Automata Theory - Midterm

K. Subramani LCSEE, West Virginia University, Morgantown, WV {ksmani@csee.wvu.edu}

1 Instructions

1. Attempt as many problems as you can. You will be given partial credit.

2 Problems

1. Consider the $\epsilon - NFA$ defined below:

	ϵ	a	b	c
$\rightarrow p$	ϕ	{ <i>p</i> }	$\{q\}$	$\{r\}$
q	{ <i>p</i> }	$\{q\}$	$\{r\}$	ϕ
*r	$\{q\}$	$\{r\}$	ϕ	$\{p\}$

- (a) Compute the ϵ -closure of each state. (3 points)
- (b) Convert the automaton to a DFA. (4 points)
- 2. Let $\Sigma = \{a, b, c\}$. Write a regular expression for the language consisting of the set of strings containing at least one a and at least one b. (4 points)
- 3. Let $\Sigma = \{0, 1\}$. Which of the following languages is regular? Provide an explanation in each case. (6 points)
 - (a) $L = \{0^n 1^m | n \le m, n, m \ge 0\}$
 - (b) $L = \{0^n 1^m | n \ge m, n, m \ge 0\}$
 - (c) $L = \{0^n 1^m | n, m \ge 0\}$
- 4. Let $\Sigma = \{0, 1\}$. Let L be the language that consists of strings having either 01 repeated one or more times or 010 repeated one or more times. Is L regular? Explain. (4 points)
- 5. Assume that a regular language L is provided to you as a DFA $\mathbf{A} = \langle Q, \Sigma, \delta, q_0, F \rangle$. How would you check whether L is infinite? (5 points). Hint: Pumping Lemma.
- 6. Let $\Sigma = \{0, 1\}$. We showed in class that the language $L = \{0^n 1^n | n \ge 0\}$ is not regular. Argue using closure properties of regularity, that $L' = \{0^i 1^j | i \ne j\}$ is not regular. (4 points)