An Introduction to Amortized and Competitive Analyses

K. Subramani
LDCSEE,
West Virginia University,
Morgantown, WV
{ksmani@csee.wvu.edu}

1 Introduction

In this lecture, we shall study two novel techniques of analysis, viz. Amortized Analysis and Competitive Analysis.
These techniques are not only useful from the perspective of analyzing Online algorithms, but are interesting in
their own right as well. In Section §2, we shall discuss 3 techniques for amortized analysis, while competitive
analysis is introduced in Section §3.

2 Amortized Analysis

Amortized analysis is used to show that the average cost of an operation over some data structure is small, if
one averages over a sequence of operations, although a single operation within the sequence may be expensive.
Amortized analysis is fundamentally different from average-case analysis in that probability is not involved; the
analysis guarantees the average performance of each operation in the worst case. We illustrate the use of amortized
analysis through two problems.

The stack data structure is one that is used extensively in applications. It usually supports two operations,
viz. Push which pushes a single item on top of the stack and Pop, which deletes a single item from the top of the
stack. Let us augment the standard stack with an extra operation called Multi-Pop (k) which pops k items from
the top of the stack. Our cost model is defined as : $1 to push a plate onto the stack and $1 to pop a plate from
the stack. Now consider the following problem:

Pi: What is the worst-case cost of n Push, Pop and Multi-Pop operations?

A naive analysis would argue that the maximum cost of an operation is n, i.e. the cost of Multi-Pop(n).
Therefore, the cost of a sequence of n operations cannot exceed O(n?). While this analysis is correct, we shall
show that the bounds on the worst-case cost can be significantly tightened in a deterministic sense.

A second data structure that we consider is the k-bit counter. The counter is initialized to 0 and at each step,
it increments itself. In our cost model, we charge $1 for each bit that is flipped from 0 to 1 or from 1 to 0. We
are interested in the following problem:

Po: What is the worst-case cost of incrementing the counter n times? ‘

Once again a naive analysis would argue that if all k£ bits are set to 1, then incrementing the counter causes
all the bits to be reset, resulting in a cost of k; hence a sequence of n bits costs O(n - k) in the worst case.

There are 3 principal techniques of amortized analysis; Section §2.1 is concerned with the Aggregate method,
Section §2.2 elaborates on the Accounting method and Section §2.3 discusses the Potential method.

2.1 The Aggregate method

In the aggregate method, we determine the total cost T'(n) on a sequence of n operations and then assign the
same amortized cost @ to each operation.

2.1.1 Stack

The principal observation that we make is that an item can be popped from the stack using a Pop or a Multi-Pop
operation only after it has been pushed onto it first using a Push operation. Thus, the number of times that Pop
(including the calls within Multi-Pop) can be called is at most the number of times Push is called which is at
most n. Thus the total cost of a sequence of n operations cannot exceed O(n) and hence the amortized cost of

all operations is 20 = O(1).

n
2.1.2 Counter

For problem P,, we observe that not all bits are flipped in each increment operation; for instance, the least
significant bit By is flipped at each step, the next bit B; is flipped every other step, the bit to its left viz. Bs is
flipped every fourth step and so on. Thus bit B; is flipped once every 2' increment steps for a total of 3 flips.

Accordingly, the total cost over n increments is :Z;":gln 7+ <2-n=0(n).

2.2 The Accounting method

In the accounting method, we associate a charge with each operation; this cost is called the amortized cost for
that operation. The amortized cost of an operation may be larger than its actual cost in some cases, and less
than the actual cost in other cases. In the case when the amortized cost exceeds the actual cost of an operation,
the difference is called the credit and it is assigned to specific objects in the data structure. This credit is used
up later to pay for other operations wherein the amortized cost is less than the actual cost of the operation. This
method is different from the aggregate method in which all operations have the same amortized cost.

In order for the accounting method to provide a true upper bound on the actual costs of operations, the
amortized costs must be chosen carefully. Let ¢; denote the amortized cost of the i** operation and ¢; denote its
actual cost. Then, we must have

Z & chi (1)

over all sequences of n operations!

2.2.1 Stack

To apply the accounting method to problem P1, we assign the following amortized costs: $2 for Push, $0 for Pop
and Multi-Pop. Recall that the actual costs are $1 for a Push or Pop and $k for a Multi-Pop(k) operation.

We now argue that any sequence of amortized costs can be paid for using the amortized costs. When an item
is pushed into the stack for the first time, we charge the operation an amortized cost of $2; $1 is used to pay for
the operation itself, while the remaining $1 is used as credit and stored on the item. When this item is popped,
the $1 credit that is stored on it, is used to pay for the Pop operation. Thus although the amortized cost is $0
for the Pop operation, the total amortized cost assigned to the Push and Pop operations is at least as large as
the actual costs. The same argument can be used to explain the amortized cost of the Multi-Pop operation as
well. The key point is that whenever an item is to be popped, it already has a dollar of credit on it, that can be
used to pay for the popping. Thus the total cost over a sequence of n Stack operations is at most 2 -n = O(n).

2.2.2 Counter

We assign an amortized cost of $2 to a bit when it is flipped from 0 to 1 and a cost of $0 when it is flipped from
1 to 0. Since the actual cost of flipping a bit from 0 to 1 is $1, the amortized cost of $2 represents an overcharge

of $1; this credit of $1 is stored on the bit and used to pay for the cost of flipping it from 1 to 0! At any point
in time, every bit that is 1, already has the credit to pay for the flip back to 0 and hence we do not have to pay
anything extra for this flip. Further note that in an increment operation (at any step), precisely one bit is set to
1; a number of bits may be set to 0 though! Consequently, the amortized cost for a single step is at most 2 and
hence the total amortized cost over n operations is at most 2 -n = O(n).

2.3 The Potential method

In the accounting method, we associated credit with individual items; in the potential method credit is associated
with the data structure as a whole. We start with an initial data structure Dy, which is transformed through
the sequence of n operations into data structure D,,; more specifically operation ¢ transforms D; ; into D;. A
potential function ¢ maps each D; to a real number ¢(D;). The amortized cost ¢; associated with it® operation
is defined as:

¢ = ci+ ¢(Di) — ¢(Di-1) 2)

In other words, the amortized cost is defined as the actual cost plus the increase in potential due to the
operation. It follows that the total amortized cost over n operations is:

Z ¢ = Z(Ci + ¢(D;) — #(Di-1)) 3)
= Z ci + (¢(Dn) — ¢(Do) (4)

Equation (4) follows from Equation (3) on account of the telescoping property of Y"1 | (¢(D;) — ¢(Di—1))!

For the amortized cost to be an upper bound on the actual cost, we must have ¢(D,,) > ¢(Dg). Since we do
not know the value of n in advance, we need that ¢(D;) > ¢(Dy), Vi. Typically, we define ¢(Dy) = 0 and show
that ¢(D;) > 0, Vi.

The quantity ¢(D;)—@(D;_1) is called the potential difference of the it* operation; intuitively, if this difference
is positive, then the amortized cost of the it® operation represents an overcharge and the potential of the data
structure increases; likewise if the potential difference is negative, the amortized cost is an undercharge to the it*
operation and the actual cost is paid by the decrease in the potential of the data structure.

Remark: 2.1 The actual amortized costs depend upon the nature of the potential function; it is possible for
different potential functions to provide different bounds for the same problem. Choosing a tight potential function
s a creative task and there do not exist algorithms for the same!

2.3.1 Stack

Returning to problem P;, we define the potential of the stack to be the number of items in the stack. Assuming
that the stack is initially empty, ¢(Dy) = 0; further since the number of items on the stack is never negative,
we have ¢(D;) > 0, Vi. Thus our choice of potential function satisfies the requirements outlined above, for the
amortized cost to be an upper bound on the actual cost.

Let us now calculate the amortized cost of each operation:

1. Push - When an item is pushed onto the stack, the potential increases by 1; accordingly, the amortized cost
isé; =c¢; + ¢(D,) — ¢(Di_1) =14+1=2;

2. Pop - When an item popped from the stack, the potential decreases by 1; accordingly, the amortized cost
isé; =c¢; + d)(D,) - ¢(Di_1) =1-1=0;

3. Multi-Pop(k) - Since k items are popped, the potential decreases by k; accordingly, the amortized cost is
é=c¢ + ¢(D,) - ¢(D,_1) =k—k=0.

The amortized cost of each of these operations is O(1) and hence the amortized cost of a sequence of n operations
is O(n), the exact result that we obtained with the other two methods!

Ezxercise: 2.1 Analyze problem P2 using the Potential Method.

For more details on Amortized analysis, see [CLR92].

3 Competitive Analysis

In a typical algorithms course, techniques are presented to design and analyze algorithms for problems in which
the input is fixed, prior to the commencement of the algorithm; for instance, the MERGE-SORT algorithm sorts
an array of n elements in O(nlogn) time; it is understood that all elements are read into the computer’s main
memory, before the algorithm starts. Such a problem and the accompanying algorithm are called offfine; however,
in real-world situations, it is rarely the case that we encounter offline problems. Indeed, a vast majority of
problems that we need to confront are inherently online, in that decisions need to be made without complete
knowledge of the input data. Consider the examples discussed below:

1. The Post Office Problem - A constant stream of packets arrive at the Post office and these need to be routed
to their respective destinations. The Post office has 2 trucks at its disposal to service 5 locations. If a packet
to a destination arrives immediately after the trucks have departed, then it will be delayed till such time
as the trucks are scheduled for the same destinations. Thus there is a reduction in the quality of service
defined as the reciprocal of the time taken by a packet to reach its destination. (You may want to think of
FedEx and its 24—hour guarantee!) Thus, the question is: How to schedule the packets on trucks, so as to
provide some guarantee of quality of service for all packets?

2. Load Balancing - Consider a cluster of m identical processors, which services jobs of varying sizes. Consider
a sequence of n jobs {Ji,Ja,...,J,} with processing times {p1,p2,...,pn} respectively. The goal is to
assign these jobs to the m processors, so that there exists some sort of balance on the load factor of each
processor. This problem is called the Load Balancing problem and is known to be NP-complete, even when
there are at most 2 processors [GJ79]. Observe that load balancing criterion is achieved by minimizing the
mazimum completion time of all jobs.

3. Bin Packing - Assume that a stream of items a;j,as...,a,, 0 < a; < 1 need to packed into a set of unit
capacity bins. The question is: How do we pack the items so as to minimize the number of bins used? This
problem is called the One-dimensional Bin-Packing problem and is known to be NP-complete [GJ79).

4. Internet Server - Consider a News server such as “cnn.com”; at any time there will be requests for service
from a number of places which are separated in distance. In order to minimize response time, a request needs
to be served by the server which is geographically the closest. On the other hand, a sequence of requests
from the same place could cause a load imbalance and cause performance degradation. The question then
becomes how to service these online requests, without degrading performance.

In none of the examples above, can we wait for all of the input data, before formulating an optimal solution
or even a solution for that matter; indeed decisions need to be made on the fly, if they are to be practical. The
question then becomes: How do we evaluate a given strategy? Competitive analysis has proved to be very uesful
in answering this question.

Let us build the formal framework required to analyze online algorithms. A minimization problem P ! consists
of a set of valid inputs 7 and a cost function C. Associated with every input I € 7 is a set of feasible outputs F'(I)
and associated with each feasible output O € F(I) is a positive real C(I,0) representing the cost of output O
with respect to the input I. Given a legal input I for problem P, an algorithm Alg computes a feasible solution
Alg[I] € F(I). The cost associated with this output is denoted by Alg(I) = C(I, Alg[I]). An optimal algorithm
OPT is such that for all legal inputs I, we have

OPT(I) = Orengr(ll) Cc(I,0) (5)

1For most of this course, we shall focus exclusively on minimization problems. The framework and techniques that we develop can
be used with some modification for maximization problems as well.

An algorithm Alg is a c—approximation algorithm for a minimization problem P, if there is a constant a > 0,
such that
Alg(I) —c-OPT(I) < a, (6)

for all legal inputs I 2.

The theory of approximation algorithms is meaningful mostly in the offline setting, i.e. the algorithm Alg gets
all the input and then proceeds to compute a solution which costs at most ¢ times the optimal solution.

The corresponding analogue in the online setting is c—competitiveness.

Definition: 3.1 An online algorithm Alg is said to be c—competitive, if there is a constant a, such that for all
finite input sequences I,
Alg(I) =c¢-OPT(I) + « (7

When the additive constant a < 0, we say that Alg is strictly c—competitive. Alternatively, we can say that a
c—competitive algorithm is a c—approximation algorithm with the added restriction that it must compute online.
¢ can be a function of the problem parameters, but it must be independent of the input I.

We now analyze competitive strategies for the Load Balancing and Bin Packing problems.

3.1 Load Balancing

We use the following online strategy:

‘LS: Assign the next job to the processor with the smallest load ‘

The rule LS (for List Scheduling) was proposed for the first time by Graham (see [Hoc96]) and it is a historical
fact that it is both the first 2—approximation algorithm and the first 2—competitive algorithm for this problem
or any other problem for that matter!

We now analyze this algorithm and show that it is 2—competitive. Consider the input I composed of the
sequence of n jobs {J1, Jo, ..., Jn}, with processing times {p1,p2, ..., pn} as discussed above. Let OPT(I) denote
the time at which the last job finishes execution under the schedule of the optimal offline algorithm OPT and let
LS(I) denote the time at which the last job finishes under the schedule of Algorithm LS. Note that

1. We do not know and do not really need to know how OPT works,

2. The job that determines the completion time of all jobs need not the job J,; for instance, in the case where
there are 3 jobs and 2 processor, let p; = 10 and py = 1,p3 = 1, the optimal scheduler will assign J; to
machine 1 and {J, J3} to machine 2, i.e. Jj is the job that determines the value of OPT(I).

Let W = Y | p;; note that we must have OPT(I) > %, where m denotes the number of processors, since
the best possible case for OPT is when OPT(I) = % Let job J with processing time p, be the job that
determines the values of LS(I), also assume without loss of generality that it was assigned to machine k. Observe
that all machines have load at least LS(I) — pg; if not, there is a machine (say !) that has load lesser than
LS(I) — pr, and Algorithm LS would have assigned Jj, to that machine. So the total load on all machines is at
least m - (LS(I) — px) + px- Thus, we have

W >m - (LS(I) — px) + pr (8)
which gives
Tos s -p+ 2 ©)

2Technically speaking, the term approximation algorithm is used only if a = 0; otherwise, the algorithm is called an asymptotic
c—approximation algorithm

SIS0 < =) (10)

= LS(I) < OPT{)+pr(l - %) (11)

Finally, note that OPT(I) > py, to get
LS(I) < OPT(I)+ OPT(I)(1 - %) (13)

= LS(I) < (2——)OPT(I) (14)

1
m
In other words, Algorithm LS is 2—competitive!

3.2 Bin-packing

We use the following online strategy:

NF: Assign the next item to the currently open bin, if it fits; otherwise close the current
bin, open a new bin and assign the item to the new bin

Let NF(I) represent the number of bins used by Algorithm NF (for Next-Fit) and let OPT'(I) represent the
number of bins used by Algorithm OPT, on input I; further let A = [}, a;]. Clearly, OPT(I) > A, since
the optimal strategy has to use at least that many bins. The key observation is that the sum of the contents of
any two adjacent bins using strategy NF is at least 1; otherwise NF would not have opened a new bin! Thus we
know that every 2 bins used by NF reduce A by at least 1, i.e. the A > 1 - NF(I). We can thus conclude that
NF(I) <2-0OPT(I),ie. NF is 2—competitive.

References

[CLR92] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms. MIT Press and McGraw-
Hill Book Company, 6th edition, 1992.

[GJ79] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of NP-
Completeness. W. H. Freeman Company, San Francisco, 1979.

[Hoc96] Hochbaum, editor. Approzimation Algorithms for NP-Hard Problems. PWS Publishing Company, 1996.

