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1 Problems

1. Prove that an infinite set is decidable if and only if it can be enumerated in increasing order by a one-to-one
computable function.

Proof:
(a) Prove : An infinite set S is decidable = S can be enumerated in increasing order by a one-to-one

computable function.
If S is decidable, then the characteristic function is computable :

fs(x) = 0,z¢eS
l,x &S

We can define g(z) = fs(z) + 2. g(x) is a computable, one-to-one function such that:

gy = z,z€sl
= 1l4+z,2¢S

So, S = {g(0),g(1),...}. Clearly, if a < b then, g(a) < g(b). So, we can list out all the ¢’s as
g(a), g(b),g(c),... where a < b < ¢ < ... Therefore, S can be enumerated in increasing order by a
one-to-one computable function g.

(b) Prove: A set S can be enumerated in increasing order by a one-to-one computable function = S is
decidable.
Assume S can be enumerated in increasing order by a one-to-one computable function. Then, there is
a function f : N...S such that:

flay) = by
flaz) = b2
flaz) = b3

Then, we can have the following algorithm :



Function F(x)
1: 1=0
2: while TRUE do

3:

14:
15:

if (z = a;) then
if (f(z) =10;) then
RETURN(YES)
else
RETURN(NO)
end if
else
if (r < a;) then
RETURN(NO)
else
1+ +
end if
end if

16: end while

Algorithm 1.1: Algorithm

By using the algorithm above, we can decide if © € S. Therefore, S is decidable.

a

2. Prove: L, <,, K.

Proof: We first need to construct a many-to-one mapping function f :< e;,w >— es. To do this, we
encode the input word w into the finite control of Turing Machine e; creating a new Turing Machine es,
which on every input z, simulates the computation of e; on w, ignoring the input x. It is easy to see that
if 7 halts on w (i.e., < e1,w >€ L,,) then ey will halt on itself (i.e., ex € K) and vice versa. O

. Show that there must exist a program e such that W, = {e?}.

Proof: We can define a partial computable function (e, z) as :

Yle,x) = €2 for all e and x
= T, otherwise
Then, dom (e, z) = {e*}, and by the S-M-N theorem, ¢ () (x) = (e, z) for every partial computable

function. Thus, dom (e, x) = dom ¢s()(z) = {€*}. By Corollary 3.6 we have: W, = Wy(,. Therefore,
{62} = dom ¢f(e) = Wf(e) =W,. O

. Given a collection C' of c.e. sets. Is C regular?

Proof: Let C = {all regular sets}. The index set corresponding to C' is:
Po = {e|range(¢.) € C}

= {e|e computes a regular set}
Clearly, P. # @, and P. # N, since 0 € N but 0 € P, since ¢g = 0 = range(¢o) =0 & C. So, P. # O

and P, # N, and by Rice’s Theorem we can conclude that P, is undecidable. Since P. is undecidable, C'is
undecidable. Therefore, we cannot decide if C' is regular. O

. Prove A <,, B= A <7 B.

Proof: Given A <,, B, we know that « € A < f(z) € B. Thus, we can define an Oracle Turing Machine
MP® to compute the total computable function f as follows: on every input z, if f(z) € B, then M? accepts,
otherwise M % rejects. Then, since 2 € A < f(x) € B on input x, if M? accepts, we know that z € A, and
if M B rejects, we know that = € A. So, we can decide set A using MPZ. Therefore, A <7 B. O




