Proofs of equivalence in CFGs

K. Subramani LDCSEE, West Virginia University, Morgantown, WV {ksmani@csee.wvu.edu}

1 Definitions

Definition 1.1 A Context-Free Grammar (CFG) is a 4-tuple $G = \langle V, T, P, S \rangle$, with V representing a set of non-terminals, T representing a set of terminals, P representing a set of productions or rules and S denoting a special symbol in V called the start symbol.

Definition 1.2 The set of all terminal strings that can be derived from the start symbol (say S) of a grammar (say G) is called the language of that grammar and is denoted by L(G).

2 Example

Consider the CFG $G = \langle V, T, P, S \rangle$, with $V = \{S\}$, $T = \{a, b\}$ and P represented by:

$$S \rightarrow a \cdot S \mid b \cdot S \mid \epsilon$$

Show that L(G) consists of **all** and **only** those strings in $\{a, b\}^*$.

Solution: It is important to note that $\{a,b\}^*$ is a regular expression that represents the set of all possible strings over the binary alphabet $\{a,b\}$. Thus, we are being asked to prove that every string derived from S is in $\{a,b\}^*$ and that every string in $\{a,b\}^*$ can be derived from S. We prove the hypothesis in two parts.

Lemma 2.1 Let x denote an arbitrary terminal string derived from S; x must belong to $\{a, b\}^*$.

Proof: We use induction on the number of derivations used to derive x from S.

BASIS: Assume that x was derived from S in one step. In this case, x must be ϵ , since $S \to \epsilon$ is the only derivation that results in a terminal string in one step.

Inasmuch as $\epsilon \in \{a, b\}^*$, the basis is proven.

We assume that whenever x is derived from S in exactly k steps, $x \in \{a,b\}^*$. Now consider the case in which x is derived from S in (k+1) steps. The first step of the derivation is either $S \to a \cdot S$ or $S \to b \cdot S$. (Why?) Without loss of generality, assume that $S \to a \cdot S$ was the first step in the derivation. It follows that x can be broken up as $a \cdot y$, where y is derived from the S in $a \cdot S$. But the derivation of y takes exactly k steps and hence $y \in \{a,b\}^*$. It follows that x which is the concatenation of a with a string $y \in \{a,b\}^*$ is also in $\{a,b\}^*$.

By applying the first principle of mathematical induction, we can conclude that all strings derived from S belong to $\{a,b\}^*$. \square

Lemma 2.2 Let x denote an arbitrary string in $\{a,b\}^*$; there exists a derivation for x from S.

Proof: We use induction on the length of x, i.e., |x|.

BASIS: |x| = 0. In this case, x must be ϵ ; since $S \to \epsilon$ is a production in G, x can be derived from S. Thus, the basis is proven.

Assume that whenever |x| = k, there is a derivation of x from S.

Now, consider a string x of length (k+1). Without loss of generality, we assume that $x=a\cdot y$, where $y\in\{a,b\}^*$. (The proof can be reworded if $x=b\cdot y!$) Since |y| is k, as per the inductive hypothesis, there must exist a derivation of y from S, i.e., $S\Rightarrow y$. But then x can be derived from S as follows: $S\Rightarrow a\cdot S\cdots a\cdot y\Rightarrow x$.

Using the first principle of mathematical induction, we conclude that every string in $\{a,b\}^*$ can be derived from S. \Box