subgame perfect equilibrium was constructed with a bond

equal to 2, and a wage paid by every player  
2 to player 3 equal to  = 01,

and it was shown that it is indeed an equilibrium for any discount factor

 ≥ 095. Show that a similar equilibrium, where players  
1 trust players 


2

who post bonds, players  
2 post bonds and cooperate, and player 3 follows

the contract in every period, for any discount factor 0    1.

Answer: First notice that the bond need not be equal to 2 because player

 
2 only gains 1 from deviating. Hence, any bond of value 1 +   1 will

deter player  
2 from choosing to defect instead of cooperate. Second, notice

that for any wage to the third party of 1 −   1 player  
2 still get a
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positive surplus   0 from engaging the services of the third party. Hence,

for any value of  ∈ (0 1), posting a bond of 1+ and paying the third party

1 −  guarantees that player  
2 will choose to employ the third party and

cooperates if trusted, and in turn,  
1 will choose to trust. We are left to see

whether the third party prefers to return the bond as promised or if he would

deviate and give up the future stream of all income. By deviating the third

party pockets the bon worth 1 + , and gives up the future series of wages

1−  for all future periods. Hence, he will not deviate if

1 +  ≤ 

1− 
(2− )

which for  ∈ (0 1) holds for  ∈ (1+
2
 1). Hence, for any   1

2
there exists

a small enough   0 for which the inequality above holds. ¥

11. Trading Brand Names: Show that the strategies proposed in Section ??

constitute a subgame perfect equilibrium of the sequence of trust games.

Answer: Consider any player  
2,   1 Under the proposed strategies, if

trust was never abused and the name was bought up till period −1 then ()
by buying the name and cooperating he is guaranteed a payoff of 1, () by

buying the name and defecting he receives 2 but cannot sell the name to the

next player 2 and hence he gets 2−∗  1, and () by not buying the name

he gets 0. Hence, for any  the strategy of  
2 is a best response. Consider

player  1
2 . If he () by creating the name and cooperating he is guaranteed

a payoff of 1 + ∗  2, () by not creating the name he gets 0. Hence, the

strategy of  1
2 is a best response. Last, it is easy to see that any player 1

can expect cooperation, and hence trusting is a best response conditional on

no one ever defecting and the name being created and transmitted. ¥

12. Folk Theorem (revisited): Consider the infinitely repeated trust game

described in Figure 10.1.

(a) Draw the convex hull of average payoffs.

Answer: ¥
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FIGURE 10.2.

(b) Are the average payoffs (1 2) = (−04 11) in the convex hull of av-
erage payoffs? Can they be supported by a pair of strategies that form

a subgame perfect equilibrium for a large enough discount factor ?

Answer: The average payoffs (1 2) = (−04 11) are in the convex
hull of average payoffs. It is easy to see that the point (−04 08) is
on the line that connects the point (−1 2) with (0 0), and the point
(−04 17) the line that connects the point (−1 2) with (1 1). It follows
that the point (−04 11) is in the interior of the convex hull of payoffs.
However, these payoffs cannot be supported by a subgame perfect equi-

librium because player 1 is expected to get an average payoff of −04,
but he can guarantee himself a payoff of 0 by choosing never to trust.

¥

(c) Show that there is a pair of subgame perfect equilibrium strategies for

the two players that yields average payoffs that approach (1 2) =

(1
3
 4
3
) as  approaches 1.

Answer: First note that the point (1
3
 4
3
) the line that connects the point

(−1 2) with (1 1). That is, it is a weighted average of the two points as
follows: 1

3
(−1 2)+ 2

3
(1 1) = (1

3
 4
3
). This suggests that the average payoff

we are trying to achieve is a 1
3
: 2
3
weighted average between the pairs

of actions () and (). So, consider the the following strategies:
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Player 2 will play  twice and then  once, and repeat this pattern

(play  in  = 1 2 4 5 7  and play  in  = 3 6 9 ). Player 1

will play  every period. If either player deviates from these proposed

strategies then both players revert to playing () forever after. The

payoff for player 1 is,

1 = (1− )(1 +  + 2(−1) + 3 + · · ·)

= (1− )(
1

1− 3
+



1− 3
− 2

1− 3
)

= (1− )
1 +  − 2

(1− )(1 +  + 2)

=
1 +  − 2

1 +  + 2

and it follows that

lim
→1

1 +  − 2

1 +  + 2
=
1

3
.

Similarly,

2 = (1− )(1 +  + 2(2) + 3 + · · ·)

= (1− )(
1

1− 3
+



1− 3
+

22

1− 3
)

=
1 +  + 22

1 +  + 2

and it follows that

lim
→1

1 +  + 22

1 +  + 2
=
4

3
.

Hence, as  → 1 the average payoffs from this subgame perfect equilib-

rium converge to (1
3
 4
3
). ¥
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Printer: Opaque t

11

Strategic Bargaining

1. Disagreement: Construct a pair of strategies for the ultimatum game ( =

1 bargaining game) that constitute a Nash equilibrium, which together sup-

port the outcome that there is no agreement reached by the two players and

the payoffs are zero to each. Show that this disagreement outcome can be

supported by a Nash equilibrium regardless of the number of bargaining pe-

riods.

Answer: Consider the following strategies: player 1 offers nothing to player

2 ( = 0) and player 2 only accepts if he is offered all of the surplus ( = 1).

In this case both players are indifferent (player 1 is indifferent between any

offer and player 2 is indifferent between accepting and rejecting), and both

receive zero. It is easy to see that repeating these strategies for any length of

the game will still constitute a Nash equilibrium. ¥

2. Hold Up: Considering an ultimatum game ( = 1 bargaining game) where

before player 1 makes his offer to player 2, player 2 can invest in the size of the

pie. If player 2 chooses a low level of investment () then the size of the pie

is small, equal to  while if player 2 chooses a high level of investment ()

then the size of the pie is large, equal to  . The cost to player 2 of choosing



198 11. Strategic Bargaining

 is , while the cost of choosing  is   Assume that     0,

    0 and  −    − .

(a) What is the unique subgame perfect equilibrium of this game? Is it

Pareto Optimal?

Answer: Solving this game backward, we know that the ultimatum

game has a unique equilibrium in which player 1 will offer nothing to

player 2 and player 2 will accept the offer. Working backwards, if player 2

first chooses the low level of investment then his payoffwill be−, while
he will be worse off if he chooses the high level of investment because

−  −. Hence, the unique subgame perfect equilibrium has player

2 first choose the low level of investment, then player 1 offering to keep

all the value  to himself, and finally player 2 accepting the offer and

getting −. ¥

(b) Can you find a Nash equilibrium of the game that results in an outcome

that is better for both players as compared to the unique subgame

perfect equilibrium?

Answer: Consider the following strategy for player 2: first choose the

high level of investment, and then accept any offer that gives himself at

least −− for  small. Given this strategy, player 1’s best response
is to offer to keep +  for himself and  − −  for player 2. Player

2’s payoff is then −−−   − for small enough , and player
1’s payoff is  +    so the players are both better off. ¥

3. Even/Odd Symmetry: In section ?? we analyzed the alternating bargain-

ing game for a finite number of periods when  was odd. Repeat the analysis

for  even.

Answer: Consider the case with an even number of rounds  ∞, implying
that player 2 has the last mover advantages. The following backward induc-

tion argument applies:

- In period  , player 1 accepts any offer, so player 2 offers  = 0 and payoffs
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are 1 = 0; 2 = −1

- In period −1 (odd period — player 1 offers), by backward induction player
2 should accept anything resulting in a payoff of 2 ≥ −1. If player 2 is of-

fered  in period  − 1 then 2 = −2(1− ); This implies that in period

 − 1 player 2 will accept any (1−) ≥  and by backward induction player

1 should offer  = 1− , which yields player 1 a payoff of 1 = (1− )−2

and 2 = −1

- In period −2 (even period), conditional on the analysis for −1, player 1’s
best response is to accept any  that gives him −3 ≥ (1− )−2 Player

2’s best response to this is to offer the smallest  that satisfies this inequal-

ity, and solving it with equality yields player 2’s best response:  =  − 2

This offer followed by 1’s acceptance yields 1 = −3 = −2 − −1 and

2 = −3(1− ) = −3 − −2 + −1.

We can continue with this tedious exercise only to realize that a simple pat-

tern emerges. If we consider the solution for an even period  −  ( being

even because  is assumed to be even) then the backward induction argument

leads to the sequentially rational offer,

− =  − 2 + 3 · · ·− 

while for an odd period  −  ( being odd) then the backward induction

argument leads to the sequentially rational offer,

− = 1−  + 2 · · ·−.

We can use this Pattern to solve for the subgame perfect equilibrium offer in

the first period, 1 which by backward induction must be accepted by player

2, and it is equal to

1 = 1−  + 2 − 3 + 4 · · ·−−1 =
= (1 + 2 + 4 + · · ·+ −2)− ( + 3 + 5 + · · ·+ −1)

=
1− 

1− 2
−  − +1

1− 2

=
1− 

1 + 

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and this in turn implies that

∗1 = 1 =
1− 

1 + 
 and ∗2 = (1− 1) =

 + 

1 + 


¥

4. Constant Delay Cost: Consider a two player alternating bargaining game

where instead of the pie shrinking by a discount factor   1, the players

each pay a cost   0,  ∈ {1 2} to advance from one period to another. So,
if player  receives a share of the pie that gives him a value of  in period

 then his payoff is  =  − ( − 1). If the game has  periods then a

sequence of rejections results in each player receiving  = −( − 1).

(a) Assume that  = 2. Find the subgame perfect equilibrium of the game

and show in which way it depends on the values of 1 and 2.

Answer: In the last period player 2 makes the offer in an ultimatum

game and will offer to keep the whole pie: 1 = 0 and 2 = 1 and

player 1 is will accept (he’s indifferent). Payoffs would be 1 = −1
and 2 = 1− 2. Going backwards to period 1, player 1 has to offer at

least 2 = 1− 2 to player 2 for him to accept, so the unique subgame

perfect equilibrium has player 1 offering 1− 2 to player 2, and player

2 accepts anticipating that he will offer and get 2 = 1 in the second

period following rejection. Payoffs are 1 = 2 and 2 = 1− 2. Payoffs

therefore do not depend on 1. ¥

(b) Are there Nash equilibria in the two period game that are not subgame

perfect?

Answer: Yes. Just like in the game we studied with a discount factor ,

any split can be supported by a Nash equilibrium. Consider the following

strategy by player 2: reject anything but the whole pie in the first period

and offer to keep the whole pie in the second. Player 1’s best response in

the first period is to offer exactly the whole pie to player 2 because that

way he is guaranteed 0, while if he believes that player 2 will follow the
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proposed strategy and he offers anything else then he will get 1 = −1.
¥

(c) Assume that  = 3. Find the subgame perfect equilibrium of the game

and show in which way it depends on the values of 1 and 2.

Answer: In the last period player 1 makes the offer in an ultimatum

game and will offer to keep the whole pie: 1 = 1 and 2 = 0, and

player 2 is will accept (he’s indifferent). Payoffs would be 1 = 1− 21
and 2 = −22. Going backwards to period 2, player 2 has to offer at
least 1 = 1− 21 to player 1 for him to accept, so the payoffs starting

from the second period are 1 = 1− 31 and 2 = 21− 2 (player 1 gets

a piece of the pie equal to 1− 21 and because this is the second period
he incurs the cost 1 from the first period.) Finally, in period 1 player 1

must offer player 2 at least 21 − 2 so he will offer exactly that, player

2 will accept the offer, and the payoffs will be 1 = 1 − 21 + 2 and

2 = 21 − 2. ¥

5. Asymmetric Patience 1: Consider a 3-period sequential (alternating) bar-

gaining model where two players have to split a pie worth 1 (starting with

player 1 making the offer). Now the players have different discount factors,

1 and 2.

(a) Compute the outcome of the unique subgame perfect equilibrium.

Answer: In the third period player 1 will get the whole pie and hence

the payoffs will be 1 = 21 and 2 = 0. Moving back to the second period,

player 2 will offer player 1 1 and player 1 will accept, so the payoffs are

1 = 21 and 2 = 2(1−1). Moving back to the first period, player 1 will
offer to keep  such that player 2 will receive 2 = (1− ) = 2(1− 1)

implying that player 1 gets 1 =  = 1− 2(1− 1) = 1− 2 + 12. ¥

(b) Show that when 1 = 2 then player 1 has an advantage.

Answer: In this case 1 = 1− 2 + 12 = 1−  + 2 and 2 =  − 2,
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implying that

1 − 2 = 1−  + 2 − ( − 2) = 1− 2 + 22 = (1− )2 + 2  0

implying that 1  2. ¥

(c) What conditions on 1 and 2 give player 2 an advantage? Why?

Answer: For player 2 to get an advantage it must be that 1  2 which

implies using the answer in part a. above that 1− 2+ 12  2− 12

or 1  22(1− 1). This condition means that 2 has to be significantly

greater than 1, meaning that player 2 has to be significantly more

patient for him to have an advantage. For example, if 2 is very close

to 1, then 1 has to be less than
1
2
for this condition to hold, and if

2 
1
2
then player 2 will never have an advantage. The patience has to

overcome the first and last mover advantage that player 1 has in this

case. ¥

6. Asymmetric Patience 2: Consider the analysis of the infinite horizon bar-

gaining model in section 11.3 and assume that the players have different

discount factors 1 and 2. Find the unique subgame perfect equilibrium us-

ing the same techniques, and show that as 1 and 2 become closer in values,

the solution you found converges to the solution derived in section 11.3.

Answer: Consider a subgame in which player 1 makes the offer. Player 2

will not accept an offer that gives him less than 22, implying that

1 ≤ 1− 22  (11.1)

and player 2 will accept an offer that gives him at least than 22, implying

that

1 ≥ 1− 22  (11.2)

By symmetry, when player 2 makes the offer we obtain the symmetric in-

equalities,

2 ≤ 1− 11  (11.3)
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and

2 ≥ 1− 11  (11.4)

Subtracting (11.2) from (11.1) yields

1 − 1 ≤ 2(2 − 2)  (11.5)

and similarly, subtracting (11.4) from (11.3) yields

2 − 2 ≤ 1(1 − 1)  (11.6)

But (11.5) and (11.6) together imply that

1 − 1 ≤ 2(2 − 2) ≤ 21(1 − 1) 

and because 21  1 it follows that 1 = 1(= 1) and 2 = 2(= 2).

Revisiting the inequalities above, (11.1) and (11.2) imply that

1 = 1− 22 ,

and (11.3) and (11.4) imply that

2 = 1− 11 ,

and from these last two equalities we obtain that in the unique subgame

perfect equilibrium, in the first period player 1 receives

∗1 =
1− 2

1− 12


and player 2 receives 1−∗1 = 2(1−1)
1−12 . Now let 1 = , and let 2 approach 

The denominator approaches 1−2 = (1−)(1+) and we get that ∗1 = 1
1+
,

which is the solution we obtained is section 11.3 for a symmetric discount

factor. ¥

7. Legislative Bargaining (revisited): Consider a finite  period version of

the Baron and Ferejohn legislative bargaining game with an odd number 

of players and with a closed rule as described in section 11.4.1.
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(a) Find the unique subgame perfect equilibrium for  = 1. Also, find a

Nash equilibrium that is not subgame perfect.

Answer: If  = 1 then following a failed vote (a majority rejects the

proposer’s proposal) all the players receive a payoff of 0. Hence, like in

the Rubinstein game, the proposer will ask for all the surplus and a ma-

jority of players will vote in favor. No other outcome can be supported

by a subgame perfect equilibrium. There are many Nash equilibria. For

example, some player  asks for at least ∗ ∈ [0 1] of the surplus while
all other players will settle for nothing. Then any player  6=  will offer

 the amount ∗ , and nothing to the other players, and all the players

will vote in favor of the proposal. ¥

(b) Find the unique subgame perfect equilibrium for  = 2 with a discount

factor 0   ≤ 1 Also, find a Nash equilibrium that is not subgame

perfect.

Answer: If the proposal is not accepted in period 1 then period 2 will

have the unique subgame perfect equilibrium described in part a. above.

This implies that in the first period, every player has an expected surplus

of 

because they will be the proposer with probability 1


and will get

the whole surplus of 1. This means that the player who offers in the first

period must offer at least 

to −1

2
other players to form a majority

and have the proposal accepted. Hence, the proposing player will keep

1−−1
2



to himself in the unique subgame perfect equilibrium. Just like

in part a. above, we can support an arbitrary division of the surplus

in a Nash equilibrium by having some players commit to incredible

strategies. ¥

(c) Compare what the first period’s proposer receives in the subgame per-

fect equilibrium you found in part (b) above to what a first period

proposer receives in the two-period two-person Rubinstein-Ståhl bar-

gaining game. What intuitively accounts for the difference?

Answer: In the two-period two-person Rubinstein-Ståhl bargaining

game the proposing player 1 gets 1 −  because player 2 can get the
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whole pie in the second period. Notice that the difference between the

payoff in the Baron-Ferejohn model and the Rubinstein-Ståhl model is,

1−  − 1
2




− (1− ) =

( + 1)

2




2
.

As we can see, the first proposer has a lot more surplus in the Baron-

Ferejohn model. This is because the responder is not one player who

plays an ultimatum game in the second period, but a group of player

from which a majority needs to be selected. This lets the proposer pit

the responders against each other and capture more surplus. ¥

(d) Compare the subgame perfect equilibrium you found in part (b) above to

the solution of the infinite horizon model in section ??. What intuitively

accounts for the similarity?

Answer: The share received by the first proposer is the same as what

we derived in equation (11.8). The intuition is that the same forces are

at work: the larger the discount factor the more the proposer needs to

give away, and the more people there are, the more he has to give away.

Still, he gets to keep at least 1
2
because of the competitive nature of the

situation in which the responders are put. ¥


