
Outline

Computation That Counts

Xiaofeng Gu1

1Math Department
West Virginia University

May 1, 2009

Xiaofeng Gu Computation That Counts



Outline

Outline

1 The Class #P
Counting Problems
The class #P

2 The Class ⊕P
Introduction to ⊕P
⊕P-complete

Xiaofeng Gu Computation That Counts



Outline

Outline

1 The Class #P
Counting Problems
The class #P

2 The Class ⊕P
Introduction to ⊕P
⊕P-complete

Xiaofeng Gu Computation That Counts



The Class #P
The Class⊕P

Counting Problems
The class #P

Outline

1 The Class #P
Counting Problems
The class #P

2 The Class ⊕P
Introduction to ⊕P
⊕P-complete

Xiaofeng Gu Computation That Counts



The Class #P
The Class⊕P

Counting Problems
The class #P

Introduction

Problems

1 Decision problems: whether a solution exists.
2 Function (search) problems: find a solution.
3 Counting problems: how many solutions exists

Examples

1 #SAT: Given a Boolean expression, compute the number of different assignments
that satisfy it.

2 #HAMILTON PATH: compute the number of different Hamilton path in a given
graph.

Xiaofeng Gu Computation That Counts



The Class #P
The Class⊕P

Counting Problems
The class #P

Introduction

Problems

1 Decision problems: whether a solution exists.
2 Function (search) problems: find a solution.
3 Counting problems: how many solutions exists

Examples

1 #SAT: Given a Boolean expression, compute the number of different assignments
that satisfy it.

2 #HAMILTON PATH: compute the number of different Hamilton path in a given
graph.

Xiaofeng Gu Computation That Counts



The Class #P
The Class⊕P

Counting Problems
The class #P

Introduction

Problems

1 Decision problems: whether a solution exists.
2 Function (search) problems: find a solution.
3 Counting problems: how many solutions exists

Examples

1 #SAT: Given a Boolean expression, compute the number of different assignments
that satisfy it.

2 #HAMILTON PATH: compute the number of different Hamilton path in a given
graph.

Xiaofeng Gu Computation That Counts



The Class #P
The Class⊕P

Counting Problems
The class #P

Properties

Note

1 Counting problems cannot be easier than their decision versions. The decision
problem has a solution if and only if the solution number is larger than 0.

2 Counting problems might be very hard even the decision versions is in P.
For example, CYCLE asks if a directed graph contains a cycle, and it is in P.
#CYCLE counts the number of cycles in a directed graph. #CYCLE is hard.

Xiaofeng Gu Computation That Counts



The Class #P
The Class⊕P

Counting Problems
The class #P

Permanent

MATCHING

1 MATCHING: Whether a bipartile graph has a perfect matching?
2 Let G = (U,V ,E) be a bipartile graph with U = {u1, . . . , un} and

V = {v1, . . . , vn}. The adjacency matrix AG is a n × n matrix whose i, j th element
is 1 if (ui , vj ) ∈ E and 0 otherwise. the determinant of AG is det
AG =

P
π σ(π)Πn

i=1AG
i,π(i).

3 G has a matching if and only if the determinant of det AG is not identically zero.

PERMANENT

1 How many perfect matchings in a bipartile graph?
2 The permanent of AG, perm AG =

P
π Πn

i=1AG
i,π(i).

3 The number of perfect matchings in G is precisely the permanent of AG.

Xiaofeng Gu Computation That Counts



The Class #P
The Class⊕P

Counting Problems
The class #P

Permanent

MATCHING

1 MATCHING: Whether a bipartile graph has a perfect matching?
2 Let G = (U,V ,E) be a bipartile graph with U = {u1, . . . , un} and

V = {v1, . . . , vn}. The adjacency matrix AG is a n × n matrix whose i, j th element
is 1 if (ui , vj ) ∈ E and 0 otherwise. the determinant of AG is det
AG =

P
π σ(π)Πn

i=1AG
i,π(i).

3 G has a matching if and only if the determinant of det AG is not identically zero.

PERMANENT

1 How many perfect matchings in a bipartile graph?
2 The permanent of AG, perm AG =

P
π Πn

i=1AG
i,π(i).

3 The number of perfect matchings in G is precisely the permanent of AG.

Xiaofeng Gu Computation That Counts



The Class #P
The Class⊕P

Counting Problems
The class #P

Outline

1 The Class #P
Counting Problems
The class #P

2 The Class ⊕P
Introduction to ⊕P
⊕P-complete

Xiaofeng Gu Computation That Counts



The Class #P
The Class⊕P

Counting Problems
The class #P

The Class #P

Recall

1 Let R ⊆ Σ∗ × Σ∗ be a binary relation on strings. R is called polynomially
decidable if the language {x ; y : (x , y) ∈ R} is decided by a deterministic Turing
machine in polynomial time.

2 R is polynomial balanced if (x , y) ∈ R implies |y | ≤ |x |k for some k ≥ 1.

Definition

1 Let Q be a polynomially balanced and polynomial-time decidable binary relation.
The counting problem associated with Q is the following: Given x , how many y
are there such that (x , y) ∈ Q

2 #P is the class of all counting problems associated with polynomially balanced
polynomial-time decidable relations.

Examples

1 Q is the relation “y satisfies expression x”: #SAT;
2 “y is a Hamilton path of graph x”: #HAMILTON PATH;
3 “y is a perfect matching in a bipartile graph x”: PERMANENT.

Xiaofeng Gu Computation That Counts



The Class #P
The Class⊕P

Counting Problems
The class #P

The Class #P

Recall

1 Let R ⊆ Σ∗ × Σ∗ be a binary relation on strings. R is called polynomially
decidable if the language {x ; y : (x , y) ∈ R} is decided by a deterministic Turing
machine in polynomial time.

2 R is polynomial balanced if (x , y) ∈ R implies |y | ≤ |x |k for some k ≥ 1.

Definition

1 Let Q be a polynomially balanced and polynomial-time decidable binary relation.
The counting problem associated with Q is the following: Given x , how many y
are there such that (x , y) ∈ Q

2 #P is the class of all counting problems associated with polynomially balanced
polynomial-time decidable relations.

Examples

1 Q is the relation “y satisfies expression x”: #SAT;
2 “y is a Hamilton path of graph x”: #HAMILTON PATH;
3 “y is a perfect matching in a bipartile graph x”: PERMANENT.

Xiaofeng Gu Computation That Counts



The Class #P
The Class⊕P

Counting Problems
The class #P

The Class #P

Recall

1 Let R ⊆ Σ∗ × Σ∗ be a binary relation on strings. R is called polynomially
decidable if the language {x ; y : (x , y) ∈ R} is decided by a deterministic Turing
machine in polynomial time.

2 R is polynomial balanced if (x , y) ∈ R implies |y | ≤ |x |k for some k ≥ 1.

Definition

1 Let Q be a polynomially balanced and polynomial-time decidable binary relation.
The counting problem associated with Q is the following: Given x , how many y
are there such that (x , y) ∈ Q

2 #P is the class of all counting problems associated with polynomially balanced
polynomial-time decidable relations.

Examples

1 Q is the relation “y satisfies expression x”: #SAT;
2 “y is a Hamilton path of graph x”: #HAMILTON PATH;
3 “y is a perfect matching in a bipartile graph x”: PERMANENT.

Xiaofeng Gu Computation That Counts



The Class #P
The Class⊕P

Counting Problems
The class #P

The Class #P

Recall

1 Let R ⊆ Σ∗ × Σ∗ be a binary relation on strings. R is called polynomially
decidable if the language {x ; y : (x , y) ∈ R} is decided by a deterministic Turing
machine in polynomial time.

2 R is polynomial balanced if (x , y) ∈ R implies |y | ≤ |x |k for some k ≥ 1.

Definition

1 Let Q be a polynomially balanced and polynomial-time decidable binary relation.
The counting problem associated with Q is the following: Given x , how many y
are there such that (x , y) ∈ Q

2 #P is the class of all counting problems associated with polynomially balanced
polynomial-time decidable relations.

Examples

1 Q is the relation “y satisfies expression x”: #SAT;
2 “y is a Hamilton path of graph x”: #HAMILTON PATH;
3 “y is a perfect matching in a bipartile graph x”: PERMANENT.

Xiaofeng Gu Computation That Counts



The Class #P
The Class⊕P

Counting Problems
The class #P

The Class #P

Recall

1 Let R ⊆ Σ∗ × Σ∗ be a binary relation on strings. R is called polynomially
decidable if the language {x ; y : (x , y) ∈ R} is decided by a deterministic Turing
machine in polynomial time.

2 R is polynomial balanced if (x , y) ∈ R implies |y | ≤ |x |k for some k ≥ 1.

Definition

1 Let Q be a polynomially balanced and polynomial-time decidable binary relation.
The counting problem associated with Q is the following: Given x , how many y
are there such that (x , y) ∈ Q

2 #P is the class of all counting problems associated with polynomially balanced
polynomial-time decidable relations.

Examples

1 Q is the relation “y satisfies expression x”: #SAT;
2 “y is a Hamilton path of graph x”: #HAMILTON PATH;
3 “y is a perfect matching in a bipartile graph x”: PERMANENT.

Xiaofeng Gu Computation That Counts



The Class #P
The Class⊕P

Counting Problems
The class #P

The Class #P

Recall

1 Let R ⊆ Σ∗ × Σ∗ be a binary relation on strings. R is called polynomially
decidable if the language {x ; y : (x , y) ∈ R} is decided by a deterministic Turing
machine in polynomial time.

2 R is polynomial balanced if (x , y) ∈ R implies |y | ≤ |x |k for some k ≥ 1.

Definition

1 Let Q be a polynomially balanced and polynomial-time decidable binary relation.
The counting problem associated with Q is the following: Given x , how many y
are there such that (x , y) ∈ Q

2 #P is the class of all counting problems associated with polynomially balanced
polynomial-time decidable relations.

Examples

1 Q is the relation “y satisfies expression x”: #SAT;
2 “y is a Hamilton path of graph x”: #HAMILTON PATH;
3 “y is a perfect matching in a bipartile graph x”: PERMANENT.

Xiaofeng Gu Computation That Counts



The Class #P
The Class⊕P

Counting Problems
The class #P

The Class #P

Recall

1 Let R ⊆ Σ∗ × Σ∗ be a binary relation on strings. R is called polynomially
decidable if the language {x ; y : (x , y) ∈ R} is decided by a deterministic Turing
machine in polynomial time.

2 R is polynomial balanced if (x , y) ∈ R implies |y | ≤ |x |k for some k ≥ 1.

Definition

1 Let Q be a polynomially balanced and polynomial-time decidable binary relation.
The counting problem associated with Q is the following: Given x , how many y
are there such that (x , y) ∈ Q

2 #P is the class of all counting problems associated with polynomially balanced
polynomial-time decidable relations.

Examples

1 Q is the relation “y satisfies expression x”: #SAT;
2 “y is a Hamilton path of graph x”: #HAMILTON PATH;
3 “y is a perfect matching in a bipartile graph x”: PERMANENT.

Xiaofeng Gu Computation That Counts



The Class #P
The Class⊕P

Counting Problems
The class #P

The Class #P

Recall

1 Let R ⊆ Σ∗ × Σ∗ be a binary relation on strings. R is called polynomially
decidable if the language {x ; y : (x , y) ∈ R} is decided by a deterministic Turing
machine in polynomial time.

2 R is polynomial balanced if (x , y) ∈ R implies |y | ≤ |x |k for some k ≥ 1.

Definition

1 Let Q be a polynomially balanced and polynomial-time decidable binary relation.
The counting problem associated with Q is the following: Given x , how many y
are there such that (x , y) ∈ Q

2 #P is the class of all counting problems associated with polynomially balanced
polynomial-time decidable relations.

Examples

1 Q is the relation “y satisfies expression x”: #SAT;
2 “y is a Hamilton path of graph x”: #HAMILTON PATH;
3 “y is a perfect matching in a bipartile graph x”: PERMANENT.

Xiaofeng Gu Computation That Counts



The Class #P
The Class⊕P

Counting Problems
The class #P

#P-completeness

Definition

A parsimonious reduction from a counting problem A to a counting problem B is a
function R which maps an instance x of A to an instance R(x) of B such that the
number of solutions of R(x) is the same as that of x .

Definition

A counting problem in #P is #P-complete if every problem in #P can be reduced to it
with a parsimonious reduction.

Xiaofeng Gu Computation That Counts



The Class #P
The Class⊕P

Counting Problems
The class #P

#P-completeness

Definition

A parsimonious reduction from a counting problem A to a counting problem B is a
function R which maps an instance x of A to an instance R(x) of B such that the
number of solutions of R(x) is the same as that of x .

Definition

A counting problem in #P is #P-complete if every problem in #P can be reduced to it
with a parsimonious reduction.

Xiaofeng Gu Computation That Counts



The Class #P
The Class⊕P

Counting Problems
The class #P

#P-completeness(contd.)

Note

1 Most reductions between the decision problems in NP that we have seen there are
indeed parsimonious reductions between the corresponding counting problems.

2 For example, CIRCUIT SAT to 3SAT. It is because the number of assignments
where the output of circuit is true coincides with the number of satisfying
assignments of the corresponding set of clauses.

3 But the reduction from 3SAT to HAMILTON PATH is not.

Xiaofeng Gu Computation That Counts



The Class #P
The Class⊕P

Counting Problems
The class #P

#P-completeness(contd.)

Note

1 Most reductions between the decision problems in NP that we have seen there are
indeed parsimonious reductions between the corresponding counting problems.

2 For example, CIRCUIT SAT to 3SAT. It is because the number of assignments
where the output of circuit is true coincides with the number of satisfying
assignments of the corresponding set of clauses.

3 But the reduction from 3SAT to HAMILTON PATH is not.

Xiaofeng Gu Computation That Counts



The Class #P
The Class⊕P

Counting Problems
The class #P

#P-completeness(contd.)

Note

1 Most reductions between the decision problems in NP that we have seen there are
indeed parsimonious reductions between the corresponding counting problems.

2 For example, CIRCUIT SAT to 3SAT. It is because the number of assignments
where the output of circuit is true coincides with the number of satisfying
assignments of the corresponding set of clauses.

3 But the reduction from 3SAT to HAMILTON PATH is not.

Xiaofeng Gu Computation That Counts



The Class #P
The Class⊕P

Counting Problems
The class #P

#P-completeness(contd..)

Theorem

#SAT is #P-complete.

Proof.

Given a problem B ∈ #P with relation Q, we’ll show it can be reduced to #CIRCUIT
SAT with a parsimonious reduction, and hence can be reduced to 3SAT with a
parsimonious reduction.
From the definition, there is a polynomial-time TM M deciding Q. We can build a circuit
C(x) with |x |k inputs such that with input y the output of C(x) is true if and only if M
accepts x ; y (Cook’s Theorem). This is just a parsimonious reduction from B to
#CIRCUIT SAT.

Xiaofeng Gu Computation That Counts



The Class #P
The Class⊕P

Counting Problems
The class #P

#P-completeness(contd..)

Theorem

#SAT is #P-complete.

Proof.

Given a problem B ∈ #P with relation Q, we’ll show it can be reduced to #CIRCUIT
SAT with a parsimonious reduction, and hence can be reduced to 3SAT with a
parsimonious reduction.
From the definition, there is a polynomial-time TM M deciding Q. We can build a circuit
C(x) with |x |k inputs such that with input y the output of C(x) is true if and only if M
accepts x ; y (Cook’s Theorem). This is just a parsimonious reduction from B to
#CIRCUIT SAT.

Xiaofeng Gu Computation That Counts



The Class #P
The Class⊕P

Counting Problems
The class #P

#P-completeness(contd..)

Theorem

#SAT is #P-complete.

Proof.

Given a problem B ∈ #P with relation Q, we’ll show it can be reduced to #CIRCUIT
SAT with a parsimonious reduction, and hence can be reduced to 3SAT with a
parsimonious reduction.
From the definition, there is a polynomial-time TM M deciding Q. We can build a circuit
C(x) with |x |k inputs such that with input y the output of C(x) is true if and only if M
accepts x ; y (Cook’s Theorem). This is just a parsimonious reduction from B to
#CIRCUIT SAT.

Xiaofeng Gu Computation That Counts



The Class #P
The Class⊕P

Counting Problems
The class #P

#P-completeness(contd..)

Theorem

PERMANENT is #P-complete.

Outline of proof

1 Reduction from #3SAT to WEIGHTED CYCLE COVERING (PERMANENT under
integers).

2 Reduction from WEIGHTED CYCLE COVERING to CYCLE COVERING (0/1
PERMANENT).

Xiaofeng Gu Computation That Counts



The Class #P
The Class⊕P

Counting Problems
The class #P

#P-completeness(contd..)

Theorem

PERMANENT is #P-complete.

Outline of proof

1 Reduction from #3SAT to WEIGHTED CYCLE COVERING (PERMANENT under
integers).

2 Reduction from WEIGHTED CYCLE COVERING to CYCLE COVERING (0/1
PERMANENT).

Xiaofeng Gu Computation That Counts



The Class #P
The Class⊕P

Counting Problems
The class #P

#P-completeness(contd..)

Theorem

#HAMILTON PATH is #P-complete.

Outline of proof

The reduction of 3SAT to HAMILTON PATH in the NP-complete proof is not a
parsimonious, But there is a parsimonious reduction from 3SAT to HAMILTON PATH
based on the reduction in Theorem 17.5 showing that TSP is FPNP -complete.

Xiaofeng Gu Computation That Counts



The Class #P
The Class⊕P

Counting Problems
The class #P

#P-completeness(contd..)

Theorem

#HAMILTON PATH is #P-complete.

Outline of proof

The reduction of 3SAT to HAMILTON PATH in the NP-complete proof is not a
parsimonious, But there is a parsimonious reduction from 3SAT to HAMILTON PATH
based on the reduction in Theorem 17.5 showing that TSP is FPNP -complete.

Xiaofeng Gu Computation That Counts



The Class #P
The Class⊕P

Counting Problems
The class #P

The relation between #P and some other classes

Note

1 #P problems can be solved in polynomial space.
2 Counting is stronger than the polynomial hierarchy.
3 (Toda’s Theorem) PH ⊆ PPP . It means polynomial oracle machines with a PP

oracle can decide all languages in the polynomial hierarchy.
4 PP tells only whether the first bit of the number of accepting computations is 0 or

1; but #P asks for all n bits of this number.

Xiaofeng Gu Computation That Counts



The Class #P
The Class⊕P

Counting Problems
The class #P

The relation between #P and some other classes

Note

1 #P problems can be solved in polynomial space.
2 Counting is stronger than the polynomial hierarchy.
3 (Toda’s Theorem) PH ⊆ PPP . It means polynomial oracle machines with a PP

oracle can decide all languages in the polynomial hierarchy.
4 PP tells only whether the first bit of the number of accepting computations is 0 or

1; but #P asks for all n bits of this number.

Xiaofeng Gu Computation That Counts



The Class #P
The Class⊕P

Counting Problems
The class #P

The relation between #P and some other classes

Note

1 #P problems can be solved in polynomial space.
2 Counting is stronger than the polynomial hierarchy.
3 (Toda’s Theorem) PH ⊆ PPP . It means polynomial oracle machines with a PP

oracle can decide all languages in the polynomial hierarchy.
4 PP tells only whether the first bit of the number of accepting computations is 0 or

1; but #P asks for all n bits of this number.

Xiaofeng Gu Computation That Counts



The Class #P
The Class⊕P

Introduction to⊕P
⊕P-complete

Outline

1 The Class #P
Counting Problems
The class #P

2 The Class ⊕P
Introduction to ⊕P
⊕P-complete

Xiaofeng Gu Computation That Counts



The Class #P
The Class⊕P

Introduction to⊕P
⊕P-complete

Introduction

Introduction

1 ⊕SAT: given a set of clauses, is the number of satisfying assignments odd?
2 ⊕HAMILTON PATH: Given a graph, does it have an odd number of Hamilton

paths?

Definition

A language L is said in the class ⊕P if there is a nondeterministic Turing Machine N
such that for all string x , x ∈ L if and only if the number of y ’s such that (x , y) ∈ R is
odd.

Equivalent definition

A language L ∈ ⊕P if there is a polynomially balanced and polynomially decidable
relation R such that x ∈ L if and only if the number of y ’s such that (x , y) ∈ R is odd.

Xiaofeng Gu Computation That Counts



The Class #P
The Class⊕P

Introduction to⊕P
⊕P-complete

Introduction

Introduction

1 ⊕SAT: given a set of clauses, is the number of satisfying assignments odd?
2 ⊕HAMILTON PATH: Given a graph, does it have an odd number of Hamilton

paths?

Definition

A language L is said in the class ⊕P if there is a nondeterministic Turing Machine N
such that for all string x , x ∈ L if and only if the number of y ’s such that (x , y) ∈ R is
odd.

Equivalent definition

A language L ∈ ⊕P if there is a polynomially balanced and polynomially decidable
relation R such that x ∈ L if and only if the number of y ’s such that (x , y) ∈ R is odd.

Xiaofeng Gu Computation That Counts



The Class #P
The Class⊕P

Introduction to⊕P
⊕P-complete

Introduction

Introduction

1 ⊕SAT: given a set of clauses, is the number of satisfying assignments odd?
2 ⊕HAMILTON PATH: Given a graph, does it have an odd number of Hamilton

paths?

Definition

A language L is said in the class ⊕P if there is a nondeterministic Turing Machine N
such that for all string x , x ∈ L if and only if the number of y ’s such that (x , y) ∈ R is
odd.

Equivalent definition

A language L ∈ ⊕P if there is a polynomially balanced and polynomially decidable
relation R such that x ∈ L if and only if the number of y ’s such that (x , y) ∈ R is odd.

Xiaofeng Gu Computation That Counts



The Class #P
The Class⊕P

Introduction to⊕P
⊕P-complete

Outline

1 The Class #P
Counting Problems
The class #P

2 The Class ⊕P
Introduction to ⊕P
⊕P-complete

Xiaofeng Gu Computation That Counts



The Class #P
The Class⊕P

Introduction to⊕P
⊕P-complete

⊕P-completeness

Theorem

⊕SAT and ⊕HAMILTON PATH are ⊕P-complete.

Proof.

1 ⊕P can be easily seen from the equivalent definition.
2 ⊕P-completeness follows from the parsimonious reductions of any problem in #P

to #SAT and #HAMILTON PATH.

Xiaofeng Gu Computation That Counts



The Class #P
The Class⊕P

Introduction to⊕P
⊕P-complete

⊕P-completeness

Theorem

⊕SAT and ⊕HAMILTON PATH are ⊕P-complete.

Proof.

1 ⊕P can be easily seen from the equivalent definition.
2 ⊕P-completeness follows from the parsimonious reductions of any problem in #P

to #SAT and #HAMILTON PATH.

Xiaofeng Gu Computation That Counts



The Class #P
The Class⊕P

Introduction to⊕P
⊕P-complete

⊕P-completeness

Theorem

⊕SAT and ⊕HAMILTON PATH are ⊕P-complete.

Proof.

1 ⊕P can be easily seen from the equivalent definition.
2 ⊕P-completeness follows from the parsimonious reductions of any problem in #P

to #SAT and #HAMILTON PATH.

Xiaofeng Gu Computation That Counts



The Class #P
The Class⊕P

Introduction to⊕P
⊕P-complete

⊕P-completeness (contd.)

Theorem

⊕P is closed under complement.

Proof.

The complement of ⊕SAT (deciding whether the number of satisfying assignments is
even) is co⊕P-complete. We’ll show that this problem reduces to ⊕SAT making ⊕SAT
co⊕P-complete. Since ⊕SAT is also ⊕P-complete,⊕P=co⊕P.
Now we need to show that the complement of ⊕SAT can be reduced to ⊕SAT: Given a
set of clauses on variables x1, x2, . . . , xn.

(i) Add a new variable z to each clause;

(ii) add n clauses ¬z ∨ xi , i = 1, 2, . . . , n.

The number of satisfying assignments will be increased by 1, because

(a) If z = false, the satisfying assignment for the new clauses is one-to-one
corresponding to the satisfying assignment for the old clauses.

(b) If z = true, then all the other literals must be assigned true, in order to get a
satisfying assignment.

Xiaofeng Gu Computation That Counts



The Class #P
The Class⊕P

Introduction to⊕P
⊕P-complete

⊕P-completeness (contd.)

Theorem

⊕P is closed under complement.

Proof.

The complement of ⊕SAT (deciding whether the number of satisfying assignments is
even) is co⊕P-complete. We’ll show that this problem reduces to ⊕SAT making ⊕SAT
co⊕P-complete. Since ⊕SAT is also ⊕P-complete,⊕P=co⊕P.
Now we need to show that the complement of ⊕SAT can be reduced to ⊕SAT: Given a
set of clauses on variables x1, x2, . . . , xn.

(i) Add a new variable z to each clause;

(ii) add n clauses ¬z ∨ xi , i = 1, 2, . . . , n.

The number of satisfying assignments will be increased by 1, because

(a) If z = false, the satisfying assignment for the new clauses is one-to-one
corresponding to the satisfying assignment for the old clauses.

(b) If z = true, then all the other literals must be assigned true, in order to get a
satisfying assignment.

Xiaofeng Gu Computation That Counts



The Class #P
The Class⊕P

Introduction to⊕P
⊕P-complete

⊕P-completeness (contd.)

Theorem

⊕P is closed under complement.

Proof.

The complement of ⊕SAT (deciding whether the number of satisfying assignments is
even) is co⊕P-complete. We’ll show that this problem reduces to ⊕SAT making ⊕SAT
co⊕P-complete. Since ⊕SAT is also ⊕P-complete,⊕P=co⊕P.
Now we need to show that the complement of ⊕SAT can be reduced to ⊕SAT: Given a
set of clauses on variables x1, x2, . . . , xn.

(i) Add a new variable z to each clause;

(ii) add n clauses ¬z ∨ xi , i = 1, 2, . . . , n.

The number of satisfying assignments will be increased by 1, because

(a) If z = false, the satisfying assignment for the new clauses is one-to-one
corresponding to the satisfying assignment for the old clauses.

(b) If z = true, then all the other literals must be assigned true, in order to get a
satisfying assignment.

Xiaofeng Gu Computation That Counts



The Class #P
The Class⊕P

Introduction to⊕P
⊕P-complete

⊕P-completeness (contd.)

Theorem

⊕P is closed under complement.

Proof.

The complement of ⊕SAT (deciding whether the number of satisfying assignments is
even) is co⊕P-complete. We’ll show that this problem reduces to ⊕SAT making ⊕SAT
co⊕P-complete. Since ⊕SAT is also ⊕P-complete,⊕P=co⊕P.
Now we need to show that the complement of ⊕SAT can be reduced to ⊕SAT: Given a
set of clauses on variables x1, x2, . . . , xn.

(i) Add a new variable z to each clause;

(ii) add n clauses ¬z ∨ xi , i = 1, 2, . . . , n.

The number of satisfying assignments will be increased by 1, because

(a) If z = false, the satisfying assignment for the new clauses is one-to-one
corresponding to the satisfying assignment for the old clauses.

(b) If z = true, then all the other literals must be assigned true, in order to get a
satisfying assignment.

Xiaofeng Gu Computation That Counts



The Class #P
The Class⊕P

Introduction to⊕P
⊕P-complete

⊕P-completeness (contd.)

Theorem

⊕P is closed under complement.

Proof.

The complement of ⊕SAT (deciding whether the number of satisfying assignments is
even) is co⊕P-complete. We’ll show that this problem reduces to ⊕SAT making ⊕SAT
co⊕P-complete. Since ⊕SAT is also ⊕P-complete,⊕P=co⊕P.
Now we need to show that the complement of ⊕SAT can be reduced to ⊕SAT: Given a
set of clauses on variables x1, x2, . . . , xn.

(i) Add a new variable z to each clause;

(ii) add n clauses ¬z ∨ xi , i = 1, 2, . . . , n.

The number of satisfying assignments will be increased by 1, because

(a) If z = false, the satisfying assignment for the new clauses is one-to-one
corresponding to the satisfying assignment for the old clauses.

(b) If z = true, then all the other literals must be assigned true, in order to get a
satisfying assignment.

Xiaofeng Gu Computation That Counts



The Class #P
The Class⊕P

Introduction to⊕P
⊕P-complete

⊕P-completeness (contd.)

Theorem

⊕P is closed under complement.

Proof.

The complement of ⊕SAT (deciding whether the number of satisfying assignments is
even) is co⊕P-complete. We’ll show that this problem reduces to ⊕SAT making ⊕SAT
co⊕P-complete. Since ⊕SAT is also ⊕P-complete,⊕P=co⊕P.
Now we need to show that the complement of ⊕SAT can be reduced to ⊕SAT: Given a
set of clauses on variables x1, x2, . . . , xn.

(i) Add a new variable z to each clause;

(ii) add n clauses ¬z ∨ xi , i = 1, 2, . . . , n.

The number of satisfying assignments will be increased by 1, because

(a) If z = false, the satisfying assignment for the new clauses is one-to-one
corresponding to the satisfying assignment for the old clauses.

(b) If z = true, then all the other literals must be assigned true, in order to get a
satisfying assignment.

Xiaofeng Gu Computation That Counts



The Class #P
The Class⊕P

Introduction to⊕P
⊕P-complete

Relation between ⊕P and some other classes

Note

1 ⊕P seems to be weaker than PP.
2 If an RP machine is equipped with an ⊕P oracle, it can simulate all of NP.

Xiaofeng Gu Computation That Counts



The Class #P
The Class⊕P

Introduction to⊕P
⊕P-complete

⊕P

Theorem

NP ⊆ RP⊕P

Proof Sketch

1 The idea is to show how an NP-complete problem(SAT) can be solved using a
Monte Carlo algorithm which uses ⊕SAT as its oracle.

2 Suppose we are dealing with a Boolean expression φ in CNF with n variables
x1, x2, . . . , xn. Let S be a subset of {x1, x2, . . . , xn}. We define a Boolean
expression ηS stating that an even number among the variables in S are true.

3 The basic idea is that if we continue to add the requirement that an even number
of variables are true in a random subset, then with a reasonable probability one of
the resulting expression has a single satisfying assignment, and thus its
satisfiability can be detected by the ⊕SAT oracle.

4 Now an Monte Carlo algorithm for SAT using ⊕SAT as its oracle works as follows:
Let φ0 be the given expression φ. for i = 1, 2, . . . , n + 1, repeat the following:

Xiaofeng Gu Computation That Counts



The Class #P
The Class⊕P

Introduction to⊕P
⊕P-complete

⊕P

Theorem

NP ⊆ RP⊕P

Proof Sketch

1 The idea is to show how an NP-complete problem(SAT) can be solved using a
Monte Carlo algorithm which uses ⊕SAT as its oracle.

2 Suppose we are dealing with a Boolean expression φ in CNF with n variables
x1, x2, . . . , xn. Let S be a subset of {x1, x2, . . . , xn}. We define a Boolean
expression ηS stating that an even number among the variables in S are true.

3 The basic idea is that if we continue to add the requirement that an even number
of variables are true in a random subset, then with a reasonable probability one of
the resulting expression has a single satisfying assignment, and thus its
satisfiability can be detected by the ⊕SAT oracle.

4 Now an Monte Carlo algorithm for SAT using ⊕SAT as its oracle works as follows:
Let φ0 be the given expression φ. for i = 1, 2, . . . , n + 1, repeat the following:

Xiaofeng Gu Computation That Counts



The Class #P
The Class⊕P

Introduction to⊕P
⊕P-complete

⊕P

Theorem

NP ⊆ RP⊕P

Proof Sketch

1 The idea is to show how an NP-complete problem(SAT) can be solved using a
Monte Carlo algorithm which uses ⊕SAT as its oracle.

2 Suppose we are dealing with a Boolean expression φ in CNF with n variables
x1, x2, . . . , xn. Let S be a subset of {x1, x2, . . . , xn}. We define a Boolean
expression ηS stating that an even number among the variables in S are true.

3 The basic idea is that if we continue to add the requirement that an even number
of variables are true in a random subset, then with a reasonable probability one of
the resulting expression has a single satisfying assignment, and thus its
satisfiability can be detected by the ⊕SAT oracle.

4 Now an Monte Carlo algorithm for SAT using ⊕SAT as its oracle works as follows:
Let φ0 be the given expression φ. for i = 1, 2, . . . , n + 1, repeat the following:

Xiaofeng Gu Computation That Counts



The Class #P
The Class⊕P

Introduction to⊕P
⊕P-complete

⊕P

Theorem

NP ⊆ RP⊕P

Proof Sketch

1 The idea is to show how an NP-complete problem(SAT) can be solved using a
Monte Carlo algorithm which uses ⊕SAT as its oracle.

2 Suppose we are dealing with a Boolean expression φ in CNF with n variables
x1, x2, . . . , xn. Let S be a subset of {x1, x2, . . . , xn}. We define a Boolean
expression ηS stating that an even number among the variables in S are true.

3 The basic idea is that if we continue to add the requirement that an even number
of variables are true in a random subset, then with a reasonable probability one of
the resulting expression has a single satisfying assignment, and thus its
satisfiability can be detected by the ⊕SAT oracle.

4 Now an Monte Carlo algorithm for SAT using ⊕SAT as its oracle works as follows:
Let φ0 be the given expression φ. for i = 1, 2, . . . , n + 1, repeat the following:

Xiaofeng Gu Computation That Counts



The Class #P
The Class⊕P

Introduction to⊕P
⊕P-complete

⊕P

Proof Sketch (contd.)

(i) Generate a random subset Si of the variables and set φi = φi−1 ∧ ηSi
.

(ii) If φi ∈ ⊕SAT, then answer “φ is satisfiable”;

(iii) If after n + 1 steps none of the φi ’s is in ⊕SAT, then answer “φ is probably
unsatisfiable”.

Xiaofeng Gu Computation That Counts


	Outline
	Main Talk
	The Class #P
	Counting Problems
	The class #P

	The Class P
	Introduction to P
	P-complete



