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The notion of Completeness
The Completeness Proof

Soundness and Completeness

Theorem

Soundness: If ∆ ⊢ φ, then ∆ |= φ.

Theorem
Completeness (Gödel’s traditional form): If ∆ |= φ, then ∆ ⊢ φ.

Theorem
Completeness (Gödel’s altenate form): If ∆ is consistent, then it has a model.
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Soundness and Completeness (contd.)

Theorem
The traditional completeness theorem follows from the alternate form of the completeness theorem.

Proof.
Assume that ∆ |= φ. It follows that any model M that satisfies all the expressions in ∆, also

satisfies φ and hence falsifies ¬φ. Thus, there does not exist a model that satisfies all the

expressions in ∆ ∪ {¬φ}. It follows that ∆ ∪ {¬φ} is inconsistent. But using the Contradiction

theorem, it follows that ∆ ⊢ φ.
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Proof Sketch of Completeness Theorem

Proof.

http://www.maths.bris.ac.uk/ ˜ rp3959/firstordcomp.pdf
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Validity

Theorem
VALIDITY is Recursively enumerable.

Proof.

Follows instantaneously from the completeness theorem.
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Compactness

Theorem
If all finite subsets of a set of sentences ∆ are satisfiable, then so is ∆.

Proof.
Assume that ∆ is unsatisfiable, but all finite subsets of ∆ are satisfiable. As per the completeness

theorem, there is a proof of a contradiction from ∆, say ∆ ⊢ φ ∧ ¬φ. However, this proof has finite

length! Therefore, it can involve only a finite subset of ∆!
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Model Size

Theorem
If a sentence has a model, it has a countable model.

Proof.
The model M constructed in the proof of the completeness theorem is countable, since the

corresponding vocabulary is countable.
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Query
Do all sentences have infinite models?

Theorem
If a sentence φ has finite models of arbitrary large cardinality, then it has an infinite model.

Proof.
Consider the sentence ψk = ∃x1∃x2 . . . ∃xk ∧1≤i<j≤k ¬(xi = xj ). ψk cannot be satisfied with a
model having less than k elements.

Assume that φ has arbitrarily large models, but no infinite models. Let

∆ = φ ∪ {ψk : k = 2, 3, . . .}. If ∆ has a model M, M can neither be finite nor infinite. Thus, ∆

does not have a model. . By the compactness theorem, a finite subset D ⊂ ∆ does not have a

model. φ must be in D. Let k denote the largest integer, such that ψk ∈ D. But there is a large

enough model that satisfies both φ (hypothesis) and ψk !
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REACHABILITY

REACHABILITY

Given a directed graph G and two nodes x and y in G, is there a directed path from x to y in G?

Theorem
There is no first-order expression φ with two free variables x and y, such that φ-Graphs expresses

REACHABILITY.

Proof.
Assume that there exists such a φ. Consider the sentence, ψ′ = ψ0 ∧ ψ1 ∧ ψ2, where,

ψ0 = (∀x)(∀y)φ

ψ1 = (∀x)(∃y)G(x, y) ∧ (∀x)(∀y)(∀z)((G(x, y) ∧ G(x, z)) → (y = z))

ψ2 = (∀x)(∃y)G(y , x) ∧ (∀x)(∀y)(∀z)((G(y , x) ∧ G(z, x)) → (y = z))

Arbitrarily large models are possible for ψ′, but no infinite models!
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