Computational Complexity - Scrimmage I (Solutions)

D. Desovski LCSEE, West Virginia University, Morgantown, WV {desovski@csee.wvu.edu}

1. Let $\Sigma = \{0, 1\}$, and let $L \subseteq \Sigma^*$. Show that $(L^*)^* = L^*$.

Proof: Observe that by the definition of Kleene closure $L^* \subseteq (L^*)^*$. Thus, we only need to show that $(L^*)^* \subseteq L^*$, by using mathematical induction on the size of the word.

Base case: $w = \lambda$, |w| = 0, $w \in (L^*)^*$ and $w \in L^*$.

Inductive hypothesis: For any w with |w| = n, $w \in (L^*)^* \Rightarrow w \in L^*$.

Inductive proof: Let |w| = n + 1. Then w has one of the following forms:

- (a) w = k0, |k| = n. According to the inductive hypothesis $k \in (L^*)^* \Rightarrow k \in L^*$. If $w = k0 \in (L^*)^* \Rightarrow k \in (L^*)^* \Rightarrow k \in L^* \Rightarrow k0 = w \in L^*$.
- (b) w = k1, |k| = n. According to the inductive hypothesis $k \in (L^*)^* \Rightarrow k \in L^*$. If $w = k1 \in (L^*)^* \Rightarrow k \in (L^*)^* \Rightarrow k \in L^* \Rightarrow k1 = w \in L^*$.

2. Prove that the set of all functions $N \to N$ is not countable.

Proof: This is true by Theorem 1.4. \Box

3. Is N^* countable?

Proof: No, N^* is not countable. We will provide a proof by diagonalization. Assume N^* is countable, then there is an ordering of the words w_0, w_1, w_2, \ldots We will refer to the digits of a particular word w by using square brackets (i.e., $w = w[0]w[1]w[2]\ldots$). Construct a new word k with every digit different from the corresponding word in the ordering. $k[i] = (w_i[i] + 1) \mod 10$, if $w_i[i]$ is a digit. Otherwise, if $w_i[i]$ is λ , set k[i] = 1. We can see that $k \in N^*$, but it is different from every word in the ordering. This implies that our assumption is false and consequently N^* is not countable. \square

4. Design a Turing Machine, that given a number i, in binary, outputs $i \, div \, 3$.

Solution: We will construct a 2 tape Turing Machine.

- (a) Write 0 on the second tape.
- (b) On the first tape keep subtracting 3 from the input in binary and count the number of subtractions by adding 1 in binary on the second tape.
- (c) When the number on the first tape becomes less than 3, the answer is found on the second tape.

5. Show that the Program Termination Problem is undecidable.

Proof: This is true by Theorem 3.1. \square

6. Prove that every infinite computably enumerable set contains an infinite decidable set.

Proof: We will use the following result which was proven in class. Homework 3.4: An infinite set is decidable if and only if it can be enumerated in increasing order by a one-to-one computable function (See Scrimmage II (Solutions)). Let g be the characteristic function of an infinite computably enumerable set A. We define $f(0) = \mu_y[g(y) = 1]$, $f(x+1) = \mu_y[g(y) = 1 \land f(x) < y]$. This function is one-to-one computable and induces an increasing order enumeration of an infinite subset of $A \Rightarrow$ this subset is decidable by using Homework 3.4. \square