Automata Theory - Quiz I (Solutions)

L. Kovalchick LCSEE, West Virginia University, Morgantown, WV {lynn@csee.wvu.edu}

1 Problems

1. Design a DFA to accept the language L, where $L = \{w | w \in \{0,1\}^*, \ w \ is \ divisible \ by \ 3, \ when \ interpreted \ as \ a \ binary \ number\}$. (3 points) Solution: \square

Figure 1: DFA

2. Convert the NFA in Figure (2) to a DFA. (3 points)

Figure 2: NFA

Solution: \Box

Figure 3: DFA

3. Convert the regular expression $01^* + (0+1)^*$ into an ϵ -NFA. (3 points)

Solution: \Box

Figure 4: $\epsilon\text{-NFA}$

4. Let $\Sigma = \{0, 1, 2\}$ be an alphabet. Write a regular expression to accept all strings over Σ^* , such that the third symbol from the right is 1 or 2, but not 0. (1 point)

Solution:

$$(0+1+2)^*(1+2)(0+1+2)(0+1+2)$$