Computational Complexity - Quiz II

K. Subramani LCSEE, West Virginia University, Morgantown, WV {ksmani@csee.wvu.edu}

1 Instructions

- 1. Attempt as many problems as you can. You will be given partial credit.
- 2. You are required to turn in the exam in class on Thursday, April 17.
- 3. Kindly write up the solutions in LaTeX format.
- 4. Please refer [HS01], for the definition of complexity classes.
- 5. You may quote any theorem from [HS01] in your proofs.

2 Problems

- 1. Integer Programming Feasibility is the following problem: Given a system of linear inequalities, $\mathbf{A} \cdot \vec{\mathbf{x}} \leq \vec{\mathbf{b}}$, does there exist an integral solution? Show that Integer Programming Feasibility is NP-complete. (4 points) Hint: Use 3SAT for the reduction.
- 2. Show that L = NL, implies DLBA = NLBA. (4 points) Hint: Use padding techniques.
- 3. Let $\mathtt{ESPACE} = \cup \{\mathtt{DSPACE}(k^n) \mid k \geq 1\}$ and $\mathtt{NESPACE} = \cup \{\mathtt{NSPACE}(k^n) \mid k \geq 1\}$. Show that $\mathtt{ESPACE} = \mathtt{NESPACE}$. (4 points)
- 4. Let $\Sigma = \{0,1\}$. For any $L \subseteq \Sigma^*$, Tally(L) is defined as: $\{1^{n(w)} \mid w \in L\}$. Note that every string $w \in \Sigma^*$, corresponds to the natural number n(w), which is obtained by treating w as a binary number. Show that Tally(L) $\in P$ implies that $L \in E$. (4 points)
- 5. Show that LBA \neq P and that DLBA \neq NP. (4 points)

References

[HS01] Steven Homer and Alan L. Selman. Computability and Complexity Theory. Springer-Verlag, 2001.