Subjective probability

Zola Donovan¹ Marcela Mera Trujillo²

Lane Department of Computer Science and Electrical Engineering West Virginia University, Morgantown, WV

Department of Mathematics, West Virginia University, Morgantown, WV

November 17, 2016

2 State-dependent utilities

2 State-dependent utilities

2 State-dependent utilities

The Dutch Book theorem

Minimal subjectivism

Subjective probability

Subjective probability

Subjective probability

The main idea in the subjective approach

• Probability is a kind of mental phenomenon.

Subjective probability

- Probability is a kind of mental phenomenon.
- Probabilities are not part of the external world.

Subjective probability

- Probability is a kind of mental phenomenon.
- Probabilities are not part of the external world.
 - They are entities that human beings somehow create in their minds.

Subjective probability

- Probability is a kind of mental phenomenon.
- Probabilities are not part of the external world.
 - They are entities that human beings somehow create in their minds.
- This should not be taken to mean that any subjective degree of belief is a probability.

Subjective probability

Subjective probability

Subjective probability

Subjective probabilities can vary across people.

• One person's degree of belief in something may be different from another person's.

Subjective probability

- One person's degree of belief in something may be different from another person's.
- When two decision makers hold different subjective probabilities, they just happen to believe something to different degrees.

Subjective probability

- One person's degree of belief in something may be different from another person's.
- When two decision makers hold different subjective probabilities, they just happen to believe something to different degrees.
 - It does not follow that at least one person has to be wrong.

Subjective probability

- One person's degree of belief in something may be different from another person's.
- When two decision makers hold different subjective probabilities, they just happen to believe something to different degrees.
 - It does not follow that at least one person has to be wrong.
- According to the pioneering subjectivist Bruno de Finetti, "Probability does not exist."

Subjective probability

- One person's degree of belief in something may be different from another person's.
- When two decision makers hold different subjective probabilities, they just happen to believe something to different degrees.
 - It does not follow that at least one person has to be wrong.
- According to the pioneering subjectivist Bruno de Finetti, "Probability does not exist."
- The key idea in modern subjective probability theory (Ramsey, de Finetti and Savage) is to introduce an ingenious way in which subjective probabilities can be measured.

Subjective probability

- One person's degree of belief in something may be different from another person's.
- When two decision makers hold different subjective probabilities, they just happen to believe something to different degrees.
 - It does not follow that at least one person has to be wrong.
- According to the pioneering subjectivist Bruno de Finetti, "Probability does not exist."
- The key idea in modern subjective probability theory (Ramsey, de Finetti and Savage) is to introduce an ingenious way in which subjective probabilities can be measured.
- The measurement process is based on the insight that the degree to which a decision maker believes something is closely linked to his or her behavior.

Subjective probability

Subjective probability

Subjective probability

Savage's representation theorem

• Let *S* = {*s*₁, *s*₂,...} be a set of states of the world with subsets *A*, *B*,.... The latter can be thought of as events.

Subjective probability

- Let *S* = {*s*₁, *s*₂,...} be a set of states of the world with subsets *A*, *B*,.... The latter can be thought of as events.
- The set $X = \{x_1, x_2, ...\}$ is a set of outcomes.

Subjective probability

- Let $S = \{s_1, s_2, ...\}$ be a set of states of the world with subsets A, B, The latter can be thought of as events.
- The set $X = \{x_1, x_2, \ldots\}$ is a set of outcomes.
- Acts are conceived of as functions *f*, *g*, ... from *S* to *X*.

Subjective probability

- Let $S = \{s_1, s_2, ...\}$ be a set of states of the world with subsets A, B, The latter can be thought of as events.
- The set $X = \{x_1, x_2, \ldots\}$ is a set of outcomes.
- Acts are conceived of as functions *f*, *g*, ... from *S* to *X*.
- The expression *f* ≥ *g* means that act *f* is at least as preferred as act *g*. (Indifference is the special case in which *f* ≥ *g* and *g* ≥ *f*.)

Subjective probability

- Let *S* = {*s*₁, *s*₂,...} be a set of states of the world with subsets *A*, *B*,.... The latter can be thought of as events.
- The set $X = \{x_1, x_2, ...\}$ is a set of outcomes.
- Acts are conceived of as functions *f*, *g*, ... from *S* to *X*.
- The expression *f* ≥ *g* means that act *f* is at least as preferred as act *g*. (Indifference is the special case in which *f* ≥ *g* and *g* ≥ *f*.)
- We say that *f* and *g* agree with each other in the set of states *B* if and only if *f*(*s*) = *g*(*s*) for all *s* ∈ *B*.

Subjective probability

Subjective probability

Savage's axioms

Z. Donovan, M. Mera Trujillo Subjective probability

Subjective probability

Savage's axioms

SAV 1 \geq is a complete and transitive relation.

Subjective probability

- SAV 1 \geq is a complete and transitive relation.
- SAV 2 If f, g and f', g' are such that

Subjective probability

- SAV 1 \geq is a complete and transitive relation.
- SAV 2 If f, g and f', g' are such that
 - 1 in $\neg B$, *f* agrees with *g*, and *f'* agrees with *g'*,

Subjective probability

- SAV 1 \geq is a complete and transitive relation.
- SAV 2 If f, g and f', g' are such that
 - 1 in $\neg B$, *f* agrees with *g*, and *f'* agrees with *g'*,
 - 2 in B, f agrees with f', and g agrees with g', and

Subjective probability

- SAV 1 \geq is a complete and transitive relation.
- SAV 2 If f, g and f', g' are such that
 - 1 in $\neg B$, *f* agrees with *g*, and *f'* agrees with *g'*,
 - 2 in B, f agrees with f', and g agrees with g', and
 - 3 $f \ge g$;

Subjective probability

- SAV 1 \geq is a complete and transitive relation.
- SAV 2 If f, g and f', g' are such that

```
1 in \neg B, f agrees with g, and f' agrees with g',

2 in B, f agrees with f', and g agrees with g', and

3 f \ge g;
```

```
then f' \ge g'.
```

Subjective probability

Savage's axioms

SAV 1 \geq is a complete and transitive relation.

SAV 2 If f, g and f', g' are such that

1 in $\neg B$, *f* agrees with *g*, and *f'* agrees with *g'*,

2 in B, f agrees with f', and g agrees with g', and

3 $f \ge g$;

then $f' \ge g'$.

SAV 3 If f(s) = x, f'(s) = x' for every $s \in B$, and *B* is not null, then $f \ge f'$ given *B*, if and only if $x \ge x'$.

Subjective probability

- SAV 1 \geq is a complete and transitive relation.
- SAV 2 If f, g and f', g' are such that
 - 1 in $\neg B$, *f* agrees with *g*, and *f'* agrees with *g'*,
 - 2 in B, f agrees with f', and g agrees with g', and
 - 3 $f \ge g$;
 - then $f' \ge g'$.
- SAV 3 If f(s) = x, f'(s) = x' for every $s \in B$, and *B* is not null, then $f \ge f'$ given *B*, if and only if $x \ge x'$.
- SAV 4 For every *A* and *B* it holds that *A* is not more probable than *B* or *B* is not more probable than *A*.
Subjective probability

Savage's axioms

- SAV 1 \geq is a complete and transitive relation.
- SAV 2 If f, g and f', g' are such that
 - 1 in $\neg B$, *f* agrees with *g*, and *f'* agrees with *g'*,
 - 2 in B, f agrees with f', and g agrees with g', and
 - 3 $f \ge g$;
 - then $f' \ge g'$.
- SAV 3 If f(s) = x, f'(s) = x' for every $s \in B$, and B is not null, then $f \ge f'$ given B, if and only if $x \ge x'$.
- SAV 4 For every *A* and *B* it holds that *A* is not more probable than *B* or *B* is not more probable than *A*.
- SAV 5 It is false that for all outcomes $x, x', x \ge x'$.

Subjective probability

Savage's axioms

- SAV 1 \geq is a complete and transitive relation.
- SAV 2 If f, g and f', g' are such that
 - 1 in $\neg B$, *f* agrees with *g*, and *f'* agrees with *g'*,
 - 2 in B, f agrees with f', and g agrees with g', and
 - 3 $f \ge g$;

then $f' \ge g'$.

- SAV 3 If f(s) = x, f'(s) = x' for every $s \in B$, and B is not null, then $f \ge f'$ given B, if and only if $x \ge x'$.
- SAV 4 For every *A* and *B* it holds that *A* is not more probable than *B* or *B* is not more probable than *A*.
- SAV 5 It is false that for all outcomes $x, x', x \ge x'$.
- SAV 6 Suppose it is false that $f \ge g$; then, for every x, there is a (finite) partition of S such that, if g' agrees with g and f' agrees with f except on an arbitrary element of the partition, g' and f' being equal to x there,

Subjective probability

Savage's axioms

- SAV 1 \geq is a complete and transitive relation.
- SAV 2 If f, g and f', g' are such that
 - 1 in $\neg B$, *f* agrees with *g*, and *f'* agrees with *g'*,
 - 2 in B, f agrees with f', and g agrees with g', and
 - 3 $f \ge g$;

then $f' \ge g'$.

- SAV 3 If f(s) = x, f'(s) = x' for every $s \in B$, and B is not null, then $f \ge f'$ given B, if and only if $x \ge x'$.
- SAV 4 For every *A* and *B* it holds that *A* is not more probable than *B* or *B* is not more probable than *A*.
- SAV 5 It is false that for all outcomes $x, x', x \ge x'$.
- SAV 6 Suppose it is false that $f \ge g$; then, for every *x*, there is a (finite) partition of *S* such that, if g' agrees with g and f' agrees with f except on an arbitrary element of the partition, g' and f' being equal to *x* there, then it will be false that $f' \ge g$ or $f \ge g'$.

Subjective probability

Subjective probability

Theorem 1

Subjective probability

Theorem 1

(Savage's theorem)

• There exists a probability function p and a real-valued utility function u, such that:

Subjective probability

Theorem 1

- There exists a probability function p and a real-valued utility function u, such that:
 - (1) $f \ge g$ if and only if $\int [u(f(s)) \cdot p(s)] ds > \int [u(g(s)) \cdot p(s)] ds$.

Subjective probability

Theorem 1

- There exists a probability function p and a real-valued utility function u, such that:
 - f ≥ g if and only if ∫[u(f(s)) · p(s)]ds > ∫[u(g(s)) · p(s)]ds. Furthermore, for every other function u' satisfying (1), there are numbers c > 0 and d such that:

Subjective probability

Theorem 1

- There exists a probability function p and a real-valued utility function u, such that:
 - (1) f ≥ g if and only if ∫[u(f(s)) · p(s)]ds > ∫[u(g(s)) · p(s)]ds. Furthermore, for every other function u' satisfying (1), there are numbers c > 0 and d such that:
 - (2) $u' = c \cdot u + d$.

State-dependent utilities

State-dependent utilities

Example 2

Z. Donovan, M. Mera Trujillo Subjective probability

State-dependent utilities

Example 2

 Imagine that you are standing next to James Bond. He is about to disarm a bomb, which has been programmed to go off within a few seconds.

State-dependent utilities

- Imagine that you are standing next to James Bond. He is about to disarm a bomb, which has been programmed to go off within a few seconds.
- It is too late to escape; if Bond fails to disarm the bomb, both of you will die.

State-dependent utilities

- Imagine that you are standing next to James Bond. He is about to disarm a bomb, which has been programmed to go off within a few seconds.
- It is too late to escape; if Bond fails to disarm the bomb, both of you will die.
- Now ask yourself what your subjective probability is that Bond will manage to disarm the bomb before it goes off.

State-dependent utilities

- Imagine that you are standing next to James Bond. He is about to disarm a bomb, which has been programmed to go off within a few seconds.
- It is too late to escape; if Bond fails to disarm the bomb, both of you will die.
- Now ask yourself what your subjective probability is that Bond will manage to disarm the bomb before it goes off.
- Since you are now familiar with Savage's theory, you are prepared to state a preference between the following gambles:

State-dependent utilities

- Imagine that you are standing next to James Bond. He is about to disarm a bomb, which has been programmed to go off within a few seconds.
- It is too late to escape; if Bond fails to disarm the bomb, both of you will die.
- Now ask yourself what your subjective probability is that Bond will manage to disarm the bomb before it goes off.
- Since you are now familiar with Savage's theory, you are prepared to state a preference between the following gambles:
 - A You win \$100 if Bond manages to disarm the bomb and nothing otherwise.

State-dependent utilities

- Imagine that you are standing next to James Bond. He is about to disarm a bomb, which has been programmed to go off within a few seconds.
- It is too late to escape; if Bond fails to disarm the bomb, both of you will die.
- Now ask yourself what your subjective probability is that Bond will manage to disarm the bomb before it goes off.
- Since you are now familiar with Savage's theory, you are prepared to state a preference between the following gambles:
 - A You win \$100 if Bond manages to disarm the bomb and nothing otherwise.
 - B You win nothing if Bond manages to disarm the bomb and \$100 if the bomb goes off.

State-dependent utilities

State-dependent utilities

State-dependent utilities

The problem illustrated by the James Bond example

 Utilities are sometimes state-dependent, although Savage's theory presupposes that utilities are state-independent.

State-dependent utilities

- Utilities are sometimes state-dependent, although Savage's theory presupposes that utilities are state-independent.
- That utilities are state-dependent means that the agent's desire for an outcome depends on which state of the world happens to be the true state.

State-dependent utilities

- Utilities are sometimes state-dependent, although Savage's theory presupposes that utilities are state-independent.
- That utilities are state-dependent means that the agent's desire for an outcome depends on which state of the world happens to be the true state.
- A natural reaction to the James Bond problem is to argue that one should simply add the assumption that utilities have to be state-independent.

State-dependent utilities

- Utilities are sometimes state-dependent, although Savage's theory presupposes that utilities are state-independent.
- That utilities are state-dependent means that the agent's desire for an outcome depends on which state of the world happens to be the true state.
- A natural reaction to the James Bond problem is to argue that one should simply add the assumption that utilities have to be state-independent.
- Then the James Bond example could be ruled out as an illegitimate formal representation of the decision problem, since the utility of money seems to be state-dependent.

State-dependent utilities

State-dependent utilities

Example 3

Z. Donovan, M. Mera Trujillo Subjective probability

State-dependent utilities

Example 3

• Suppose that the agent is indifferent between the three lotteries in the following table:

State-dependent utilities

Example 3

• Suppose that the agent is indifferent between the three lotteries in the following table:

	State 1	State 2	State 3
Lottery 1	\$100	\$0	\$0
Lottery 2	\$0	\$100	\$0
Lottery 3	\$0	\$0	\$100

State-dependent utilities

Example 3

• Suppose that the agent is indifferent between the three lotteries in the following table:

	State 1	State 2	State 3
Lottery 1	\$100	\$0	\$0
Lottery 2	\$0	\$100	\$0
Lottery 3	\$0	\$0	\$100

We then have to conclude that the agent considers the probability of each state to be 1/3.

State-dependent utilities

Example 3

• Suppose that the agent is indifferent between the three lotteries in the following table:

	State 1	State 2	State 3
Lottery 1	\$100	\$0	\$0
Lottery 2	\$0	\$100	\$0
Lottery 3	\$0	\$0	\$100

We then have to conclude that the agent considers the probability of each state to be 1/3.

Also suppose that the agent is indifferent between the three lotteries in the next table:

State-dependent utilities

Example 3

• Suppose that the agent is indifferent between the three lotteries in the following table:

	State 1	State 2	State 3
Lottery 1	\$100	\$0	\$0
Lottery 2	\$0	\$100	\$0
Lottery 3	\$0	\$0	\$100

We then have to conclude that the agent considers the probability of each state to be 1/3.

Also suppose that the agent is indifferent between the three lotteries in the next table:

	State 1	State 2	State 3
Lottery 1	¥100	\$0	\$0
Lottery 2	\$0	¥125	\$0
Lottery 3	\$0	\$0	¥150

State-dependent utilities

Example 3

• Suppose that the agent is indifferent between the three lotteries in the following table:

	State 1	State 2	State 3
Lottery 1	\$100	\$0	\$0
Lottery 2	\$0	\$100	\$0
Lottery 3	\$0	\$0	\$100

We then have to conclude that the agent considers the probability of each state to be 1/3.

Also suppose that the agent is indifferent between the three lotteries in the next table:

	State 1	State 2	State 3
Lottery 1	¥100	\$0	\$0
Lottery 2	\$0	¥125	\$0
Lottery 3	\$0	\$0	¥150

Given that the decision maker's marginal utility for money > 0, then his subjective probability of $s_1 >$ his subjective probability of $s_2 >$ his subjective probability of s_3 .

State-dependent utilities

Example 3

• Suppose that the agent is indifferent between the three lotteries in the following table:

	State 1	State 2	State 3
Lottery 1	\$100	\$0	\$0
Lottery 2	\$0	\$100	\$0
Lottery 3	\$0	\$0	\$100

We then have to conclude that the agent considers the probability of each state to be 1/3.

• Also suppose that the agent is indifferent between the three lotteries in the next table:

	State 1	State 2	State 3
Lottery 1	¥100	\$0	\$0
Lottery 2	\$0	¥125	\$0
Lottery 3	\$0	\$0	¥150

Given that the decision maker's marginal utility for money > 0, then his subjective probability of s_1 > his subjective probability of s_2 > his subjective probability of s_3 . This contradicts the case that the probability of each state is 1/3.

State-dependent utilities

Example 3

Suppose that the agent is indifferent between the three lotteries in the following table:

	State 1	State 2	State 3
Lottery 1	\$100	\$0	\$0
Lottery 2	\$0	\$100	\$0
Lottery 3	\$0	\$0	\$100

We then have to conclude that the agent considers the probability of each state to be 1/3.

Also suppose that the agent is indifferent between the three lotteries in the next table:

	State 1	State 2	State 3
Lottery 1	¥100	\$0	\$0
Lottery 2	\$0	¥125	\$0
Lottery 3	\$0	\$0	¥150

Given that the decision maker's marginal utility for money > 0, then his subjective probability of s_1 > his subjective probability of s_2 > his subjective probability of s_3 . This contradicts the case that the probability of each state is 1/3.

 If the three states denote three possible exchange rates between dollars and yen, this would render the decision maker's preferences perfectly coherent.

The Dutch Book theorem

The Dutch Book theorem

Theorem 4

The Dutch Book theorem

The Dutch Book theorem

Theorem 4

The Dutch Book theorem

 (de Finetti's part) If a player's betting quotients violate the probability axioms, then she can be exploited in a Dutch Book that leads to a sure loss.
The Dutch Book theorem

The Dutch Book theorem

The Dutch Book theorem

 The Dutch Book theorem is commonly thought to provide an alternative route for justifying the subjective interpretation of probability.

The Dutch Book theorem

- The Dutch Book theorem is commonly thought to provide an alternative route for justifying the subjective interpretation of probability.
- The theorem shows that subjective theories of probability are no less respectable from a mathematical point of view than objective ones.

The Dutch Book theorem

- The Dutch Book theorem is commonly thought to provide an alternative route for justifying the subjective interpretation of probability.
- The theorem shows that subjective theories of probability are no less respectable from a mathematical point of view than objective ones.
- A Dutch Book is a combination of bets that is certain to lead to a loss.

The Dutch Book theorem

- The Dutch Book theorem is commonly thought to provide an alternative route for justifying the subjective interpretation of probability.
- The theorem shows that subjective theories of probability are no less respectable from a mathematical point of view than objective ones.
- A Dutch Book is a combination of bets that is certain to lead to a loss.
- The Dutch Book theorem states that a decision maker's degrees of belief satisfy the probability axioms if and only if no Dutch Book can be made against her.

The Dutch Book theorem

- The Dutch Book theorem is commonly thought to provide an alternative route for justifying the subjective interpretation of probability.
- The theorem shows that subjective theories of probability are no less respectable from a mathematical point of view than objective ones.
- A Dutch Book is a combination of bets that is certain to lead to a loss.
- The Dutch Book theorem states that a decision maker's degrees of belief satisfy the probability axioms if and only if no Dutch Book can be made against her.
 - This theorem is often taken to constitute an important alternative to Savage's axiomatic defense of subjective probability.

The Dutch Book theorem

- The Dutch Book theorem is commonly thought to provide an alternative route for justifying the subjective interpretation of probability.
- The theorem shows that subjective theories of probability are no less respectable from a mathematical point of view than objective ones.
- A Dutch Book is a combination of bets that is certain to lead to a loss.
- The Dutch Book theorem states that a decision maker's degrees of belief satisfy the probability axioms if and only if no Dutch Book can be made against her.
 - This theorem is often taken to constitute an important alternative to Savage's axiomatic defense of subjective probability.
 - The Dutch Book theorem emphasizes the intimate link between preferences over uncertain options ('bets') and degrees of belief in a manner similar to Savage's axiomatic approach.

The Dutch Book theorem

- The Dutch Book theorem is commonly thought to provide an alternative route for justifying the subjective interpretation of probability.
- The theorem shows that subjective theories of probability are no less respectable from a mathematical point of view than objective ones.
- A Dutch Book is a combination of bets that is certain to lead to a loss.
- The Dutch Book theorem states that a decision maker's degrees of belief satisfy the probability axioms if and only if no Dutch Book can be made against her.
 - This theorem is often taken to constitute an important alternative to Savage's axiomatic defense of subjective probability.
 - The Dutch Book theorem emphasizes the intimate link between preferences over uncertain options ('bets') and degrees of belief in a manner similar to Savage's axiomatic approach.
 - No utility function is derived;

The Dutch Book theorem

- The Dutch Book theorem is commonly thought to provide an alternative route for justifying the subjective interpretation of probability.
- The theorem shows that subjective theories of probability are no less respectable from a mathematical point of view than objective ones.
- A Dutch Book is a combination of bets that is certain to lead to a loss.
- The Dutch Book theorem states that a decision maker's degrees of belief satisfy the probability axioms if and only if no Dutch Book can be made against her.
 - This theorem is often taken to constitute an important alternative to Savage's axiomatic defense of subjective probability.
 - The Dutch Book theorem emphasizes the intimate link between preferences over uncertain options ('bets') and degrees of belief in a manner similar to Savage's axiomatic approach.
 - No utility function is derived; de Finetti simply took for granted that the decision maker's utility of money and other goods is linear.

The Dutch Book theorem

- The Dutch Book theorem is commonly thought to provide an alternative route for justifying the subjective interpretation of probability.
- The theorem shows that subjective theories of probability are no less respectable from a mathematical point of view than objective ones.
- A Dutch Book is a combination of bets that is certain to lead to a loss.
- The Dutch Book theorem states that a decision maker's degrees of belief satisfy the probability axioms if and only if no Dutch Book can be made against her.
 - This theorem is often taken to constitute an important alternative to Savage's axiomatic defense of subjective probability.
 - The Dutch Book theorem emphasizes the intimate link between preferences over uncertain options ('bets') and degrees of belief in a manner similar to Savage's axiomatic approach.
 - No utility function is derived; de Finetti simply took for granted that the decision maker's utility of money and other goods is linear. Many scholars have pointed out that this is a very strong assumption.

Minimal subjectivism

Minimal subjectivism

Minimal subjectivism

DeGroot's minimal subjectivism

• Let *S* be the sample and let *E* be a set of events to which probabilities are to be assigned, and let *X*, *Y*,... be subsets of *E*.

Minimal subjectivism

- Let *S* be the sample and let *E* be a set of events to which probabilities are to be assigned, and let *X*, *Y*,... be subsets of *E*.
- The relation 'more likely to occur than' is a binary relation between pairs of events; this relation is a primitive concept in DeGroot's theory.

Minimal subjectivism

- Let *S* be the sample and let *E* be a set of events to which probabilities are to be assigned, and let *X*, *Y*,... be subsets of *E*.
- The relation 'more likely to occur than' is a binary relation between pairs of events; this relation is a primitive concept in DeGroot's theory.
- X ≻ Y means that X is judged to be more likely to occur than Y, and X ∼ Y means that neither X ≻ Y nor Y ≻ X.

Minimal subjectivism

- Let *S* be the sample and let *E* be a set of events to which probabilities are to be assigned, and let *X*, *Y*,... be subsets of *E*.
- The relation 'more likely to occur than' is a binary relation between pairs of events; this
 relation is a primitive concept in DeGroot's theory.
- X ≻ Y means that X is judged to be more likely to occur than Y, and X ∼ Y means that neither X ≻ Y nor Y ≻ X.
- The formula $X \ge Y$ is an abbreviation for 'either $X \succ Y$ or $X \sim Y$, but not both'.

Minimal subjectivism

Minimal subjectivism

Minimal subjectivism

DeGroot's minimal subjectivism axioms (for all X, Y, ... in E)

QP 1 $X \ge \emptyset$ and $S \succ \emptyset$

Minimal subjectivism

DeGroot's minimal subjectivism axioms (for all X, Y, ... in E)

QP 1 $X \ge \emptyset$ and $S \succ \emptyset$

QP 2 For any two events X and Y, exactly one of the following three relations hold: $X \succ Y$, or $Y \succ X$, or $X \sim Y$.

Minimal subjectivism

- QP 1 $X \ge \emptyset$ and $S \succ \emptyset$
- QP 2 For any two events X and Y, exactly one of the following three relations hold: $X \succ Y$, or $Y \succ X$, or $X \sim Y$.
- QP 3 If X_1 , X_2 , Y_1 and Y_2 are four events such that $X_1 \cap X_2 = Y_1 \cap Y_2 = \emptyset$ and $Y_i \ge X_i$ for i = 1, 2, then $Y_1 \cup Y_2 \ge X_1 \cup X_2$.

Minimal subjectivism

- QP 1 $X \ge \emptyset$ and $S \succ \emptyset$
- QP 2 For any two events X and Y, exactly one of the following three relations hold: $X \succ Y$, or $Y \succ X$, or $X \sim Y$.
- QP 3 If X_1 , X_2 , Y_1 and Y_2 are four events such that $X_1 \cap X_2 = Y_1 \cap Y_2 = \emptyset$ and $Y_i \ge X_i$ for i = 1, 2, then $Y_1 \cup Y_2 \ge X_1 \cup X_2$. If, in addition, either $Y_1 \succ X_1$ or $Y_2 \succ X_2$, then $Y_1 \cup Y_2 \succ X_1 \cup X_2$.

Minimal subjectivism

- QP 1 $X \ge \emptyset$ and $S \succ \emptyset$
- QP 2 For any two events X and Y, exactly one of the following three relations hold: $X \succ Y$, or $Y \succ X$, or $X \sim Y$.
- QP 3 If X_1 , X_2 , Y_1 and Y_2 are four events such that $X_1 \cap X_2 = Y_1 \cap Y_2 = \emptyset$ and $Y_i \ge X_i$ for i = 1, 2, then $Y_1 \cup Y_2 \ge X_1 \cup X_2$. If, in addition, either $Y_1 \succ X_1$ or $Y_2 \succ X_2$, then $Y_1 \cup Y_2 \succ X_1 \cup X_2$.
- QP 4 If $X_1 \supset X_2 \supset ...$ and Y is some event such that $X_i \ge Y$ for i = 1, 2, ..., then $X_1 \cap X_2 \cap ... \ge Y$.

Minimal subjectivism

- QP 1 $X \ge \emptyset$ and $S \succ \emptyset$
- QP 2 For any two events X and Y, exactly one of the following three relations hold: $X \succ Y$, or $Y \succ X$, or $X \sim Y$.
- QP 3 If X_1 , X_2 , Y_1 and Y_2 are four events such that $X_1 \cap X_2 = Y_1 \cap Y_2 = \emptyset$ and $Y_i \ge X_i$ for i = 1, 2, then $Y_1 \cup Y_2 \ge X_1 \cup X_2$. If, in addition, either $Y_1 \succ X_1$ or $Y_2 \succ X_2$, then $Y_1 \cup Y_2 \succ X_1 \cup X_2$.
- QP 4 If $X_1 \supset X_2 \supset ...$ and Y is some event such that $X_i \ge Y$ for i = 1, 2, ..., then $X_1 \cap X_2 \cap ... \ge Y$.
- QP 5 There exists a (subjective) random variable which has a uniform distribution on the interval [0, 1].

Minimal subjectivism

Minimal subjectivism

Theorem 5

Z. Donovan, M. Mera Trujillo Subjective probability

Minimal subjectivism

Theorem 5

• QP 1-5 are jointly sufficient and necessary for the existence of a unique function p

Minimal subjectivism

Theorem 5

• QP 1-5 are jointly sufficient and necessary for the existence of a unique function p that assigns a real number in the interval [0,1] to all elements in E,

Minimal subjectivism

Theorem 5

 QP 1-5 are jointly sufficient and necessary for the existence of a unique function p that assigns a real number in the interval [0,1] to all elements in E, such that X ≥ Y if and only if p(X) ≥ p(Y). In addition, p satisfies Kolmogorov's axioms.

Minimal subjectivism

Minimal subjectivism

Lemma 6

Z. Donovan, M. Mera Trujillo Subjective probability

Minimal subjectivism

Lemma 6

• If x is any element in E, then there exists a unique number a^* $(1 \ge a^* \ge 0)$ such that $x \sim G[0, a^*]$.