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1 Problems

1. Induction: Consider the context-free grammar G = 〈V, T, P, S〉, where V = {S}, T = {0, 1}, and the productions
P are defined by:

S → 0S 1 | 1S 0 | S · S | λ

Argue that every string generated by this grammar is balanced, i.e., if w is derived from S, then n0(w) = n1(w).

Solution:

We use induction on the number of steps used in the shortest, leftmost derivation of w from S.

BASIS: Let w be derived from S in exactly one step. From the production rules, it is clear that w must be λ and hence
w is indeed balanced.

INDUCTIVE STEP: Assume that the theorem is true for all strings w, whose shortest leftomost derivations from S,
take at most n steps.

Now consider the case in which the shortest leftmost derivation of w from S takes n + 1 steps, where n ≥ 1. The
first step of the derivation must be one of S ⇒ SS, S ⇒ 0S1 or S ⇒ 1S0.

Assume that the first step of the derivation is S ⇒ 0S1. It follows that w = 0x1, where x is a string in Σ∗. Since
S ⇒∗ w, we must have S ⇒∗ x; however, the shortest leftmost derivation of x from S can take at most n steps. By
the inductive hypothesis, it follows that x is balanced. Consequently, w = 0x1 is also balanced.

An identical argument can be used for the case, in which the first step of the derivation is S ⇒ 1S0.

Finally, consider the case in which the first step of the derivation is S ⇒ SS. It follows that w can be broken up
into w1w2, such that S ⇒ w1 and S ⇒ w2. We cannot immediately apply the inductive hypothesis, since either
w1 or w2 could be λ and therefore the length of w is not altered. However, observe that we are focussing on the
shortest leftmost derivation of w from S. If either w1 or w2 is λ, then we have needlessly used an extra step in the
derivation and hence our derivation could not have been the shortest one. It therefore follows that neither w1 nor w2 is
λ. Now, the shortest leftmost derivations of w1 and w2 from S take strictly less than n+ 1 steps; as per the inductive
hypothesis, w1 and w2 are balanced. It therefore follows that w = w1 · w2 is also balanced.
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2. Closure Properties of Regular Languages: Let L1 and L2 be two regular languages. Is the language L3 = L1⊕L2

regular? Recall that given sets A and B, the set A⊕B is defined as the set that contains elements which belong to A,
but not to B and vice versa.

Solution: The key observation is that L3 can be expressed as: (L1 ∩ L
c
2) ∪ (L

c
1 ∩ L2). Since, L1 and L2 are regular,

so are Lc
1 and Lc

2. By using the fact that regular languages are closed under intersection, we infer that that L1 ∩ L
c
2

and Lc
1 ∩ L2 are also regular. It immediately follows that L3 is regular, since regular languages are closed under the

union operation as well. 2
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3. Decision Properties of Regular Languages: Let L denote a regular language. Describe an efficient decision proce-
dure to test whether L = L∗, assuming that the DFA for L is provided.

Solution: Let M denote the DFA for language L. Add λ-transitions from each final state of M to the start state to
get the λ-NFA N of L∗. (Convince yourself that the addition of λ-transitions in the manner specified does indeed
result in the λ-NFA of L∗.) Then, convert N into a DFA M1. It is straightforward to check whether the languages
represented by these two DFAs are identical, using the technique discussed in class. To wit,

(L1 = L2)↔ [((L1 ∩ L
c

2) ∪ (L
c

1 ∩ L2)) = φ]
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4. Proving or Disproving Regularity: Let Σ = {a} and let L = {an
3

, n ≥ 0}. Is L regular?

Solution: Assume that L is regular and let m be the number that the Pumping Lemma associates with this language.

Consider the string w = am
3

; as per the definition of L, w ∈ L.

As per the Pumping Lemma, w can be decomposed as xyz, where |xy| ≤ m, |y| ≥ 1 and xyiz ∈ L, ∀i ≥ 0. From
the manner in which we have chosen w, it must be the case that y must be of the form ak, where 1 ≤ k ≤ m. It is
important to note that our proof should work regardless of the value of k, chosen by the adversary.

If the strings in L were ordered by length, the string preceding w would be w′ = a(m−1)3 . Let us focus on the string
w2 obtained by pumping down y, i.e., by setting i = 0. Observe that |w2| = m3 − k, 1 ≤ k ≤ n. Regardless of the
value assumed by k, m3 > |w2| = m3 − k > (m − 1)3. (Requires some nifty algebraic manipulaton, but I am sure
you can manage it!) But this means that w2 6∈ L, contradicting the assertion of the Pumping Lemma. It follows that
L is not regular. 2

5. General questions on Regularity:
Let L be a language over some fixed alphabet Σ.

(a) Assume that L is finite. Is it necessarily regular? Justify your answer. (2 points)

(b) How would you efficiently test whether L = Σ∗? (2 points)

Solution:

(a) Finiteness implies regularity. Assume that L has n strings. Construct a DFA for each of those strings. We then
construct a λ-NFA for L, by taking the union of all these individual DFAs; this involves creation of a new start
state and a λ-transiton to the start states of the each of the DFAs constructed initially. Finally, we convert the
λ-NFA into a DFA using the algorithm discussed in class.

(b) Observe that L = Σ∗ if and only if Lc = φ. Assume that you are given a DFA M for L. Interchanging the final
and non-final states of M , we get a DFA M c for Lc. If there exists a path from the start state of M c to a final
state then Lc is non-empty implying that L 6= Σ∗. Likewise, if there is no path in M c from the start state to a
final state, then it must be the case that Lc = φ and hence, L = Σ∗.

2

2


