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1 Problems

1. Consider the ε−NFA defined below:

ε a b c

→ p φ {p} {q} {r}
q {p} {q} {r} φ

∗r {q} {r} φ {p}

(a) Compute the ε-closure of each state. (3 points)

Solution:

ε− closure(p) = {p}

ε− closure(q) = {p, q}

ε− closure(r) = {p, q, r}
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(b) Convert the automaton to a DFA. (4 points)

Solution: 2

a b c

→ {p} {p} {p, q} {p, q, r}
{p, q} {p, q} {p, q, r} {p, q, r}
∗{p, q, r} {p, q, r} {p, q, r} {p, q, r}

2. Let Σ = {a, b, c}. Write a regular expression for the language consisting of the set of strings containing at
least one a and at least one b. (4 points)

Solution: Observe that the simplest approach is to consider those strings in which the first a precedes the
first b separately from those where the opposite occurs. The regular expression is:
c∗a(a+ c)∗b(a+ b+ c)∗ + c∗b(b+ c)∗a(a+ b+ c)∗. 2

3. Let Σ = {0, 1}. Which of the following languages is regular? Provide an explanation in each case. (6 points)

(a) L = {0n1m| n ≤ m, n,m ≥ 0}

Proof:
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i. Player 1 picks the language L to be proved nonregular, where L = {0n1m|n ≤ m,n,m ≥ 0}.

ii. Player 2 picks n.

iii. Player 1 picks w = 0n1n+1.

iv. Player 2 breaks w into xyz, in which y 6= ε and |xy| ≤ n.

v. Player 1 wins. Since |xy| ≤ n and xy comes at the front of w, we know that x and y consist of
only 0’s. Thus, y = 0k for 0 < k ≤ n, since y 6= ε. The Pumping Lemma tells us that xykz is in L
if L is regular. If we choose k = 2, the resulting string is w′ = 0n+21n+1. Clearly w′ is not in L.
Therefore, we have contradicted our assumption that L is regular.
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(b) L = {0n1m| n ≥ m, n,m ≥ 0}

Proof:

i. Player 1 picks the language L to be proved nonregular, where L = {0n1m|n ≥ m,n,m ≥ 0}.

ii. Player 2 picks n.

iii. Player 1 picks w = 0n1n.

iv. Player 2 breaks w into xyz, in which y 6= ε and |xy| ≤ n.

v. Player 1 wins. We know that |xy| ≤ n and y 6= ε. Since xy comes at the front of w, we know that
x and y consist of only 0’s, and that y must contain at least one 0. The Pumping Lemma tells us
that xz is in L if L is regular, however, xz has n 1’s, since all of the 1’s of w are in z. However, xz
also has fewer than n 0’s, because we have lost the 0’s of y. Since y 6= ε, we know that there can
be no more than n− 1 0’s among x and z. We have assumed L to be a regular language, but have
proved that xz is not in L. Therefore, we have contradicted our assumption that L is regular.
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(c) L = {0n1m| n,m ≥ 0}

Solution: Observe that the following regular expression 0∗1∗ corresponds to L. Since we can write a
regular expression for L, we know that L is regular. 2

4. Let Σ = {0, 1}. Let L be the language that consists of strings having either 01 repeated one or more times
or 010 repeated one or more times. Is L regular? Explain. (4 points)

Solution: Observe that L can be written as the following regular expression ((0 + 1)∗01(0 + 1)∗01(0 +
1)∗) + ((0 + 1)∗010(0 + 1)∗010(0 + 1)∗). Since we are able to write L as a regular expression, we know that
L is regular. (Note each pattern must occur twice in order to be repeated once!) 2

5. Assume that a regular language L is provided to you as a DFA A =< Q,Σ, δ, q0, F >. How would you
check whether L is infinite? (5 points).
Hint: Pumping Lemma.

Proof: Let n be the Pumping Lemma constant. Test all strings of length between n and 2 · n − 1 for
membership in L. If we find even one string, then L is infinite. The reason is that the Pumping Lemma
applies to such a string, and it can be “pumped” to show an infinite sequence of strings are in L.
Suppose, however, that there are no strings in L whose length is in the range n to 2 · n− 1. We claim that
there are no strings in L of length 2 · n or more, and thus there are only a finite number of strings in L.
Suppose w is a string in L of length at least 2 · n, and w is as short as any string in L that has length at
least 2 · n. Then the Pumping Lemma applies to w, and we can write w = xyz, where xz is also in L. How
long could xz be? It can’t be as long as 2 · n, because it is shorter than w, and w is as short as any string
in L of length 2 · n or more. Secondly, |z| ≥ n and hence |xz| ≥ n. Thus, xz is of length between n and
2 · n − 1, which is a contradiction, since we assumed that there were no strings in L with a length in that
range. 2

6. Let Σ = {0, 1}. We showed in class that the language L = {0n1n| n ≥ 0} is not regular. Argue using closure
properties of regularity, that L′ = {0i1j | i 6= j} is not regular. (4 points)
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Proof: Start out by complementing the language L′; the resulting language is the language consisting of
all strings of 0’s and 1’s that are not in 0∗1∗, plus the strings in L. Now, if we intersect the complement of
L′ with 0∗1∗, the result is precisely the language L. Since complementation and intersection with a regular
set preserve regularity, if the given language were regular, then so would be L. We already know that L is
not regular, therefore, we can conclude that the given language L′ is not regular. 2
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