Computational Complexity - Final

K. Subramani LCSEE, West Virginia University, Morgantown, WV {ksmani@csee.wvu.edu}

1 Instructions

- 1. Attempt as many problems as you can. You will be given partial credit.
- 2. This exam is open book.
- 3. Feel free to quote any theorem from [HS01]
- 4. The best 6 answers will count towards your grade.

2 Problems

- 1. Show that POLYLOGSPACE \neq P. (6 points)
- 2. The tautology (TAUT) problem is defined as follows: Given a Boolean formula ϕ on the variables $\{x_1, x_2, \ldots, x_n\}$, is it the case that ϕ is satisfied by all assignments from the set $\{\text{true}, \text{false}\}^n$? Is TAUT coNP-complete, when ϕ is CNF? If yes, provide a proof of coNP-hardness; if not provide a polynomial time algorithm for the same. (6 points)
- 3. Show that NTIME(n) contains an NP-complete language. (6 points)
- 4. Show that if a language L is disjunctively self-reducible, then $L \in NP$. (6 points)
- 5. Prove: $NP \in E$ if and only if for every $L \in NP$, $Tally(L) \in P$. (6 points)

3 Extra Credit

- 1. Prove that NP is not included in DTIME(n^k), for any fixed $k \ge 1$. Can we therefore concluded that $P \ne NP$? (6 points)
- 2. Consider the subgraph isomorphism problem: Given 2 graphs G_1 and G_2 , is it the case that G_1 is isomorphic to a subgraph of G_2 ? What can you say about the complexity of this problem? (6 points)

References

[HS01] Steven Homer and Alan L. Selman. Computability and Complexity Theory. Springer-Verlag, 2001.