Computational Geometry - Homework II

K. Subramani LCSEE, West Virginia University, Morgantown, WV {ksmani@csee.wvu.edu}

1 Instructions

- 1. The homework is due on March 28, in class. Each question is worth 5 points.
- 2. Attempt as many problems as you can. You will be given partial credit, as per the policy discussed in class.

2 Problems

- 1. Linear Programming: A simple polygon \mathcal{P} is said to be star-shaped, if it contains a point q, such that for all points $p \in \mathcal{P}$, the line segment \bar{pq} is contained in \mathcal{P} . Devise a linear time algorithm to decide if a polygon is star-shaped.
- 2. Orthogonal Range Searching: Let \mathcal{P} denote a set of n axis-parallel rectangles in the plane. Given a query rectangle $[x : x'] \times [y, y']$, the goal is to report all the rectangles in \mathcal{P} that are completely contained in the query rectangle. Describe a data structure for this problem that uses $O(n \cdot \log^3 n)$ storage and answers queries in time $O(\log^4 n + k)$, where k is the number of reported answers.
- 3. Point Location: Give an example of a set of n line segments and the order on them that makes the randomized trapezoidal algorithm create a search structure of size $\Theta(n^2)$ and having query time $\Theta(n)$, in the worst case.
- 4. **Point Location:** Describe a deterministic algorithm to compute the trapezoidal map of a set of n non-crossing segments in time $O(n \cdot \log n)$. *Hint: Use a variant of plane sweep.*
- 5. Voronoi Diagrams: Let \mathcal{P} denote a set of n points in the plane. Give an $O(n \cdot \log n)$ time algorithm to find for each point p in \mathcal{P} , another point in \mathcal{P} , that is closest to it.