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Problems
. Given sets R, S and T', show that
RN(SUT)=(RNS)U(RNT)

(2 points)

Proof: Let z € RN (SUT). Then, using the definition of intersection, x € R and x € (SUT). It follows
that either (z € R and x € S) or (z € R and x € T'), which essentially means that x € (RNS)U(RNT).

Let x € (RNS)U(RNT). Then, using the definition of union, either x € RN S or x € RNT. Consider
the case that x € RN S. It follows that x € R and x € S. However, z € S = x € (SUT). Therefore,
r€ RN(SUT). The case x € RNT can be argued similarly.

We thus have, RN (SUT)=(RNS)U(RNT). O

. Argue using Mathematical Induction

(3 points)
Proof: Base case P(1):



Thus, LHS = RHS and P(1) is true.

Let us assume that P(k) is true, i.e.
k
a3 ke(k+1),
D =]
i=1 2

We need to show that P(k + 1) is true.
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LHS=RHS. Thus, we have shown that P(k) — P(k+1); applying the principle of mathematical induction,
we conclude that the conjecture is true. O

. Draw the transition diagram for a DFA accepting all strings = € {0,1}*, having 011 as a substring. (2
points)

Solution:

|

. Convert the NFA N =< @, 3,6, qo, F' > to a DFA, where

* Q=A{p.qrs,t},
e X ={0,1},
e )=
® qdo =P,
o F={st}
(3 points)

Solution: The above NFA is equivalent to the following DFA D =< @, %, 4. qo. F' >, where



start

Figure 1: The transition diagram for a DFA accepting all strings « € {0,1}*, having 011 as a substring.
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