Computational Complexity - Quiz I (Solutions)

L. Kovalchick M. Mladenovski
LDCSEE, LDCSEE,
West Virginia University, West Virginia University,
Morgantown, WV Morgantown, WV
{lynn@csee.wvu.edu} {martinm@Qcsee.wvu.edu}

. Design a Deterministic Turing Machine that accepts the regular language 10* + 01%, i.e., the set of strings
in which the first symbol does not appear again on the input. You may assume that ¥ = {0,1}. Feel free
to choose the tape symbols. (4 points)

Solution: M =< Q,Z,F,&, q0;BaQaccept>Q7‘€ject >; where: Q = {q07q17q27qaccepty(ITeject}a E - {0;1}7
I'={0,1,B},and § =

state 0 1 B
qo <Q170-,R> <Q271-,R> <Qr'ejecta_;_>
q1 <QTejecta_a_> <Q1,1;R> <Qaccepta_,_>
q2 < QQaO:R > < AQrejecty —y — > < Qaccepts —y — >

|

. Show that the function that maps a program e to the smallest equivalent program is not Totally Computable.
(4 points)

Proof: Let us say that there exists a function f(e) that takes as input program e and outputs its smallest
equivalent program (let us call this program z). If this were possible, then we could have two equivalent
Turing Machines (i.e., M and N), with inputs m and n respectively. It then follows that f(n) = f(m);
thus, we have a method for determining whether two Turing Machines are equivalent, but we have shown
that this problem is undecidable (Homework 3.3 (i)). Therefore, the function that maps a program to its
smallest equivalent program is not Totally Computable. O

. Show that every infinite computably enumerable set contains a decidable subset. (2 points)

Proof: Let S be the empty set (i.e., ¢). By definition, we know that ¢ is a subset of every infinite
computably enumerable set. Clearly this is a decidable set, since there exists a Turing Machine that decides
¢ by rejecting every input. Thus, ¢ is a decidable subset of every infinite computably enumerable set. O

. Professor Chikovski has the following algorithm for the Halting Problem: Given a Turing Machine e and
a string z, use a Non-deterministic Universal Turing Machine N, to guess a configuration of the Turing
Machine e. If this configuration is a halting configuration for x, IV,, declares that e halts on z. If not, N,
declares that e does not halt on . Has Professor Chikovski solved the Halting Problem? (Recall that every
Non-deterministic Turing Machine can be simulated by a Deterministic Turing Machine.) (3 points)

Solution: No, Professor Chikovski has not solved the Halting Problem. The premise “if the NDTM guesses
a non-halting configuration, then the original Turing Machine halts” is false, because that decision cannot
be reached. Every time we reach a halting configuration we answer that the Turing Machine halts, otherwise
we must, continue possibly indefinitely if a halting configuration doesn’t exist. O

. Prove that: A set S is computably enumerable if and only if there is a decidable relation R(x,y), such that
xr €S & JyR(x,y). (3 points)

Proof:

(a) Suppose that S is computably enumerable. If S = ¢, then there exists a decidable relation, such that:
x €S & Jylr =12y +#y], which will always say “NO” to any two elements = and y. If S # ¢, then by
definition S = range(f), where f is a totally computable function. Therefore, for every element = € S,
there exists a number y, such that f(y) = z. The relation Jy [f(z) = y] is decidable, since the graph of
every totally computable function is decidable. Thus,x € S < Jy[z =z Ay #y] ¢z € S < JyR(x,y).

(b) Suppose that there exists a decidable relation R, such that z € S & JyR(x,y). We define a function:

_ a, if R(m1(z), m2(x)) is false

fla) = { n(x), if R(m(x), ma(x)) is true

It is obvious that range(f) C S and for every z € S, there exists a y such that = and y are related

(decidable relation R(x,y)). In this case f(< x,y >) = z and S C range(f). Finally S = range(f)
and S is computably enumerable.

where a is a fixed member of S

|

6. Consider a computer with a 32-bit, 256 K RAM memory and a finite control CPU. The memory is partitioned
into a Program area and a Data area as shown in Figure (1). Assume that a word w is written in the Data
Area and a program p is written in the Data Area; also assume that the finite control can simulate p on w.
The finite control has been programmed to track the contents of the entire memory in one step. What can
you say about the following problem: Does p halt on w? (You are allowed to reprogram the finite control
to suit your needs.) (4 points)

Data Area

Y

finite control

Program Area

Figure 1: 32-bit computer

Solution: Observe that the memory in the computer is finite. Therefore, there are only a finite number of
possible “configurations” (where a configuration is the contents of the memory and the state of the finite
control). It follows that the halting problem is decidable. During the simulation of p on w we keep track
of the “configurations” and in the case that a “configuration” is repeated we conclude that p does not halt
on w. O

