
Computational Geometry - Homework I (Solutions)

K. Subramani
LCSEE,

West Virginia University,
Morgantown, WV

{ksmani@csee.wvu.edu}

1 Problems

1. Tail Bounds: In class, we established that the RANDOMIZED-QUICKSELECT() algorithm runs in expected time
O(n), when asked to find the kth largest element in an array of n elements. Argue that there exists a constant c, such
that the probability that more than c · n · log n comparisons are made in a run of RANDOMIZED-QUICKSELECT() is
at most 1

n
.

Solution: For this problem, we will need the Chernoff bound.

Theorem 1.1 Let X1, X2, . . ., Xn denote the indicator random variables of n Bernoulli trials, each with probability
of success p. The random variable X =

∑n

i=1 Xi is a Binomial random variable with mean µ =
∑n

i=1 p = np. The
Chernoff bound states that for any δ > 0,

Pr[X − np ≤ −δ] ≤ e
−2·δ2

n

See [MR95] or John Lafferty’s notes for the proof of the above theorem.

We can think of the execution of RANDOMIZED-QUICKSELECT() in terms of its computation tree. At the root,
there is a node containing all the elements; after the first pivot operation, two children are created, with the left
child containing elements less than the pivot element and the right child containing the remaining elements. The
crucial observation is that unlike RANDOMIZED-QUICKSORT(), the computation proceeds along one branch only;
this branch is called the active branch. Let us declare a node S on the active branch to be good, if either it is a leaf or
both its children have cardinalities between 1

4 · |S| and 3
4 · |S|. Observe that an active branch node has probability at

least 1
2 of being good. Secondly, there cannot be more than k = log 4

3
n good nodes on any root-to-leaf path. (Why?)

Assume that the active branch has r · k nodes in total. Clearly, the expected number of good nodes on this path is
r·k
2 . We are interested in the value of r, such that the probability of not having at least k good nodes is less than 1

n
.

We associate a random variable Xi, with the node of the active branch at level i of the computation tree. Xi is set to
1, if the corresponding node is good and 0, otherwise. Thus the total number of good nodes is X =

∑r·k

i=1 Xi. Now,
observe that Z is a binomial random variable and we can hence apply Theorem (1.1) to write

Pr[X ≤ k] = Pr[X ≤ (
r · k

2
− k · (

r

2
− 1))]

≤ e
−2·k2

·(r
2

−1)2

r·k

≤ e
−2·k·(r

2
−1)2

r

1

In order to get Pr[X ≤ k] ≤ 1
n

, we must have,

e
−2·k·(r

2
−1)2

r ≤
1

n

⇒
−2 · k · (r

2 − 1)2

r
≤ − lnn

⇒
2 · k · (r

2 − 1)2

r
≥ lnn

⇒
2 · 3.45 lnn · (r

2 − 1)2

r
≥ lnn, exploiting logarithm identities

⇒ 7 · [
r2

4
+ 1− r] ≤ r

⇒
7

4
· r2 − 8 · r + 7 ≥ 0

Solving for r, we get r = (8±3.87)
7
2

, from which we conclude that any r > 4 should suffice. In other words, with

probability at least (1− 1
n
), the depth of the active branch is at most 5 · log 4

3
n.

So what is the total number of comparisons performed by the RANDOMIZED-QUICKSELECT() algorithm, given that
the depth of the active branch? Given that the number of comparisons at any level is at most n, it follows that the total
number of comparisons is at most 5 · n · log 4

3
n. 2

2

2. Algorithm Design: Given a set of n points in the plane, devise an algorithm that runs to check whether there exists a
subset of 3 points, which are collinear. Your algorithm should run in time O(n2 · log n).

Solution: Let P denote the set of points. The key observation is that if three points p, q and r are collinear, with q
being the central point, then the slopes of the segments p̄q and q̄r are identical. This gives us the following algorithm:

Function CHECK-COLLINEAR(P, n)

1: if (n ≤ 2) then
2: return(false)
3: else
4: Sort the points in P based on their x-coordinates.
5: for (i = 1 to n) do
6: Compute the slopes of the segments (¯P [i], P [j]) for each j = 1, 2, i − 1, i + 1, i + 2, . . . , n and store these in an

auxiliary array A[i].
7: end for
8: for (i = 1 to n) do
9: Sort the auxiliary array A[i].

10: end for
11: for (i = 1 to n− 2) do
12: for (j = i+ 1 to n− 1) do
13: Let x = slope(¯P [i], P [j]).
14: Perform a binary search on A[j] to check if there is a point P [k] such that the slope of segment (¯P [j], P [k]) = x.
15: if (such a point P [k] exists) then
16: “Points P [i], P [j] and P [k] are collinear.”
17: end if
18: end for
19: end for
20: Declare that no three points are collinear.
21: end if

Algorithm 1.1: Checking for collinearity

Analysis: Observe that sorting on the x-coordinate takesO(n·log n) time. Computing the slopes of all the segments
takes O(n2) time. Sorting all the auxiliary arrays takes O(n2 · log n) time. In Lines (11) through (19), the only non-
trivial action is performing the binary search and hence these lines can be implemented in O(n2 · log n) time. It
follows that Algorithm (1.1) takes O(n2 · log n) in the worst case. As an exercise, argue the correctness of this
algorithm, using induction.

2

3

3. Convex Hulls:

(a) Let P be a set of points in the place. Let P be a convex polygon, whose vertices are points from P and which
contains all the points in P . Prove that P is uniquely defined and that it is the intersection of all convex sets
containing P .

Solution: Let Q be a convex polygon that is distinct from P, such that its vertices are points from P and it contains
all the points in P . Since Q is distinct from P, we can assume without loss of generality, that there is a point in
Q, which does not lie in P; however, this immediately implies that there is a vertex of Q, which is not contained
in P and that contradicts the hypothesis. The case in which there is a point in P, which is not contained in Q is
handled similarly. We have thus proven that P is uniquely defined.

Let C denote the set of intersections of all convex sets containing the point set P . Let x ∈ C. Since P is a convex
polygon, we must have C ⊆ P and hence x ∈ P. Likewise, let x ∈ P. If x 6∈ C, then a vertex of P 6∈ C; however,
this contradicts the hypothesis that C was the intersection of sets containing P . 2

(b) Let p = (px, py) and q = (qx, qy) be two points in the plane. We wish to test whether the points r = (rx, ry) lies
to the left or right of the segment p̄q. Using first principles, explain how the sign of the determinant of D can be
used for this purpose, where,

D =

1 px py

1 qx qy

1 rx ry

Solution: The first principles reference is to the cross-product in vector algebra. The following theorem is easily
proved using vector algebra:

Theorem 1.2 Given two vectors p̄ and q̄, p̄× q̄ is positive if and only if p̄ is clockwise from q̄.

Observe that the vector representation of the segment p̄q, in the direction from p to q is ((qx − px), (qy − py)); we
denote this vector as ~pq. Likewise, ~pr is ((rx − px), (ry − py)). Now point r lies to the right of segment p̄q if and
only if a right turn is made at point q, along ~pq to get to point r. But this means that the vector ~pr is clockwise with
respect to the vector ~pq. This forces the cross-product ~pr × ~pq to be positive. Likewise, point r lies to the left of
segment pq if and only if a left turn is made at point q along ~pq to get to point r. But this means that the vector ~pr is
counter-clockwise with respect to the vector ~pq and hence the cross-product ~pr× ~pq is negative. It is straightforward
to verify that the determinant of D indeed represents the signed magnitude of the cross-product − ~pr × ~pq. Hence, if
the sign of det(D) is positive, we know that r lies to the left of p̄q and if it is negative, it lies to the right of p̄q. Of
course, if det(D) = 0, then the points p, q and r are collinear. 2

4

4. Line Intersection: Let S be a set of n disjoint segments in the place and let p be any point which does not lie on any
segment in S. The goal is to determine all the line segments that are visible from p. Note that a segment l in S is
visible from p, if there exists a point q on l, such that the segment pq intersects only segment l. Devise an algorithm
that runs in time O(n · log n) for this problem.

Solution: The key idea is to use a rotational sweep ray L, with p as the origin. As L completes a turn of 360◦ in the
anti-clockwise direction, it intersects various segments in S. Regardless of the number of segments that L intersects
at a point, the segment with the intersection point at the closest distance from p is definitely visibile from p. It is this
observation that is exploited in the angular sweep.

We make the following assumptions about the data:

(a) The origin is at point p; if not, simply translate the coordinate system.

(b) Let si denote the line-segment such that one of its end-points, say li, is the closest to p among all end-points of
line-segments. Using rotation, if necessary, we ensure that li is on the x-axis. li will be the start position for the
angular sweep.

(c) We assume that li is to the right of p; if not use reflection. Without loss of generality, we can assume that l + i

has the smaller y-coordinate of the two points representing si. Can you see why this is true?

(d) Every segment is represented by a record that stores both its end-points in polar form. Accordingly, segment si

in S is represented by the points li = (r1i , θ
1
i) and ui = (r2i , θ

2
i), where li is the point touched first in the angular

sweep. Note that in linear time, we can determine which end-point of every segment is touched first.

Proving that translation, rotation and reflection do not affect the solution to the problem at hand are easy exercises.

Using the convention that ui makes an angle of 0◦ at point p, sort all the end-points and place them in an event queue
Q. It is to be noted that Q only needs to support delete() operations, after the initial insertions and hence it can be
implemented a sorted linked list. There are precisely two types of events, viz., occurrence of the first end-point of
a segment and occurrence of the second end-point of a segment. In what follows, we describe how these events are
handled.

(a) If the extracted event is the first end-point of a segment sq , say lq = (r1q , θ
1
q), then insert sq into the sweep-status,

using the angle θq as the key, in exactly the same way, as line segments were inserted in the sweep status in the
line intersection problem. Essentially, we maintain a parametric polar representation of the segment and given
a particular angle, it is easy to compute the point on the segment, which is intersected by the sweep line. All
the line segments that intersect the sweep line are maintained in sorted order, in terms of their distance from the
origin p. Once the insertion is done, we check to determine the segment that is closest to p on the sweep line
and mark it as visible.

(b) If the extracted event is the second end-point of a segment st, say ut = (r1t , θ
1
t), then delete st from the sweep-

status. The deletion of st may cause a segment which was previously invisible to become visible. Perform the
appropriate check as in the case above.

It is a straightforward exercise to inductively prove that the above algorithm reports those and only those segments
that are visible from p.

The sweep-status line is maintained as a balanced binary search tree so that all the operations for handling end-points
take O(log n) time. The running time consists of the initial sort procedure which takes O(n · log n) time, followed
by a constant number of tree operations for each point in the event queue. Since no point is ever reinserted into the
event queue, the angular sweep determines the segments which are visible from p in O(n · log n) time. 2

5

5. Backwards Analysis: Professor Amarsen proposes the following algorithm to find the maximum element in an array
of n elements.

Function FIND-MAX(A, n)

1: if (n = 1) then
2: return(A[1])
3: else
4: Extract an element randomly from A and call it x. {x is no longer in A.}
5: y =FIND-MAX(A, n− 1)
6: if (x ≤ y) then
7: return(y)
8: else
9: Compare x with all the remaining elements in A and return the maximum

10: end if
11: end if

Algorithm 1.2: Finding Maximum in Paranoid Fashion

Is this algorithm correct? What is the worst-case number of comparisons on a run? How many comparisons are made
in the expected case?

Solution: The correctness of the algorithm can be proved inductively as follows: Clearly the algorithm is correct
when |A| = 1, i.e., the array has only one element. Assume that the algorithm works correctly when |A| = n − 1
(inductive hypothesis). Now consider the case in which A has n elements. By the inductive hypothesis, Line (5) of
the algorithm correctly computes the maximum of the array A, after one element has been deleted. Thus y contains
the maximum of the initial array, disregarding the element x, which was removed from the array. Now, if x is at most
y, then y is the maximum of the initial array (Line (7)) and if x is larger than y, then the comparison of x with all
the elements in A, ensures that the true maximum is returned. We thus see that in all cases, the algorithm correctly
returns the maximum element in array A. Using the first principle of induction, we conclude that the algorithm works
correctly.

Let T (n) denote the worst case number of comparisons on a run. The maximum number of comparisons occurs when
Line (9) is executed. Accordingly, we get the following recurrence:

T (1) = 1

T (n) = T (n− 1) + n

The solution to the above recurrence is T (n) = Θ(n2).

To analyze the number of comparisons in the expected case, we observe that Line (9) is executed if and only if the
element x which was extracted in Line (4) was the true maximum of the array. Consider the case in which |A| = i

and let T (i) denote the number of comparisons made in a call to FIND-MAX(A, i). Let Xi denote an indicator
variable, which is 1, if Line (9) is not executed and i, if Line (9) is executed. Observe that Pr[Xi = i] = 1

i
and hence

Pr[Xi = 1] = i−1
i

, since the element x is chosen randomly from the i elements in A.

The total number of comparisons in the call FIND-MAX(A, i) is therefore given by the recurrence:

T (1) = 1

T (i) = T (i− 1) +Xi

Thus, the total number of comparisons made in call to FIND-MAX(A, n) is: T (n) =
∑n

i=2 Xi + 1. (Why?) Since
we are interested in the expected number of comparisons, we observe that

E[T (n)] = E[

n
∑

i=2

Xi + 1]

6

= 1 +

n
∑

i=2

E[Xi]

= 1 +

n
∑

1=2

(
i− 1

i
· 1 +

1

i
· i)

= 1 +

n
∑

i=2

(2−
1

i
)

≤ 1 +
n

∑

i=1

(2−
1

i
)

= 1 + 2 · n−Hn

≤ 2 · n

We thus see that Algorithm (1.2) performs only a linear number of comparisons in the expected case. 2

References

[MR95] Rajeev Motwani and Prabhakar Raghavan. Randomized Algorithms. Cambridge University Press, Cambridge,
England, June 1995.

7

