Automata Theory - Scrimmage I

K. Subramani LCSEE, West Virginia University, Morgantown, WV {ksmani@csee.wvu.edu}

1 Instructions

- 1. The Scrimmage will not be graded, i.e., there are no points.
- 2. Attempt as many problems as you can.

2 Problems

1. Prove using Mathematical Induction:

$$\sum_{i=1}^{n} i^3 = (\sum_{i=1}^{n} i)^2$$

- 2. Let $\Sigma = \{0, 1\}$. Draw a DFA for the language L containing strings having the pattern 010 in them.
- 3. Let $\Sigma = \{0, 1\}$. Draw a NFA for the language L consisting of strings in which the final digit has appeared before.
- 4. Repeat the above problem for strings in which the final digit has not appeared before.
- 5. Let $\Sigma = \{0,1\}$. Let $L \subseteq \Sigma^*$ represent the language of those strings that do not contain the pattern 101. Argue that L is regular.
- 6. Argue that $(R^*)^* = R^*$, for any regular expression R.
- 7. Is $L = \{0^n 10^n | n \ge 1\}$ regular? Explain.
- 8. Let $\Sigma = \{0, 1, 2\}$ and $\tau = \{a, b\}$. Consider the homomorphism h defined by h(0) = a, h(1) = ab and h(2) = ba. Let L be the unit string language $\{ababa\}$. What is $h^{-1}(L)$?