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Want to show that there is a polynomial time algorithm for testing Primality

Attempt at a simple algorithm

@ Pick a random residue a mod N
Q IfaV—1 % 1modN answer N is composite
@ Otherwise answer N is probably prime.

Cases of Algorithm failure

However this algorithm fails due to numbers like N = 561 which have the property that
for all residues r € ®(N), ’IN-1 =1 mod N. Such numbers are referred to as
Carmichael Numbers.
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Want to show that there is a polynomial time algorithm for testing Primality

Attempt at a simple algorithm

@ Pick a random residue a mod N
Q IfaV—1 % 1modN answer N is composite
@ Otherwise answer N is probably prime.

Cases of Algorithm failure

However this algorithm fails due to numbers like N = 561 which have the property that
for all residues r € ®(N), ’IN-1 =1 mod N. Such numbers are referred to as
Carmichael Numbers. The Carmichael numbers have this property is because for all
primes p|N, p — 1|N — 1.
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Want to show that there is a polynomial time algorithm for testing Primality

Attempt at a simple algorithm

@ Pick a random residue a mod N
Q IfaV—1 % 1modN answer N is composite
@ Otherwise answer N is probably prime.

Cases of Algorithm failure

However this algorithm fails due to numbers like N = 561 which have the property that
for all residues r € ®(N), ’IN-1 =1 mod N. Such numbers are referred to as
Carmichael Numbers. The Carmichael numbers have this property is because for all
primes p|N, p — 1|N — 1.

4

For N = 591 we have that 561 = 3 - 11 - 17 and 560 = 2 - 280, 560 = 10 - 56, and
560 = 16 - 35.
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@ Properties of square roots modulo a prime
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Want to show that the equation x2 = a mod p where p is a prime and a Z 0 mod p
has 0 or 2 solutions.
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Goal

Want to show that the equation x2 = a mod p where p is a prime and a Z 0 mod p
has 0 or 2 solutions.

Theorem

=il
Let p be a prime, if a"> =1 mod p then the equation x> = a mod p has two roots.

If apTil %1 mod p (anda # 0 mod p) then ap%l = —1 mod p and the equation
x2 =a mod p has no roots.

\
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Want to show that the equation x2 = a mod p where p is a prime and a Z 0 mod p
has 0 or 2 solutions.

=il
Let p be a prime, if a"> =1 mod p then the equation x> = a mod p has two roots.

If apTil %1 mod p (anda # 0 mod p) then ap%l = —1 mod p and the equation
x2 =a mod p has no roots.

.

As p is prime then it has a primitive rootr. Thusa=r' mod p for some i < p — 1.

4
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Want to show that the equation x2 = a mod p where p is a prime and a Z 0 mod p
has 0 or 2 solutions.

.
Theorem

Let p be a prime, if ap%l

=1 mod p then the equation x> =a mod p has two roots.

If apTil %1 mod p (anda # 0 mod p) then ap%l = —1 mod p and the equation
x2 =a mod p has no roots.

o

As p is prime then it has a primitive rootr. Thusa=r' mod p for some i < p — 1.
There are two cases. L
3 o R P— : .
If i =2xjiseven,thena z =ri(P~1) =1 mod p and a has two square roots, ri and
cop—1
i+

\.
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Want to show that the equation x2 = a mod p where p is a prime and a Z 0 mod p
has 0 or 2 solutions.

-

Theorem

p—1

Letp be aprime, ifa 2 =1 mod p then the equation x> =a mod p has two roots.

If apTil %1 mod p (anda # 0 mod p) then ap%l = —1 mod p and the equation
x2 =a mod p has no roots.

o

As p is prime then it has a primitive rootr. Thusa=r' mod p for some i < p — 1.
There are two cases.

If, i = 2] is even, then a®z" =P~ =1 mod p and a has two square roots, ri and
[+t

This accounts for half of the residues mod p and since each already has two square
roots none of the remaining residues have any.

\.
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Want to show that the equation x2 = a mod p where p is a prime and a Z 0 mod p
has 0 or 2 solutions.

-

Theorem

p—1

Letp be aprime, ifa 2 =1 mod p then the equation x> =a mod p has two roots.

If apTil %1 mod p (anda # 0 mod p) then ap%l = —1 mod p and the equation
x2 =a mod p has no roots.

o

As p is prime then it has a primitive rootr. Thusa=r' mod p for some i < p — 1.
There are two cases.

If, i = 2] is even, then a®z" =P~ =1 mod p and a has two square roots, ri and
[+t

This accounts for half of the residues mod p and since each already has two square
roots none of the remaining residues have any. So, ifi = 2j + 1 is odd then then r' has

p—1 p—1
no square roots p,anda 2 =r 2 mod p.

\.
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Letp be aprime, ifa 2 =1 mod p then the equation x> =a mod p has two roots.

If apTil %1 mod p (anda # 0 mod p) then ap%l = —1 mod p and the equation
x2 =a mod p has no roots.

o

As p is prime then it has a primitive rootr. Thusa=r' mod p for some i < p — 1.
There are two cases.

If, i = 2] is even, then a®z" =P~ =1 mod p and a has two square roots, ri and
[+t

This accounts for half of the residues mod p and since each already has two square
roots none of the remaining residues have any. So, ifi = 2j + 1 is odd then then r' has

p—1 =

no square roots p,anda 2 =r 2 mod p. We have that the latter number is a

—il
square root of 1 mod p and isnot 1 mod p thus a7 = -1 mod p. O
ot
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roots none of the remaining residues have any. So, ifi = 2j + 1 is odd then then r' has
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Letp=5andr =2,as 3= 2% mod 5 we have that 32 = —1 mod 5 and 3 has no

square roots mod 5.
As 4 =22 mod 5 we have that 42 = 1 mod 5 and 4 has two square roots, 2 and 3,

mod 5.
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@ Gauss's Lemma
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Definition (Legendre Symbol)

Letp # 2 be aprime and a Z 0 mod p, the Legendre Symbol of a and p, denoted
mod p

=i
(a|p) is simply the value, 1 or —1, of a2

| \

Theorem (Gauss'’s Lemma)

Let p be a prime, (p|g) = (—1)™ where m is the number of residues in the set R = {q
mod p,2q mod p,..., p—;lq mod p} that are greater than p—gl.

\
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Definition (Legendre Symbol)

Letp # 2 be aprime and a Z 0 mod p, the Legendre Symbol of a and p, denoted

(alp) is simply the value, 1 or —1, of a"z" mod p

Theorem (Gauss'’s Lemma)

Let p be a prime, (p|g) = (—1)™ where m is the number of residues in the set R = {q

mod p,2q mod p,..., p—;lq mod p} that are greater than p—gl.

Gauss’s Lemma.

First all residues in R are distinct and no two elements in R add up to 0 mod p.
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Definition (Legendre Symbol)

Letp # 2 be aprime and a Z 0 mod p, the Legendre Symbol of a and p, denoted
mod p

=i
(a|p) is simply the value, 1 or —1, of a2

Theorem (Gauss'’s Lemma)

Let p be a prime, (p|g) = (—1)™ where m is the number of residues in the set R = {q

mod p,2q mod p,..., p—;lq mod p} that are greater than p—gl.

Gauss’s Lemma.

First all residues in R are distinct and no two elements in R add up to 0 mod p. Let R’
be the set of residues that result from R if each of the m elements a € R such that
a> p—;l are replaced by p — a.
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Definition (Legendre Symbol)

Letp # 2 be aprime and a Z 0 mod p, the Legendre Symbol of a and p, denoted
mod p

=i
(a|p) is simply the value, 1 or —1, of a2

Theorem (Gauss'’s Lemma)

Let p be a prime, (p|g) = (—1)™ where m is the number of residues in the set R = {q

mod p,2q mod p,..., p—;lq mod p} that are greater than p—gl.

Gauss’s Lemma.

First all residues in R are distinct and no two elements in R add up to 0 mod p. Let R’
be the set of residues that result from R if each of the m elements a € R such that
a> p—;l are replaced by p — a. So all elements in R’ are no more than 2>1, and,

2
actually, R" = {1,2,..., 21},
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Definition (Legendre Symbol)

Letp # 2 be aprime and a Z 0 mod p, the Legendre Symbol of a and p, denoted
mod p

=i
(a|p) is simply the value, 1 or —1, of a2

Theorem (Gauss'’s Lemma)

Let p be a prime, (p|g) = (—1)™ where m is the number of residues in the set R = {q

mod p,2q mod p,..., p—;lq mod p} that are greater than p—gl.

Gauss’s Lemma.

First all residues in R are distinct and no two elements in R add up to 0 mod p. Let R’
be the set of residues that result from R if each of the m elements a € R such that
a> p—;l are replaced by p — a. So all elements in R’ are no more than 2>1, and,

2
actually, R” = {1,2,..., 21}. We also have that R’ = {+q mod p, +2q

mod p, ..., ipT_lq mod p} where exactly m elements are negated.
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Definition (Legendre Symbol)

Letp # 2 be aprime and a Z 0 mod p, the Legendre Symbol of a and p, denoted
=il
(alp) is simply the value, 1 or —1, of apz mod p

Theorem (Gauss'’s Lemma)

Let p be a prime, (p|g) = (—1)™ where m is the number of residues in the set R = {q

mod p,2q mod p,..., p—;lq mod p} that are greater than p—gl.

Gauss’s Lemma.

First all residues in R are distinct and no two elements in R add up to 0 mod p. Let R’
be the set of residues that result from R if each of the m elements a € R such that

a> p—;l are replaced by p — a. So all elements in R’ are no more than pT_l, and,

actually, R” = {1,2,..., 21}. We also have that R’ = {+q mod p, +2q

mod p, ..., ipT_lq mod p} where exactly m elements are negated. Taking the
product of all the elements in each of these two sets yields that

P-1) = (—1)"q"z 2211 mod p and the lemma foll
=== (=1)"g z *5=! mod p and the lemma follows. O
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(4,5)=1=1?2andR = {4 mod 5,2 x4 mod 5} = {4, 3} which has two elements
greater than 2.
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@ Legendre’s Law of Quadratic Reciprocity
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Theorem (Legendre’s Law of Quadratic Reciprocity)

—19-—1

Let p # 2 and q # 2 be primes, then (p|q) - (q|p) = (-1) = =2 .
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Theorem (Legendre’s Law of Quadratic Reciprocity)

p—1q—1

Let p # 2 and q # 2 be primes, then (p|q) - (q|p) = (-1) = =2 .

Legendre’s Law of Quadratic Reciprocity.

First we calculate (q|p). Let us look at the set R’ from the previous proof, and consider

the sum of its elements mod 2.
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Theorem (Legendre’s Law of Quadratic Reciprocity)

p—1q—1

Let p # 2 and q # 2 be primes, then (p|q) - (q|p) = (-1) = =2 .

Legendre’s Law of Quadratic Reciprocity.

First we calculate (q|p). Let us look at the set R’ from the previous proof, and consider
p—1

the sum of its elements mod 2. AsR’ =1,2,..., p%l then this sum is simply >~, 2 i
mod 2. But if we look at how R’ was derived we get that the sum is

L p-1
qzijl I = PZi:21 L%J + mpp mod 2.
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Theorem (Legendre’s Law of Quadratic Reciprocity)

p—1q—1

Let p # 2 and q # 2 be primes, then (p|q) - (q|p) = (-1) = =2 .

Legendre’s Law of Quadratic Reciprocity.

First we calculate (q|p). Let us look at the set R’ from the previous proof, and consider

p-1
the sum of its elements mod 2. AsR’ =1,2,..., p%l then this sum is simply >, 2 i
mod 2. But if we look at how R’ was derived we get that the sum is

p—1 p—1 .
a4 i-pXxa L%J + mpp mod 2. The first term is simply sum of the original
{a.2q,...,%5%q}.
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Theorem (Legendre’s Law of Quadratic Reciprocity)

p—1q—1

Let p # 2 and q # 2 be primes, then (p|q) - (q|p) = (-1) = =2 .

Legendre’s Law of Quadratic Reciprocity.

First we calculate (q|p). Let us look at the set R’ from the previous proof, and consider

p-1
the sum of its elements mod 2. AsR’ =1,2,..., p%l then this sum is simply >, 2 i
mod 2. But if we look at how R’ was derived we get that the sum is

p—1 p—1 .
a4 i-pXxa L%J + mpp mod 2. The first term is simply sum of the original
{q9,2q,..., p%1q}. The second term accounts for taking the residues mod p.
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Theorem (Legendre’s Law of Quadratic Reciprocity)

Let p # 2 and q # 2 be primes, then (p|q) - (q|p) = (-1) = =2 .

Legendre’s Law of Quadratic Reciprocity.

First we calculate (q|p). Let us look at the set R’ from the previous proof, and consider

p-1
the sum of its elements mod 2. AsR’ =1,2,..., p%l then this sum is simply >, 2 i
mod 2. But if we Iook at how R’ was derived we get that the sum is

p—1
a>,3 i—p Z L'qJ + mpp mod 2. The first term is simply sum of the original

{q9,2q,..., TQ} The second term accounts for taking the residues mod p. The
third term accounts for replacing mp elements a with p — a. Thus equatlng these two

p—1
sums and simplifying we get that mp = lel LISJ- Similarly mq = Z. ) L'pj |
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Proof (cont.)

It we look at the values of mp and mg geometrically we see that mp is the number of
positive integer points in the p%l X q—;l rectangle bellow the line py = gx and mq is
the number of these points above that line. O

py = ax

q—1
2

Thus (plq) - (alp) = (~1)™+ma = (—1)"z"
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We will now extend the Legendre Symbol to cover non-prime numbers.
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We will now extend the Legendre Symbol to cover non-prime numbers.

Definition (Legendre Symbol)

Let N = g10z . . - On Where the g;s are odd primes. We define (M|N) = [T, (M|a;)
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We will now extend the Legendre Symbol to cover non-prime numbers.

Definition (Legendre Symbol)

Let N = g10z . . - On Where the g;s are odd primes. We define (M|N) = [T, (M|a;)

(4/15) = (4/3)(4/5) = (4 mod 3) - (42 mod 5) =1
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Q (MiMz|N) = (M1|N)(M2|N)
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Q@ (MiM2|N) = (M1N)(M2|N)
Q (M +NJ|N) = (M|N)
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Q (MiMz|N) = (Mg [N)(M|N)
Q (M +NJ|N) = (M|N)
Q (MIN)(NIM) = (-1)"7 "=
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Q@ (MiM2|N) = (M1N)(M2|N)
Q (M +NJ|N) = (M|N)

M—1N-1

Q@ (MIN)(N|M) = (-1)*7* 7

Proof.

Let N = q; ... qn be the prime factorization of N and M = p; ... pm be the prime
factorization of M.

Q (MiM2|N) = [TL; (M1M2|gi) = [TiL; (M1]gi)(M2]g;) = (M1N)(M2|N)
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Q (M1M2|N) = (Mz[N)(M2|N)
Q (M +NJ|N) = (M|N)

Q@ (MIN)(N|M) = (-1)*7* 7

Proof.

Let N = q; ... qn be the prime factorization of N and M = p; ... pm be the prime
factorization of M.

Q (MiM2|N) = [TL; (M1M2|gi) = [TiL; (M1]gi)(M2]g;) = (M1N)(M2|N)
Q (M +NIN)=T[L;(M +NJ|g;) = [TL;(M]g;) = (M|N)
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Q@ (MiM2|N) = (M1N)(M2|N)
Q (M +NJ|N) = (M|N)

—1N-1

Q@ (MIN)(N|M) = (-1)*7* 7

Proof.

Let N = q; ... qn be the prime factorization of N and M = p; ... pm be the prime
factorization of M.

Q (MiM2|N) = [TL; (M1M2|gi) = [TiL; (M1]gi)(M2]g;) = (M1N)(M2|N)
Q (M +NIN)=T[L;(M +NJ|g;) = [TL;(M]g;) = (M|N)

pj—1lqg—1

Q (MIN)(NIM) = T [T (pylai)(aipy) = (—2)>= 2 "2 77 =
()= o e gyt
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Theorem
Q (MiM2|N) = (M1|N)(M2|N)
Q (M +NJ|N) = (M|N)
Q (MIN)(NIM) = (-1)"7 "=

Proof

Let N = q; ... qn be the prime factorization of N and M = p; ... pm be the prime
factorization of M.

Q (M1MzIN) = TTL; (M1M3]a;) = [TL; (M1]ai)(M2]g;) = (M1|N)(M2|N)
Q (M +NIN) =IT",(M +Njg) = [T%, (M[gi) = (MIN)
Q (MIN)(N|M) = T 111 (Bl @ lpy) = (—1)= S i

M—1N-1

(_1)Z|:1 TZJ:1 T =(-1)"2z 2

The final step for the third part holds because if a and b are odd then
azl bl = a1 mod 2 O
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9 Computing (M|N) and a Randomized Primality Algorithm
@ (M|N) can be computed in polynomial time
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Algorithm

We now want to show that (M|N) can be computed without knowing the factorization of
M orN
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Algorithm Algorithm

We now want to show that (M|N) can be computed without knowing the factorization of
M orN

4

Computing (M|N)

NZ_1

Q IfM = 2 compute (M|N) = (2|N) = (—1)~®

h
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Goal

We now want to show that (M|N) can be computed without knowing the factorization of
M orN

| \

Computing (M|N)

NZ_1

@ If M = 2 compute (M|N) = (2|N) = (=1) "5
Q If M = 2K is even compute (M|N) = (2|N)(K|N)

\
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Goal

We now want to show that (M|N) can be computed without knowing the factorization of
M orN

| \

Computing (M|N)

NZ_1

@ If M = 2 compute (M|N) = (2|N) = (=1) "5
Q If M = 2K is even compute (M|N) = (2|N)(K|N)

M—1N-1
@ If M < N compute (M|N) = (=1)"Zz “z - (N|M)

\
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Goal

We now want to show that (M|N) can be computed without knowing the factorization of
M orN

| \

Computing (M|N)

NZ_1

@ If M = 2 compute (M|N) = (2|N) = (=1) "5

Q If M = 2K is even compute (M|N) = (2|N)(K|N)
M—1N-1

@ If M < N compute (M|N) = (=1)"Zz “z - (N|M)

@ IfM > N compute (M|N) = (M mod N|N)

\

Wojciechowski Primality



Computation
Usefulness

Algorithm Algorithm

We now want to show that (M|N) can be computed without knowing the factorization of
M orN

4

Computing (M|N)
2_

Q If M = 2 compute (M|N) = (2|N) = (—
Q If M = 2K is even compute (M|N) = (2|N)(K|N)

M—1N-1
@ If M < N compute (M|N) = (=1)"Zz “z - (N|M)
@ IfM > N compute (M|N) = (M mod N|N)

4

(21/55) = (— 1)10*27*(55|21) (13|21) = (—1)5*19(21|13) = (8]13) = (2|13)2 =
( 1)3*21
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(MIN) and ged(M, N) can be computed in O(log(l = MN)?) time.
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(MIN) and ged(M, N) can be computed in O(log(l = MN)?) time.

The computation of powers of -1 is trivial if given the binary expansion of the exponent.
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(MIN) and ged(M, N) can be computed in O(log(l = MN)?) time.

Proof.

The computation of powers of -1 is trivial if given the binary expansion of the exponent.
The computation of the exponents is also doable within this time frame as such
computations involve only multiplications additions and divisions each reduction of
(MN) takes O(I?) time.
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(MIN) and ged(M, N) can be computed in O(log(l = MN)?) time.

Proof.

The computation of powers of -1 is trivial if given the binary expansion of the exponent.
The computation of the exponents is also doable within this time frame as such
computations involve only multiplications additions and divisions each reduction of
(M|N) takes O(I?) time. As the algorithm takes O(I) reductions the entire algorithm
runs in the desired time.
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(MIN) and ged(M, N) can be computed in O(log(l = MN)?) time.

The computation of powers of -1 is trivial if given the binary expansion of the exponent.
The computation of the exponents is also doable within this time frame as such
computations involve only multiplications additions and divisions each reduction of
(M|N) takes O(I?) time. As the algorithm takes O(I) reductions the entire algorithm
runs in the desired time. A similar argument shows that Euclid’s algorithm for finding
the GCD runs in similar time as the algorithms are similar. O
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9 Computing (M|N) and a Randomized Primality Algorithm

@ (M|N) is useful when determining Primality
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If (M|N) = M2 mod N for all M € ®(N), then N is a prime.
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If (M|N) = M2 mod N for all M € ®(N), then N is a prime.

Proof.

Assume that there is a contradiction. Let N be a composite number for which
N-—-1
(MIN) =M"2 mod N forallM € ®(N).
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If (M|N) = M2 mod N for all M € ®(N), then N is a prime.

Proof.
Assume that there is a contradiction. Let N be a composite number for which

(MIN) = M"2" mod N for all M € ®(N). First lets suppose that N = p; ... pn for
distinct odd primes ps,...,pn andletr € ®(p;) have (r|p;) = —1. Choose M such
that M =r mod pp andM =1 mod p; forl <i <n.
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If (M|N) = M2 mod N for all M € ®(N), then N is a prime.

Proof.

Assume that there is a contradiction. Let N be a composite number for which

N-—-1
(M|N) =M™2 mod N for all M € ®(N). First lets suppose that N = p; ... pn for
distinct odd primes p1,...,pn and letr € ®(p;) have (r|p1) = —1. Choose M such
that M =r mod p; and M =1 mod p; for 1 < i < n. So we have that
MUz = (M|N) = —1 mod N. However M7 =1 mod p2 leading to a
contradiction.
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If (M|N) = M2 mod N for all M € ®(N), then N is a prime.

Proof.

Assume that there is a contradiction. Let N be a composite number for which

(MIN) = M"2" mod N for all M € ®(N). First lets suppose that N = p; ... pn for
distinct odd primes p1,...,pn and letr € ®(p;) have (r|p1) = —1. Choose M such
that M =r mod p; and M =1 mod p; for 1 < i < n. So we have that

MUz = (M|N) = —1 mod N. However M7 =1 mod p2 leading to a
contradiction. Thus there must be a prime p such that N = p? « m. Let r be a primitive
root of p2.
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If (M|N) = M2 mod N for all M € ®(N), then N is a prime.

Proof.

Assume that there is a contradiction. Let N be a composite number for which

(MIN) = M"2" mod N for all M € ®(N). First lets suppose that N = p; ... pn for
distinct odd primes p1,...,pn and letr € ®(p;) have (r|p1) = —1. Choose M such
that M =r mod p; and M =1 mod p; for 1 < i < n. So we have that

MUz = (M|N) = —1 mod N. However M7 =1 mod p2 leading to a
contradiction. Thus there must be a prime p such that N = p? « m. Let r be a primitive
root of p2. As (r|N) is &1 we have that N1 = (r[N)? =1 mod N. ThusrN-1 =1
mod p? and so p | #(p?) | N — 1 leading to a contradiction. |
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If N is an odd composite, then for at least half the M € ®(N), (M|N) Z M *>* mod N.
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If N is an odd composite, then for at least half the M € ®(N), (M|N) Z M *>* mod N.

Proof.

z
|

1

From the previous theorem there is at least one a € ®(N) for which (a|N) # a2
mod N.
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If N is an odd composite, then for at least half the M € ®(N), (M|N) Z M *>* mod N.

Proof.

N—1
From the previous theorem there is at least one a € ®(N) for which (a|N) Z a2

mod N. Let B = {by, by, ...,bn} be the set of all distinct residues such that
N—1
(bi[N)=b, 2 mod N and leta-B = {ab; mod N,ab, mod N, ...,ab, mod N}.
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If N is an odd composite, then for at least half the M € ®(N), (M|N) Z M *>* mod N.

Proof.

N—1
From the previous theorem there is at least one a € ®(N) for which (a|N) Z a2

mod N. Let B = {by, by, ...,bn} be the set of all distinct residues such that

N—1
(biIN) =b, * mod N andleta-B = {ab; mod N,ab, mod N, ...,ab, mod N}.
We have that the elements of a - B are distinct because a € ®(N) and the residues in
B are distinct.
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If N is an odd composite, then for at least half the M € ®(N), (M|N) Z M *>* mod N.

Proof.

N—1
From the previous theorem there is at least one a € ®(N) for which (a|N) Z a2

mod N. Let B = {by, by, ...,bn} be the set of all distinct residues such that

N-—1
(biIN) =b, * mod N andleta-B = {ab; mod N,ab, mod N, ...,ab, mod N}.
We have that the elements of a - B are distinct because a € ®(N) and the residues in
B are distinct. Let ab be an arbitrary element of a - B. Thus

N—-1 N—1 N-1
(ab)™2 =a 2 bz # (a|N)(b|N) = (ab|N) mod N.
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If N is an odd composite, then for at least half the M € ®(N), (M|N) Z M *>* mod N.

Proof

|

=il
From the previous theorem there is at least one a € ®(N) for which (a|N) Z a2
mod N. Let B = {by, by, ...,bn} be the set of all distinct residues such that

N-—1
(biIN) =b, * mod N andleta-B = {ab; mod N,ab, mod N, ...,ab, mod N}.
We have that the elements of a - B are distinct because a € ®(N) and the residues in
B are distinct. Let ab be an arbitrary element of a - B. Thus

(@)= =a"7 b7 % (aN)(b|N) = (ab\N) mod N. Thus there are at least |B|
elements, M of ® (n) for which (M|N) # M2 mod N. O
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9 Computing (M|N) and a Randomized Primality Algorithm

@ Randomized Algorithm for Primality
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From the previous theorem we can form a randomized algorithm for checking Primality
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From the previous theorem we can form a randomized algorithm for checking Primality

Q Generate a random integer, M, from 2 to N — 1.
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From the previous theorem we can form a randomized algorithm for checking Primality

Algorithm

Q Generate a random integer, M, from 2 to N — 1.
Q If gcd(M, N) # 1 conclude that N is composite.
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From the previous theorem we can form a randomized algorithm for checking Primality

Algorithm

Q Generate a random integer, M, from 2 to N — 1.
Q If gcd(M, N) # 1 conclude that N is composite.

Q If(M|N) ZM *=* mod N conclude that N is composite.
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From the previous theorem we can form a randomized algorithm for checking Primality

Q Generate a random integer, M, from 2 to N — 1.
Q If gcd(M, N) # 1 conclude that N is composite.

Q If(M|N) ZM *=* mod N conclude that N is composite.
@ Otherwise conclude that N is probably a prime.
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