Outline

An Introduction to First-Order Logic

K. Subramani¹

¹Lane Department of Computer Science and Electrical Engineering West Virginia University

Completeness, Compactness and Inexpressibility

Outline

Completeness of proof system for First-Order Logic

- The notion of Completeness
- The Completeness Proof

Consequences of the Completeness theorem

- Complexity of Validity
- Compactness
- Model Cardinality
- Löwenheim-Skolem Theorem
- Inexpressibility of Reachability

Outline

Completeness of proof system for First-Order Logic

- The notion of Completeness
- The Completeness Proof

2 Consequences of the Completeness theorem

- Complexity of Validity
- Compactness
- Model Cardinality
- Löwenheim-Skolem Theorem
- Inexpressibility of Reachability

The notion of Completeness The Completeness Proof

Outline

Completeness of proof system for First-Order LogicThe notion of Completeness

The Completeness Proof

2 Consequences of the Completeness theorem

- Complexity of Validity
- Compactness
- Model Cardinality
- Löwenheim-Skolem Theorem
- Inexpressibility of Reachability

The notion of Completeness The Completeness Proof

Soundness and Completeness

Theorem

Soundness: If $\Delta \vdash \phi$, then $\Delta \models \phi$.

Theorem

Completeness (Gödel's traditional form): If $\Delta \models \phi$, then $\Delta \vdash \phi$.

Theorem

Completeness (Gödel's altenate form): If Δ is consistent, then it has a model.

Theorem

The traditional completeness theorem follows from the alternate form of the completeness theorem.

Proof.

Assume that $\Delta \models \phi$. It follows that any model *M* that satisfies all the expressions in Δ , also satisfies ϕ and hence falsifies $\neg \phi$. Thus, there does not exist a model that satisfies all the expressions in $\Delta \cup \{\neg \phi\}$. It follows that $\Delta \cup \{\neg \phi\}$ is inconsistent. But using the Contradiction theorem, it follows that $\Delta \vdash \phi$.

Theorem

The traditional completeness theorem follows from the alternate form of the completeness theorem.

Proof.

Assume that $\Delta \models \phi$. It follows that any model *M* that satisfies all the expressions in Δ , also satisfies ϕ and hence falsifies $\neg \phi$. Thus, there does not exist a model that satisfies all the expressions in $\Delta \cup \{\neg \phi\}$. It follows that $\Delta \cup \{\neg \phi\}$ is inconsistent. But using the Contradiction theorem, it follows that $\Delta \vdash \phi$.

< ロ > < 同 > < 三 > < 三 >

Theorem

The traditional completeness theorem follows from the alternate form of the completeness theorem.

Proof.

Assume that $\Delta \models \phi$. It follows that any model *M* that satisfies all the expressions in Δ , also satisfies ϕ and hence falsifies $\neg \phi$. Thus, there does not exist a model that satisfies all the expressions in $\Delta \cup \{\neg \phi\}$. It follows that $\Delta \cup \{\neg \phi\}$ is inconsistent. But using the Contradiction theorem, it follows that $\Delta \vdash \phi$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Theorem

The traditional completeness theorem follows from the alternate form of the completeness theorem.

Proof.

Assume that $\Delta \models \phi$. It follows that any model *M* that satisfies all the expressions in Δ , also satisfies ϕ and hence falsifies $\neg \phi$. Thus, there does not exist a model that satisfies all the expressions in $\Delta \cup \{\neg \phi\}$. It follows that $\Delta \cup \{\neg \phi\}$ is inconsistent. But using the Contradiction theorem, it follows that $\Delta \vdash \phi$.

< ロ > < 同 > < 三 > < 三 >

Theorem

The traditional completeness theorem follows from the alternate form of the completeness theorem.

Proof.

Assume that $\Delta \models \phi$. It follows that any model *M* that satisfies all the expressions in Δ , also satisfies ϕ and hence falsifies $\neg \phi$. Thus, there does not exist a model that satisfies all the expressions in $\Delta \cup \{\neg \phi\}$. It follows that $\Delta \cup \{\neg \phi\}$ is inconsistent. But using the Contradiction theorem, it follows that $\Delta \vdash \phi$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Soundness and Completeness (contd.)

Theorem

The traditional completeness theorem follows from the alternate form of the completeness theorem.

Proof.

Assume that $\Delta \models \phi$. It follows that any model *M* that satisfies all the expressions in Δ , also satisfies ϕ and hence falsifies $\neg \phi$. Thus, there does not exist a model that satisfies all the expressions in $\Delta \cup \{\neg \phi\}$. It follows that $\Delta \cup \{\neg \phi\}$ is inconsistent. But using the Contradiction theorem, it follows that $\Delta \vdash \phi$.

The notion of Completeness The Completeness Proof

Outline

Completeness of proof system for First-Order Logic The notion of Completeness

The Completeness Proof

2 Consequences of the Completeness theorem

- Complexity of Validity
- Compactness
- Model Cardinality
- Löwenheim-Skolem Theorem
- Inexpressibility of Reachability

The notion of Completeness The Completeness Proof

Proof Sketch of Completeness Theorem

Proof.

http://www.maths.bris.ac.uk/~rp3959/firstordcomp.pdf

Complexity of Validity

Compactness Model Cardinality Löwenheim-Skolem Theorem Inexpressibility of Reachability

Outline

The notion of Completeness

- The Completeness Proof

2 Consequences of the Completeness theorem

- Complexity of Validity
- Compactness
- Model Cardinality
- Löwenheim-Skolem Theorem
- Inexpressibility of Reachability

Complexity of Validity

Compactness Model Cardinality Löwenheim-Skolem Theorem Inexpressibility of Reachability

E

Validity

Theorem

VALIDITY is Recursively enumerable.

Proof.

Follows instantaneously from the completeness theorem.

Complexity of Validity Compactness Model Cardinality Löwenheim-Skolem Theorem Inexpressibility of Reachability

Outline

Completeness of proof system for First-Order Logic

- The notion of Completeness
- The Completeness Proof

2 Consequences of the Completeness theorem

Complexity of Validity

Compactness

- Model Cardinality
- Löwenheim-Skolem Theorem
- Inexpressibility of Reachability

Complexity of Validity Compactness Model Cardinality Löwenheim-Skolem Theorem Inexpressibility of Reachability

Compactness

Theorem

If all finite subsets of a set of sentences Δ are satisfiable, then so is Δ .

Proof.

Assume that Δ is unsatisfiable, but all finite subsets of Δ are satisfiable. As per the completeness

theorem, there is a proof of a contradiction from Δ , say $\Delta \vdash \phi \land \neg \phi$. However, this proof has finite

length! Therefore, it can involve only a finite subset of Δ !

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Complexity of Validity Compactness Model Cardinality Löwenheim-Skolem Theorem Inexpressibility of Reachability

Compactness

Theorem

If all finite subsets of a set of sentences Δ are satisfiable, then so is Δ .

Proof.

Assume that Δ is unsatisfiable, but all finite subsets of Δ are satisfiable. As per the completeness

theorem, there is a proof of a contradiction from Δ , say $\Delta \vdash \phi \land \neg \phi$. However, this proof has finite

ength! Therefore, it can involve only a finite subset of Δ !

Complexity of Validity Compactness Model Cardinality Löwenheim-Skolem Theorem Inexpressibility of Reachability

Compactness

Theorem

If all finite subsets of a set of sentences Δ are satisfiable, then so is Δ .

Proof.

Assume that Δ is unsatisfiable, but all finite subsets of Δ are satisfiable. As per the completeness theorem, there is a proof of a contradiction from Δ , say $\Delta \vdash \phi \land \neg \phi$. However, this proof has finite length! Therefore, it can involve only a finite subset of Δ !

Complexity of Validity Compactness Model Cardinality Löwenheim-Skolem Theorem Inexpressibility of Reachability

Outline

Completeness of proof system for First-Order Logic

- The notion of Completeness
- The Completeness Proof

2 Consequences of the Completeness theorem

- Complexity of Validity
- Compactness

Model Cardinality

- Löwenheim-Skolem Theorem
- Inexpressibility of Reachability

Complexity of Validity Compactness Model Cardinality Löwenheim-Skolem Theorem Inexpressibility of Reachability

(a)

Model Size

Theorem

If a sentence has a model, it has a countable model.

Proof.

The model M constructed in the proof of the completeness theorem is countable, since the

corresponding vocabulary is countable.

Complexity of Validity Compactness Model Cardinality Löwenheim-Skolem Theorem Inexpressibility of Reachability

Outline

Completeness of proof system for First-Order Logic

- The notion of Completeness
- The Completeness Proof

2 Consequences of the Completeness theorem

- Complexity of Validity
- Compactness
- Model Cardinality
- Löwenheim-Skolem Theorem
- Inexpressibility of Reachability

Query

Do all sentences have infinite models?

Theorem

If a sentence ϕ has finite models of arbitrary large cardinality, then it has an infinite model.

Proof.

Consider the sentence $\psi_k = \exists x_1 \exists x_2 \dots \exists x_k \land_{1 \le i < j \le k} \neg (x_i = x_j)$. ψ_k cannot be satisfied with a model having less than *k* elements.

Assume that ϕ has arbitrarily large models, but no infinite models. Let

 $\Delta = \phi \cup \{\psi_k : k = 2, 3, \ldots\}$. If Δ has a model M, M can neither be finite nor infinite. Thus, Δ does not have a model. By the compactness theorem, a finite subset $D \subset \Delta$ does not have a model. ϕ must be in D. Let k denote the largest integer, such that $\psi_k \in D$. But there is a large enough model that satisfies both ϕ (hypothesis) and ψ_k !

< 口 > < 同 > < 三 > < 三 > -

Query

Do all sentences have infinite models?

Theorem

If a sentence ϕ has finite models of arbitrary large cardinality, then it has an infinite model.

Proof.

Consider the sentence $\psi_k = \exists x_1 \exists x_2 \dots \exists x_k \land_{1 \leq i < j \leq k} \neg (x_i = x_j)$. ψ_k cannot be satisfied with a model having less than k elements.

Assume that ϕ has arbitrarily large models, but no infinite models. Let

 $\Delta = \phi \cup \{\psi_k : k = 2, 3, ...\}$. If Δ has a model *M*, *M* can neither be finite nor infinite. Thus, Δ does not have a model. By the compactness theorem, a finite subset $D \subset \Delta$ does not have a model. ϕ must be in *D*. Let *k* denote the largest integer, such that $\psi_k \in D$. But there is a large enough model that satisfies both ϕ (hypothesis) and ψ_k !

Query

Do all sentences have infinite models?

Theorem

If a sentence ϕ has finite models of arbitrary large cardinality, then it has an infinite model.

Proof.

Consider the sentence $\psi_k = \exists x_1 \exists x_2 \dots \exists x_k \land_{1 \leq i < j \leq k} \neg (x_i = x_j)$. ψ_k cannot be satisfied with a model having less than k elements.

Assume that ϕ has arbitrarily large models, but no infinite models. Let

 $\Delta = \phi \cup \{\psi_k : k = 2, 3, ...\}$. If Δ has a model *M*, *M* can neither be finite nor infinite. Thus, Δ does not have a model. By the compactness theorem, a finite subset $D \subset \Delta$ does not have a model. ϕ must be in *D*. Let *k* denote the largest integer, such that $\psi_k \in D$. But there is a large enough model that satisfies both ϕ (hypothesis) and ψ_k !

< ロ > < 同 > < 三 > < 三 > -

Query

Do all sentences have infinite models?

Theorem

If a sentence ϕ has finite models of arbitrary large cardinality, then it has an infinite model.

Proof.

Consider the sentence $\psi_k = \exists x_1 \exists x_2 \dots \exists x_k \land_{1 \leq i < j \leq k} \neg (x_i = x_j)$. ψ_k cannot be satisfied with a model having less than k elements.

Assume that ϕ has arbitrarily large models, but no infinite models. Let

 $\Delta = \phi \cup \{\psi_k : k = 2, 3, ...\}$. If Δ has a model *M*, *M* can neither be finite nor infinite. Thus, Δ does not have a model. By the compactness theorem, a finite subset $D \subset \Delta$ does not have a model. ϕ must be in *D*. Let *k* denote the largest integer, such that $\psi_k \in D$. But there is a large enough model that satisfies both ϕ (hypothesis) and ψ_k !

< ロ > < 同 > < 三 > < 三 > -

< ロ > < 同 > < 三 > < 三 > -

Query

Do all sentences have infinite models?

Theorem

If a sentence ϕ has finite models of arbitrary large cardinality, then it has an infinite model.

Proof.

Consider the sentence $\psi_k = \exists x_1 \exists x_2 \dots \exists x_k \land_{1 \leq i < j \leq k} \neg (x_i = x_j)$. ψ_k cannot be satisfied with a model having less than k elements.

Assume that ϕ has arbitrarily large models, but no infinite models. Let

 $\Delta = \phi \cup \{\psi_k : k = 2, 3, ...\}$. If Δ has a model M, M can neither be finite nor infinite. Thus, Δ does not have a model. By the compactness theorem, a finite subset $D \subset \Delta$ does not have a model. ϕ must be in D. Let k denote the largest integer, such that $\psi_k \in D$. But there is a large enough model that satisfies both ϕ (hypothesis) and ψ_k !

Complexity of Validity Compactness Model Cardinality Löwenheim-Skolem Theorem Inexpressibility of Reachability

Outline

Completeness of proof system for First-Order Logic

- The notion of Completeness
- The Completeness Proof

2 Consequences of the Completeness theorem

- Complexity of Validity
- Compactness
- Model Cardinality
- Löwenheim-Skolem Theorem
- Inexpressibility of Reachability

REACHABILITY

REACHABILITY

Given a directed graph G and two nodes x and y in G, is there a directed path from x to y in G?

Theorem

There is no first-order expression ϕ with two free variables x and y, such that ϕ -Graphs expresses REACHABILITY.

Proof.

Assume that there exists such a ϕ . Consider the sentence, $\psi' = \psi_0 \wedge \psi_1 \wedge \psi_2$, where,

$$\begin{split} \psi_{0} &= (\forall \mathbf{x})(\forall \mathbf{y})\phi \\ \psi_{1} &= (\forall \mathbf{x})(\exists \mathbf{y})G(\mathbf{x},\mathbf{y}) \land (\forall \mathbf{x})(\forall \mathbf{y})(\forall \mathbf{z})((G(\mathbf{x},\mathbf{y}) \land G(\mathbf{x},\mathbf{z})) \rightarrow (\mathbf{y}=\mathbf{z})) \\ \psi_{2} &= (\forall \mathbf{x})(\exists \mathbf{y})G(\mathbf{y},\mathbf{x}) \land (\forall \mathbf{x})(\forall \mathbf{y})(\forall \mathbf{z})((G(\mathbf{y},\mathbf{x}) \land G(\mathbf{z},\mathbf{x})) \rightarrow (\mathbf{y}=\mathbf{z})) \end{split}$$

Arbitrarily large models are possible for ψ' , but no infinite models!

REACHABILITY

REACHABILITY

Given a directed graph G and two nodes x and y in G, is there a directed path from x to y in G?

Theorem

There is no first-order expression ϕ with two free variables x and y, such that ϕ -Graphs expresses REACHABILITY.

Proof.

Assume that there exists such a ϕ . Consider the sentence, $\psi' = \psi_0 \wedge \psi_1 \wedge \psi_2$, where,

 $\begin{array}{lll} \psi_0 &= & (\forall x)(\forall y)\phi \\ \psi_1 &= & (\forall x)(\exists y)G(x,y) \land (\forall x)(\forall y)(\forall z)((G(x,y) \land G(x,z)) \to (y=z)) \\ \psi_2 &= & (\forall x)(\exists y)G(y,x) \land (\forall x)(\forall y)(\forall z)((G(y,x) \land G(z,x)) \to (y=z)) \end{array}$

Arbitrarily large models are possible for ψ' , but no infinite models!

REACHABILITY

REACHABILITY

Given a directed graph G and two nodes x and y in G, is there a directed path from x to y in G?

Theorem

There is no first-order expression ϕ with two free variables x and y, such that ϕ -Graphs expresses REACHABILITY.

Proof.

Assume that there exists such a ϕ . Consider the sentence, $\psi' = \psi_0 \wedge \psi_1 \wedge \psi_2$, where,

 $\begin{array}{lcl} \psi_0 & = & (\forall x)(\forall y)\phi \\ \psi_1 & = & (\forall x)(\exists y)G(x,y) \land (\forall x)(\forall y)(\forall z)((G(x,y) \land G(x,z)) \to (y=z)) \\ \psi_2 & = & (\forall x)(\exists y)G(y,x) \land (\forall x)(\forall y)(\forall z)((G(y,x) \land G(z,x)) \to (y=z)) \end{array}$

Arbitrarily large models are possible for ψ' , but no infinite models!

REACHABILITY

REACHABILITY

Given a directed graph G and two nodes x and y in G, is there a directed path from x to y in G?

Theorem

There is no first-order expression ϕ with two free variables x and y, such that ϕ -Graphs expresses REACHABILITY.

Proof.

Assume that there exists such a ϕ . Consider the sentence, $\psi' = \psi_0 \wedge \psi_1 \wedge \psi_2$, where,

 $\begin{array}{lll} \psi_0 &= & (\forall x)(\forall y)\phi \\ \psi_1 &= & (\forall x)(\exists y)G(x,y) \land (\forall x)(\forall y)(\forall z)((G(x,y) \land G(x,z)) \to (y=z)) \\ \psi_2 &= & (\forall x)(\exists y)G(y,x) \land (\forall x)(\forall y)(\forall z)((G(y,x) \land G(z,x)) \to (y=z)) \end{array}$

Arbitrarily large models are possible for ψ' , but no infinite models!