Automata Theory - Scrimmage II (Solutions)

L. Kovalchick LCSEE, West Virginia University, Morgantown, WV {lynn@csee.wvu.edu}

1 Problems

1. For $\Sigma = \{a, b\}$, construct a DFA that accepts the set consisting of all strings with no more than 3 a's. Solution: \square

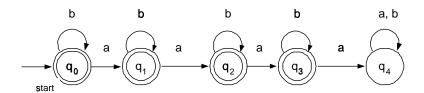


Figure 1: DFA

2. For $\Sigma = \{a, b, c\}$, construct an ϵ -NFA that accepts the language $L = \{ab + abc\}^*$. Solution: \square

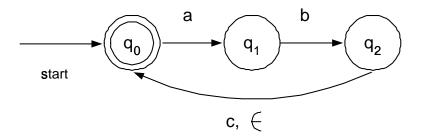


Figure 2: ϵ -NFA

- 3. Give a regular expression for the following languages.
 - (a) $L = \{a^n b^m | n \ge 4, m \le 3\}$ Solution: Observe that we can break the solution into the cases m = 0, 1, 2, 3. Now, we can write the solution by first generating 4 or more a's followed by the prerequisite number of b's. Thus, the regular expression for L is $aaaaa^*(\epsilon + b + bb + bbb)$. \square
 - (b) L' Solution: Observe that a string is not in L if it is of the form $a^n b^m$, with either n < 4 or m > 3;

we must also include strings in which a b is followed by an a. Thus, the regular expression for L' is $(\epsilon + a + aa + aaa)b^* + a^*bbbb^* + (a + b)^*ba(a + b)^*$. \square

4. Prove that the following language $L = \{a^n b^l a^k | k \ge n + l\}$ is not regular.

Proof:

- (a) Player 1 picks the language L to be proved nonregular, where $L = \{a^n b^l a^k | k \ge n + l\}$.
- (b) Player 2 picks n.
- (c) Player 1 picks $w = a^n b^n a^{2 \cdot n}$.
- (d) Player 2 breaks w into xyz, in which $y \neq \epsilon$ and $|xy| \leq n$.
- (e) Player 1 wins. Since $|xy| \le n$ and xy comes at the front of w, we know that x and y consist of only a's. Thus, $y = a^k$ for $0 < k \le n$, since $y \ne \epsilon$. The Pumping Lemma tells us that xy^kz is in L if L is regular. If we choose k = 2, the resulting string is $w' = a^{n+2}b^na^{2\cdot n}$. Clearly w' is not in L. Therefore, we have contradicted our assumption that L is regular.

5. Design a context-free grammar for the language $L = \{a^n b^m | 2 \cdot n \le m \le 3 \cdot n, n \ge 0, m \ge 0\}$.

Solution: The following rules define the context-free grammar.

- (a) $S \to \epsilon$
- (b) $S \rightarrow aSbb$
- (c) $S \rightarrow aSbbb$