
Computational Geometry - Homework I

K. Subramani
LCSEE,

West Virginia University,
Morgantown, WV

{ksmani@csee.wvu.edu}

1 Instructions

1. The homework is due on February 28, in class. Each question is worth 5 points.

2. Attempt as many problems as you can. You will be given partial credit, as per the policy discussed in class.

2 Problems

1. Tail Bounds: In class, we established that the RANDOMIZED-QUICKSELECT() algorithm runs in expected time
O(n), when asked to find the kth largest element in an array of n elements. Argue that there exists a constant c, such
that the probability that more than c · n · log n comparisons are made in a run of RANDOMIZED-QUICKSELECT() is
at most 1

n
.

2. Algorithm Design: Given a set of n points in the plane, devise an algorithm that runs to check whether there exists a
subset of 3 points, which are collinear. Your algorithm should run in time O(n2 · log n).

3. Convex Hulls:

(a) Let P be a set of points in the plane. Let P be a convex polygon, whose vertices are points from P and which
contains all the points in P . Prove that P is uniquely defined and that it is the intersection of all convex sets
containing P .

(b) Let p = (px, py) and q = (qx, qy) be two points in the plane. We wish to test whether the points r = (rx, ry) lies
to the left or right of the segment p̄q. Using first principles, explain how the sign of the determinant of D can be
used for this purpose, where,

D =





1 px py

1 qx qy

1 rx ry





4. Line Intersection: Let S be a set of n disjoint segments in the place and let p be any point which does not lie on any
segment in S. The goal is to determine all the line segments that are visible from p. Note that a segment l in S is
visible from p, if there exists a point q on l, such that the segment pq intersects only segment l. Devise an algorithm
that runs in time O(n · log n) for this problem.

1



5. Backwards Analysis: Professor Amarsen proposes the following algorithm to find the maximum element in an array
of n elements.

Function FIND-MAX(A, n)

1: if (n = 1) then
2: return(A[1])
3: else
4: Extract an element randomly from A and call it x. {x is no longer in A.}
5: y =FIND-MAX(A, n− 1)
6: if (x ≤ y) then
7: return(y)
8: else
9: Compare x with all the remaining elements in A and return the maximum

10: end if
11: end if

Algorithm 2.1: Finding Maximum in Paranoid Fashion

Is this algorithm correct? What is the worst-case number of comparisons on a run? How many comparisons are made
in the expected case?

2


