Computational Complexity - Scrimmage II (Solutions)

Y. Wan
LDCSEE,
West Virginia University,
Morgantown, WV
{wan@csee.wvu.edu}

D. Desovski LDCSEE, West Virginia University, Morgantown, WV {desovski@csee.wvu.edu}

1 Problems

1. Prove that an infinite set is decidable if and only if it can be enumerated in increasing order by a one-to-one computable function.

Proof:

(a) Prove : An infinite set S is decidable $\Rightarrow S$ can be enumerated in increasing order by a one-to-one computable function.

If S is decidable, then the characteristic function is computable:

$$f_s(x) = 0, x \in S$$
$$= 1, x \notin S$$

We can define $g(x) = f_s(x) + x$. g(x) is a computable, one-to-one function such that:

$$g(x) = x, x \in S$$
$$= 1 + x, x \notin S$$

So, $S = \{g(0), g(1), \ldots\}$. Clearly, if a < b then, g(a) < g(b). So, we can list out all the g's as $g(a), g(b), g(c), \ldots$ where $a < b < c < \ldots$ Therefore, S can be enumerated in increasing order by a one-to-one computable function g.

(b) Prove: A set S can be enumerated in increasing order by a one-to-one computable function \Rightarrow S is decidable.

Assume S can be enumerated in increasing order by a one-to-one computable function. Then, there is a function f: N...S such that:

$$f(a_1) = b_1$$

$$f(a_2) = b_2$$

$$f(a_3) = b_3$$

$$\cdots$$

. . .

Then, we can have the following algorithm:

```
Function F(x)
1: i = 0
2: while TRUE do
     if (x = a_i) then
        if (f(x) = b_i) then
 4:
          RETURN(YES)
 6:
 7:
          RETURN(NO)
 8:
        end if
9:
     else
        if (x < a_i) then
10:
          RETURN(NO)
11:
12:
13:
          i + +
        end if
14:
     end if
15:
16: end while
```

Algorithm 1.1: Algorithm

By using the algorithm above, we can decide if $x \in S$. Therefore, S is decidable.

2. Prove : $L_u \leq_m K$.

Proof: We first need to construct a many-to-one mapping function $f: \langle e_1, w \rangle \to e_2$. To do this, we encode the input word w into the finite control of Turing Machine e_1 creating a new Turing Machine e_2 , which on every input x, simulates the computation of e_1 on w, ignoring the input x. It is easy to see that if e_1 halts on w (i.e., $\langle e_1, w \rangle \in L_u$) then e_2 will halt on itself (i.e., $e_2 \in K$) and vice versa. \square

3. Show that there must exist a program e such that $W_e = \{e^2\}$.

Proof: We can define a partial computable function $\psi(e,x)$ as:

```
\psi(e,x) = e^2, for all e and x
= \uparrow, otherwise
```

Then, $dom \ \psi(e,x) = \{e^2\}$, and by the S-M-N theorem, $\phi_{f(e)}(x) = \psi(e,x)$ for every partial computable function. Thus, $dom \ \psi(e,x) = dom \ \phi_{f(e)}(x) = \{e^2\}$. By Corollary 3.6 we have: $W_e = W_{f(e)}$. Therefore, $\{e^2\} = dom \ \phi_{f(e)} = W_{f(e)} = W_e$. \square

4. Given a collection C of c.e. sets. Is C regular?

Proof: Let $C = \{all \ regular \ sets\}$. The index set corresponding to C is:

```
P_C = \{e \mid range(\phi_e) \in C\}
= \{e \mid e \text{ computes a regular set}\}
```

Clearly, $P_c \neq \emptyset$, and $P_c \neq N$, since $0 \in N$ but $0 \notin P_c$, since $\phi_0 = 0 \Rightarrow range(\phi_0) = 0 \notin C$. So, $P_c \neq \emptyset$ and $P_c \neq N$, and by Rice's Theorem we can conclude that P_c is undecidable. Since P_c is undecidable, C is undecidable. Therefore, we cannot decide if C is regular. \square

5. Prove $A \leq_m B \Rightarrow A \leq_T B$.

Proof: Given $A \leq_m B$, we know that $x \in A \Leftrightarrow f(x) \in B$. Thus, we can define an Oracle Turing Machine M^B to compute the total computable function f as follows: on every input x, if $f(x) \in B$, then M^B accepts, otherwise M^B rejects. Then, since $x \in A \Leftrightarrow f(x) \in B$ on input x, if M^B accepts, we know that $x \notin A$. So, we can decide set A using M^B . Therefore, $A \leq_T B$. \square