Approximation Algorithms

Ron Reaser

Lane Department of Computer Science and Electrical Engineering West Virginia University

March 31, 2009

- Notion of Approximability
- Constant Factor Approximations

Problems

- Node Cover
- Independent Set
- MaxSat
- Max-Cut
- TSF
- Knapsack

- Notion of Approximability
- Constant Factor Approximations

Problems

- Node Cover
- Independent Set
- MaxSat
- Max-Cut
- TSP
- Knapsack

- Notion of Approximability
- Constant Factor Approximations

Problem

- Node Cover
- Independent Set
- MaxSat
- Max-Cut
- TSP
- Knapsack

For NP-complete problems, we want polytime means to find "good enough" solutions that are not too far from the optimal. This is called *approximation*.

Types of Problems

We may be able to develop approximation algorithms for optimization and search problems, but we cannot for decision problems: "yes" / "no" answers cannot be approximated in any meaningful manner. We do not need approximation algorithms for problems that can already be solved in polytime, because these would not be useful.

For **NP**-complete problems, we want polytime means to find "good enough" solutions that are not too far from the optimal. This is called *approximation*.

Types of Problems

We may be able to develop approximation algorithms for optimization and search problems, but we cannot for decision problems: "yes"/"no" answers cannot be approximated in any meaningful manner. We do not need approximation algorithms for problems that can already be solved in polytime, because these would not be useful.

For **NP**-complete problems, we want polytime means to find "good enough" solutions that are not too far from the optimal. This is called *approximation*.

Types of Problems

We may be able to develop approximation algorithms for optimization and search problems, but we cannot for decision problems: "yes" / "no" answers cannot be approximated in any meaningful manner. We do not need approximation algorithms for problems that can already be solved in polytime, because these would not be useful.

For **NP**-complete problems, we want polytime means to find "good enough" solutions that are not too far from the optimal. This is called *approximation*.

Types of Problems

We may be able to develop approximation algorithms for optimization and search problems, but we cannot for decision problems: "yes"/"no" answers cannot be approximated in any meaningful manner. We do not need approximation algorithms for problems that can already be solved in polytime, because these would not be useful.

For **NP**-complete problems, we want polytime means to find "good enough" solutions that are not too far from the optimal. This is called *approximation*.

Types of Problems

We may be able to develop approximation algorithms for optimization and search problems, but we cannot for decision problems: "yes"/"no" answers cannot be approximated in any meaningful manner. We do not need approximation algorithms for problems that can already be solved in polytime, because these would not be useful.

- Notion of Approximability
- Constant Factor Approximations

Problems

- Node Cover
- Independent Set
- MaxSat
- Max-Cut
- TSP
- Knapsack

Let M_1 be a minimization problem and x be any valid input. Let A_1 be a polytime algorithm for which $A_1(x)$ is a feasible solution iff $M_1(x)$ is a feasible solution. Then A_1 is an ϵ -approximation algorithm if

 $A_1(x) \le \epsilon \cdot M_1(x)$

for some constant $\epsilon \geq 1$.

Maximization Problems

Let M_2 be a maximization problem and x be any valid input. Let A_2 be a polytime algorithm for which $A_2(x)$ is a feasible solution iff $M_2(x)$ is a feasible solution. Then A_2 is an ϵ -approximation algorithm if

 $A_2(x) \ge \epsilon \cdot M_2(x)$

for some constant $0 \le \epsilon \le 1$.

Summary

Let M_1 be a minimization problem and x be any valid input. Let A_1 be a polytime algorithm for which $A_1(x)$ is a feasible solution iff $M_1(x)$ is a feasible solution. Then A_1 is an *c*-approximation algorithm if

 $A_1(x) \le \epsilon \cdot M_1(x)$

for some constant $\epsilon \geq 1$.

Maximization Problems

Let M_2 be a maximization problem and x be any valid input. Let A_2 be a polytime algorithm for which $A_2(x)$ is a feasible solution iff $M_2(x)$ is a feasible solution. Then A_2 is an ϵ -approximation algorithm if

 $A_2(x) \ge \epsilon \cdot M_2(x)$

for some constant $0 \le \epsilon \le 1$.

Summary

Let M_1 be a minimization problem and x be any valid input. Let A_1 be a polytime algorithm for which $A_1(x)$ is a feasible solution iff $M_1(x)$ is a feasible solution. Then A_1 is an ϵ -approximation algorithm if

 $A_1(x) \leq \epsilon \cdot M_1(x)$

for some constant $\epsilon \geq 1$.

Maximization Problems

Let M_2 be a maximization problem and x be any valid input. Let A_2 be a polytime algorithm for which $A_2(x)$ is a feasible solution iff $M_2(x)$ is a feasible solution. Then A_2 is an *c*-approximation algorithm if

 $A_2(x) \ge \epsilon \cdot M_2(x)$

for some constant $0 \le \epsilon \le 1$.

Summary

Let M_1 be a minimization problem and x be any valid input. Let A_1 be a polytime algorithm for which $A_1(x)$ is a feasible solution iff $M_1(x)$ is a feasible solution. Then A_1 is an ϵ -approximation algorithm if

 $A_1(x) \leq \epsilon \cdot M_1(x)$

for some constant $\epsilon \geq 1$.

Maximization Problems

Let M_2 be a maximization problem and x be any valid input. Let A_2 be a polytime algorithm for which $A_2(x)$ is a feasible solution iff $M_2(x)$ is a feasible solution. Then A_2 is an *c*-approximation algorithm if

 $A_2(x) \ge \epsilon \cdot M_2(x)$

for some constant $0 \le \epsilon \le 1$.

Summary

Let M_1 be a minimization problem and x be any valid input. Let A_1 be a polytime algorithm for which $A_1(x)$ is a feasible solution iff $M_1(x)$ is a feasible solution. Then A_1 is an ϵ -approximation algorithm if

 $A_1(x) \leq \epsilon \cdot M_1(x)$

```
for some constant \epsilon \geq 1.
```

Maximization Problems

Let M_2 be a maximization problem and x be any valid input. Let A_2 be a polytime algorithm for which $A_2(x)$ is a feasible solution iff $M_2(x)$ is a feasible solution. Then A_2 is an *c*-approximation algorithm if

 $A_2(x) \ge \epsilon \cdot M_2(x)$

for some constant $0 \le \epsilon \le 1$.

Summary

Let M_1 be a minimization problem and x be any valid input. Let A_1 be a polytime algorithm for which $A_1(x)$ is a feasible solution iff $M_1(x)$ is a feasible solution. Then A_1 is an ϵ -approximation algorithm if

 $A_1(x) \leq \epsilon \cdot M_1(x)$

for some constant $\epsilon \geq 1$.

Maximization Problems

Let M_2 be a maximization problem and x be any valid input. Let A_2 be a polytime algorithm for which $A_2(x)$ is a feasible solution iff $M_2(x)$ is a feasible solution. Then A_2 is an ϵ -approximation algorithm if

 $A_2(x) \geq \epsilon \cdot M_2(x)$

for some constant $0 \le \epsilon \le 1$.

Summary

Let M_1 be a minimization problem and x be any valid input. Let A_1 be a polytime algorithm for which $A_1(x)$ is a feasible solution iff $M_1(x)$ is a feasible solution. Then A_1 is an ϵ -approximation algorithm if

 $A_1(x) \leq \epsilon \cdot M_1(x)$

```
for some constant \epsilon \geq 1.
```

Maximization Problems

Let M_2 be a maximization problem and x be any valid input. Let A_2 be a polytime algorithm for which $A_2(x)$ is a feasible solution iff $M_2(x)$ is a feasible solution. Then A_2 is an ϵ -approximation algorithm if

 $A_2(x) \geq \epsilon \cdot M_2(x)$

```
for some constant 0 \le \epsilon \le 1.
```

Summary

There could only be a polytime 1-approximation algorithm for any NP-complete optimization problem if P = NP.

Approximation Threshold

The approximation threshold for a problem is the best known ϵ for which there is an ϵ -approximation algorithm for that problem.

Reductions

Reductions from one NP-complete problem to another tend not to preserve approximation thresholds. This will be seen later with INDEPENDENT SET.

There could only be a polytime 1-approximation algorithm for any NP-complete optimization problem if P = NP.

Approximation Threshold

The approximation threshold for a problem is the best known ϵ for which there is an ϵ -approximation algorithm for that problem.

Reductions

Reductions from one NP-complete problem to another tend not to preserve approximation thresholds. This will be seen later with INDEPENDENT SET.

There could only be a polytime 1-approximation algorithm for any NP-complete optimization problem if P = NP.

Approximation Threshold

The approximation threshold for a problem is the best known ϵ for which there is an ϵ -approximation algorithm for that problem.

Reductions

Reductions from one NP-complete problem to another tend not to preserve approximation thresholds. This will be seen later with INDEPENDENT SET.

There could only be a polytime 1-approximation algorithm for any NP-complete optimization problem if P = NP.

Approximation Threshold

The approximation threshold for a problem is the best known ϵ for which there is an ϵ -approximation algorithm for that problem.

Reductions

Reductions from one NP-complete problem to another tend not to preserve approximation thresholds. This will be seen later with INDEPENDENT SET.

- Notion of Approximability
- Constant Factor Approximations

2 Problems

- Node Cover
- Independent Set
- MaxSat
- Max-Cut
- TSP
- Knapsack

For a graph G = (V, E), find the smallest set of nodes $C \subseteq V$ such that every edge in E has at least one of its nodes in C.

Goal

Find a good minimizing heuristic for this NP-complete problem.

First Approach

Consider that if a node has a high degree it is probably useful for covering many edges. This leads to a greedy heuristic as follows: starting with $C = \emptyset$, while there are still edges left in G find a node of highest degree, add it to C, and remove it from G.

For a graph G = (V, E), find the smallest set of nodes $C \subseteq V$ such that every edge in E has at least one of its nodes in C.

Goal

Find a good minimizing heuristic for this NP-complete problem.

First Approach

Consider that if a node has a high degree it is probably useful for covering many edges. This leads to a greedy heuristic as follows: starting with $C = \emptyset$, while there are still edges left in G find a node of highest degree, add it to C, and remove it from G.

For a graph G = (V, E), find the smallest set of nodes $C \subseteq V$ such that every edge in E has at least one of its nodes in C.

Goal

Find a good minimizing heuristic for this NP-complete problem.

First Approach

Consider that if a node has a high degree it is probably useful for covering many edges. This leads to a greedy heuristic as follows: starting with $C = \emptyset$, while there are still edges left in *G* find a node of highest degree, add it to *C*, and remove it from *G*.

For a graph G = (V, E), find the smallest set of nodes $C \subseteq V$ such that every edge in E has at least one of its nodes in C.

Goal

Find a good minimizing heuristic for this NP-complete problem.

First Approach

Consider that if a node has a high degree it is probably useful for covering many edges. This leads to a greedy heuristic as follows: starting with $C = \emptyset$, while there are still edges left in G find a node of highest degree, add it to C, and remove it from G.

For a graph G = (V, E), find the smallest set of nodes $C \subseteq V$ such that every edge in E has at least one of its nodes in C.

Goal

Find a good minimizing heuristic for this NP-complete problem.

First Approach

Consider that if a node has a high degree it is probably useful for covering many edges. This leads to a greedy heuristic as follows: starting with $C = \emptyset$, while there are still edges left in G find a node of highest degree, add it to C, and remove it from G.

Trying to be simpler, consider the following heuristic: starting with $C = \emptyset$, while there are still edges left in *G* choose arbitrarily any one, add its endnodes to *C*, and delete it from *G*.

The nodes of *C* will comprise a matching of $\frac{1}{2}|C|$ edges in *G*. Any node cover, even the optimum, must have at least one node from each edge in a matching of *G*. So this is a 2-approximation algorithm for NODE-COVER.

Trying to be simpler, consider the following heuristic: starting with $C = \emptyset$, while there are still edges left in *G* choose arbitrarily any one, add its endnodes to *C*, and delete it from *G*.

The nodes of *C* will comprise a matching of $\frac{1}{2}|C|$ edges in *G*. Any node cover, even the optimum, must have at least one node from each edge in a matching of *G*. So this is a 2-approximation algorithm for NODE-COVER.

Trying to be simpler, consider the following heuristic: starting with $C = \emptyset$, while there are still edges left in *G* choose arbitrarily any one, add its endnodes to *C*, and delete it from *G*.

The nodes of *C* will comprise a matching of $\frac{1}{2}|C|$ edges in *G*. Any node cover, even the optimum, must have at least one node from each edge in a matching of *G*. So this is a 2-approximation algorithm for NODE-COVER.

Trying to be simpler, consider the following heuristic: starting with $C = \emptyset$, while there are still edges left in *G* choose arbitrarily any one, add its endnodes to *C*, and delete it from *G*.

The nodes of *C* will comprise a matching of $\frac{1}{2}|C|$ edges in *G*. Any node cover, even the optimum, must have at least one node from each edge in a matching of *G*. So this is a 2-approximation algorithm for NODE-COVER.

Trying to be simpler, consider the following heuristic: starting with $C = \emptyset$, while there are still edges left in *G* choose arbitrarily any one, add its endnodes to *C*, and delete it from *G*.

The nodes of *C* will comprise a matching of $\frac{1}{2}|C|$ edges in *G*. Any node cover, even the optimum, must have at least one node from each edge in a matching of *G*. So this is a 2-approximation algorithm for NODE-COVER.

- Notion of Approximability
- Constant Factor Approximations

2 Problems

Node Cover

Independent Set

- MaxSat
- Max-Cut
- TSP
- Knapsack

INDEPENDENT SET

An independent set in a graph is an induced set of nodes among which there are no edges. Given a graph G = (V, E) where n = |V|, find the independent set I with the most nodes.

Observation

There is a simple reduction from INDEPENDENT SET to NODE COVER. (The maximum clique in \overline{G} is exactly *I* in *G*.) However, despite the polytime approximability of NODE COVER, there is no ϵ -approximation for INDEPENDENT SET in time $\mathcal{O}(n^{1-\epsilon})$ for any constant $\epsilon > 0$ unless $\mathbf{P} = \mathbf{NP}$. In other words, it is not possible to distinguish in polytime whether |I| is near 1 or near *n*. The proof is omitted herein.

Best Approach

The best known approximation is the following trivial heuristic: pick a vertex v from V and return $I = \{v\}$. Since |I| is between 1 and n, this heuristic is an obviously polytime $\frac{1}{n}$ -approximation. As the graph grows, $\frac{1}{n}$ approaches 0. Given that this is the best known approach, the approximation threshold is a useless 0.

INDEPENDENT SET

An independent set in a graph is an induced set of nodes among which there are no edges. Given a graph G = (V, E) where n = |V|, find the independent set I with the most nodes.

Observation

There is a simple reduction from INDEPENDENT SET to NODE COVER. (The maximum clique in \overline{G} is exactly I in G.) However, despite the polytime approximability of NODE COVER, there is no ϵ -approximation for INDEPENDENT SET in time $\mathcal{O}(n^{1-\epsilon})$ for any constant $\epsilon > 0$ unless $\mathbf{P} = \mathbf{NP}$. In other words, it is not possible to distinguish in polytime whether |I| is near 1 or near n. The proof is omitted herein.

Best Approach

The best known approximation is the following trivial heuristic: pick a vertex v from V and return $I = \{v\}$. Since |I| is between 1 and n, this heuristic is an obviously polytime $\frac{1}{n}$ -approximation. As the graph grows, $\frac{1}{n}$ approaches 0. Given that this is the best known approach, the approximation threshold is a useless 0.

INDEPENDENT SET

An independent set in a graph is an induced set of nodes among which there are no edges. Given a graph G = (V, E) where n = |V|, find the independent set I with the most nodes.

Observation

There is a simple reduction from INDEPENDENT SET to NODE COVER. (The maximum clique in \overline{G} is exactly *I* in *G*.) However, despite the polytime approximability of NODE COVER, there is no e-approximation for INDEPENDENT SET in time $O(n^{1-\epsilon})$ for any constant $\epsilon > 0$ unless $\mathbf{P} = \mathbf{NP}$. In other words, it is not possible to distinguish in polytime whether |I| is near 1 or near *n*. The proof is omitted herein.

Best Approach

The best known approximation is the following trivial heuristic: pick a vertex v from V and return $I = \{v\}$. Since |I| is between 1 and n, this heuristic is an obviously polytime $\frac{1}{n}$ -approximation. As the graph grows, $\frac{1}{n}$ approaches 0. Given that this is the best known approach, the approximation threshold is a useless 0.

An independent set in a graph is an induced set of nodes among which there are no edges. Given a graph G = (V, E) where n = |V|, find the independent set I with the most nodes.

Observation

There is a simple reduction from INDEPENDENT SET to NODE COVER. (The maximum clique in \overline{G} is exactly *I* in *G*.) However, despite the polytime approximability of NODE COVER, there is no ϵ -approximation for INDEPENDENT SET in time $\mathcal{O}(n^{1-\epsilon})$ for any constant $\epsilon > 0$ unless $\mathbf{P} = \mathbf{NP}$. In other words, it is not possible to distinguish in polytime whether |I| is near 1 or near *n*. The proof is omitted herein.

Best Approach

An independent set in a graph is an induced set of nodes among which there are no edges. Given a graph G = (V, E) where n = |V|, find the independent set I with the most nodes.

Observation

There is a simple reduction from INDEPENDENT SET to NODE COVER. (The maximum clique in \overline{G} is exactly I in G.) However, despite the polytime approximability of NODE COVER, there is no ϵ -approximation for INDEPENDENT SET in time $\mathcal{O}(n^{1-\epsilon})$ for any constant $\epsilon > 0$ unless $\mathbf{P} = \mathbf{NP}$. In other words, it is not possible to distinguish in polytime whether |I| is near 1 or near n. The proof is omitted herein.

Best Approach

An independent set in a graph is an induced set of nodes among which there are no edges. Given a graph G = (V, E) where n = |V|, find the independent set I with the most nodes.

Observation

There is a simple reduction from INDEPENDENT SET to NODE COVER. (The maximum clique in \overline{G} is exactly I in G.) However, despite the polytime approximability of NODE COVER, there is no ϵ -approximation for INDEPENDENT SET in time $\mathcal{O}(n^{1-\epsilon})$ for any constant $\epsilon > 0$ unless $\mathbf{P} = \mathbf{NP}$. In other words, it is not possible to distinguish in polytime whether |I| is near 1 or near n. The proof is omitted herein.

Best Approach

An independent set in a graph is an induced set of nodes among which there are no edges. Given a graph G = (V, E) where n = |V|, find the independent set I with the most nodes.

Observation

There is a simple reduction from INDEPENDENT SET to NODE COVER. (The maximum clique in \overline{G} is exactly I in G.) However, despite the polytime approximability of NODE COVER, there is no ϵ -approximation for INDEPENDENT SET in time $\mathcal{O}(n^{1-\epsilon})$ for any constant $\epsilon > 0$ unless $\mathbf{P} = \mathbf{NP}$. In other words, it is not possible to distinguish in polytime whether |I| is near 1 or near n. The proof is omitted herein.

Best Approach

An independent set in a graph is an induced set of nodes among which there are no edges. Given a graph G = (V, E) where n = |V|, find the independent set I with the most nodes.

Observation

There is a simple reduction from INDEPENDENT SET to NODE COVER. (The maximum clique in \overline{G} is exactly I in G.) However, despite the polytime approximability of NODE COVER, there is no ϵ -approximation for INDEPENDENT SET in time $\mathcal{O}(n^{1-\epsilon})$ for any constant $\epsilon > 0$ unless $\mathbf{P} = \mathbf{NP}$. In other words, it is not possible to distinguish in polytime whether |I| is near 1 or near n. The proof is omitted herein.

Best Approach

An independent set in a graph is an induced set of nodes among which there are no edges. Given a graph G = (V, E) where n = |V|, find the independent set I with the most nodes.

Observation

There is a simple reduction from INDEPENDENT SET to NODE COVER. (The maximum clique in \overline{G} is exactly I in G.) However, despite the polytime approximability of NODE COVER, there is no ϵ -approximation for INDEPENDENT SET in time $\mathcal{O}(n^{1-\epsilon})$ for any constant $\epsilon > 0$ unless $\mathbf{P} = \mathbf{NP}$. In other words, it is not possible to distinguish in polytime whether |I| is near 1 or near n. The proof is omitted herein.

Best Approach

An independent set in a graph is an induced set of nodes among which there are no edges. Given a graph G = (V, E) where n = |V|, find the independent set I with the most nodes.

Observation

There is a simple reduction from INDEPENDENT SET to NODE COVER. (The maximum clique in \overline{G} is exactly I in G.) However, despite the polytime approximability of NODE COVER, there is no ϵ -approximation for INDEPENDENT SET in time $\mathcal{O}(n^{1-\epsilon})$ for any constant $\epsilon > 0$ unless $\mathbf{P} = \mathbf{NP}$. In other words, it is not possible to distinguish in polytime whether |I| is near 1 or near n. The proof is omitted herein.

Best Approach

Introduction

- Notion of Approximability
- Constant Factor Approximations

Problems

- Node Cover
- Independent Set
- MaxSat
- Max-Cut
- TSP
- Knapsack

For a CNF formula of k-variable clauses $\phi_1, \phi_2, \ldots, \phi_n$ over variables x_1, x_2, \ldots, x_m , find a truth assignment for x that will satisfy the most ϕ .

Goal

Find a good maximizing heuristic for this NP-complete problem.

Randomized Approach

Consider this very simple randomized heuristic: set each x to either **true** or **false** uniformly at random.

Each ϕ is expected to be satisfied with a probability of $\frac{2^k-1}{2^k}$ because there will be only one assignment, all-false, that will fail to satisfy the clause. In the worst case this would be for k = 1 where the expectation per ϕ would be $\frac{2^l-1}{2^l} = \frac{1}{2}$. By linearity of expectation, the sum of the expectations for all ϕ would be $\frac{1}{2}n$. So at least $\frac{n}{2}$ clauses are expected to be satisfied by this heuristic.

For a CNF formula of k-variable clauses $\phi_1, \phi_2, \ldots, \phi_n$ over variables x_1, x_2, \ldots, x_m , find a truth assignment for x that will satisfy the most ϕ .

Goal

Find a good maximizing heuristic for this NP-complete problem.

Randomized Approach

Consider this very simple randomized heuristic: set each x to either **true** or **false** uniformly at random.

Each ϕ is expected to be satisfied with a probability of $\frac{2^k-1}{2^k}$ because there will be only one assignment, all-false, that will fail to satisfy the clause. In the worst case this would be for k = 1 where the expectation per ϕ would be $\frac{2^l-1}{21} = \frac{1}{2}$. By linearity of expectation, the sum of the expectations for all ϕ would be $\frac{1}{2}n$. So at least $\frac{n}{2}$ clauses are expected to be satisfied by this heuristic.

For a CNF formula of k-variable clauses $\phi_1, \phi_2, \ldots, \phi_n$ over variables x_1, x_2, \ldots, x_m , find a truth assignment for x that will satisfy the most ϕ .

Goal

Find a good maximizing heuristic for this NP-complete problem.

Randomized Approach

Consider this very simple randomized heuristic: set each x to either true or false uniformly at random.

Each ϕ is expected to be satisfied with a probability of $\frac{2^{\kappa}-1}{2^{k}}$ because there will be only one assignment, all-false, that will fail to satisfy the clause. In the worst case this would be for k = 1 where the expectation per ϕ would be $\frac{2^{1}-1}{2^{1}} = \frac{1}{2}$. By linearity of expectation, the sum of the expectations for all ϕ would be $\frac{1}{2}n$. So at least $\frac{n}{2}$ clauses are expected to be satisfied by this heuristic.

For a CNF formula of k-variable clauses $\phi_1, \phi_2, \ldots, \phi_n$ over variables x_1, x_2, \ldots, x_m , find a truth assignment for x that will satisfy the most ϕ .

Goal

Find a good maximizing heuristic for this NP-complete problem.

Randomized Approach

Consider this very simple randomized heuristic: set each x to either true or false uniformly at random.

Each ϕ is expected to be satisfied with a probability of $\frac{2^k-1}{2^k}$ because there will be only one assignment, all-false, that will fail to satisfy the clause. In the worst case this would be for k = 1 where the expectation per ϕ would be $\frac{2^k-1}{21} = \frac{1}{2}$. By linearity of expectation, the sum of the expectations for all ϕ would be $\frac{1}{2}n$. So at least $\frac{1}{2}$ clauses are expected to be satisfied by this heuristic.

For a CNF formula of k-variable clauses $\phi_1, \phi_2, \ldots, \phi_n$ over variables x_1, x_2, \ldots, x_m , find a truth assignment for x that will satisfy the most ϕ .

Goal

Find a good maximizing heuristic for this NP-complete problem.

Randomized Approach

Consider this very simple randomized heuristic: set each x to either true or false uniformly at random.

Each ϕ is expected to be satisfied with a probability of $\frac{2^k-1}{2^k}$ because there will be only one assignment, all-false, that will fail to satisfy the clause. In the worst case this would be for k = 1 where the expectation per ϕ would be $\frac{2^1-1}{2^1} = \frac{1}{2}$. By linearity of expectation, the sum of the expectations for all ϕ would be $\frac{1}{2^1} = \frac{1}{2}$. By linearity of

are expected to be satisfied by this heuristic.

For a CNF formula of k-variable clauses $\phi_1, \phi_2, \ldots, \phi_n$ over variables x_1, x_2, \ldots, x_m , find a truth assignment for x that will satisfy the most ϕ .

Goal

Find a good maximizing heuristic for this NP-complete problem.

Randomized Approach

Consider this very simple randomized heuristic: set each x to either true or false uniformly at random.

Each ϕ is expected to be satisfied with a probability of $\frac{2^k-1}{2^k}$ because there will be only one assignment, all-false, that will fail to satisfy the clause. In the worst case this would be for k = 1 where the expectation per ϕ would be $\frac{2^1-1}{2^1} = \frac{1}{2}$. By linearity of expectation, the sum of the expectations for all ϕ would be $\frac{1}{2}n$. So at least $\frac{n}{2}$ clauses are expected to be satisfied by this heuristic.

For a CNF formula of k-variable clauses $\phi_1, \phi_2, \ldots, \phi_n$ over variables x_1, x_2, \ldots, x_m , find a truth assignment for x that will satisfy the most ϕ .

Goal

Find a good maximizing heuristic for this NP-complete problem.

Randomized Approach

Consider this very simple randomized heuristic: set each x to either true or false uniformly at random.

Each ϕ is expected to be satisfied with a probability of $\frac{2^k-1}{2^k}$ because there will be only one assignment, all-false, that will fail to satisfy the clause. In the worst case this would be for k = 1 where the expectation per ϕ would be $\frac{2^1-1}{2^1} = \frac{1}{2}$. By linearity of expectation, the sum of the expectations for all ϕ would be $\frac{1}{2}n$. So at least $\frac{n}{2}$ clauses are expected to be satisfied by this heuristic.

For a CNF formula of k-variable clauses $\phi_1, \phi_2, \ldots, \phi_n$ over variables x_1, x_2, \ldots, x_m , find a truth assignment for x that will satisfy the most ϕ .

Goal

Find a good maximizing heuristic for this NP-complete problem.

Randomized Approach

Consider this very simple randomized heuristic: set each x to either true or false uniformly at random.

Each ϕ is expected to be satisfied with a probability of $\frac{2^k-1}{2^k}$ because there will be only one assignment, all-false, that will fail to satisfy the clause. In the worst case this would be for k = 1 where the expectation per ϕ would be $\frac{2^1-1}{2^1} = \frac{1}{2}$. By linearity of expectation, the sum of the expectations for all ϕ would be $\frac{1}{2}n$. So at least $\frac{n}{2}$ clauses are expected to be satisfied by this heuristic.

Introduction

- Notion of Approximability
- Constant Factor Approximations

Problems

- Node Cover
- Independent Set
- MaxSat
- Max-Cut
- TSP
- Knapsack

For a graph G = (V, E), let a cut be a partitioning of the vertices in V such that some are in a set S and the rest are in V - S. A cut edge is an edge from a vertex in S to a vertex in V - S. The cut size is the number of cut edges. Maximize this quantity.

Goal

For a graph G = (V, E), let a cut be a partitioning of the vertices in V such that some are in a set S and the rest are in V - S. A cut edge is an edge from a vertex in S to a vertex in V - S. The cut size is the number of cut edges. Maximize this quantity

Goal

For a graph G = (V, E), let a cut be a partitioning of the vertices in V such that some are in a set S and the rest are in V - S. A cut edge is an edge from a vertex in S to a vertex in V - S. The cut size is the number of cut edges. Maximize this quantity.

Goal

For a graph G = (V, E), let a cut be a partitioning of the vertices in V such that some are in a set S and the rest are in V - S. A cut edge is an edge from a vertex in S to a vertex in V - S. The cut size is the number of cut edges. Maximize this quantity.

Goal

Consider a randomized heuristic similar to the previous one: for each $x \in V$, put x in S with probability $\frac{1}{2}$ uniformly at random.

For any edge $(i,j) \in E$, there are four possibilities.

(1) Node i is in S and node j is in S.

- (2) Node i is in S and node j is in V S, so (i, j) is a cut edge.
- (3) Node *i* is in V S and node *j* is in *S*, so (i, j) is a cut edge.

(4) Node *i* is in V - S and node *j* is in V - S.

For any edge, its expectation of being in the cut is therefore $\frac{1}{2}$. By linearity of expectation, the cut size expectation is the sum of the expectations for each cut, so the size of the cut cannot be worse than $\frac{|E|}{2}$.

Consider a randomized heuristic similar to the previous one: for each $x \in V$, put x in S with probability $\frac{1}{2}$ uniformly at random.

For any edge $(i, j) \in E$, there are four possibilities.

- (1) Node i is in S and node j is in S.
- (2) Node i is in S and node j is in V S, so (i, j) is a cut edge.
- (3) Node i is in V S and node j is in S, so (i, j) is a cut edge.

(4) Node i is in V − S and node j is in V − S

For any edge, its expectation of being in the cut is therefore $\frac{1}{2}$. By linearity of expectation, the cut size expectation is the sum of the expectations for each cut, so the size of the cut cannot be worse than $\frac{|E|}{2}$.

Consider a randomized heuristic similar to the previous one: for each $x \in V$, put x in S with probability $\frac{1}{2}$ uniformly at random.

For any edge $(i, j) \in E$, there are four possibilities.

- (1) Node i is in S and node j is in S.
- (2) Node *i* is in *S* and node *j* is in V S, so (i, j) is a cut edge.
- (3) Node *i* is in V S and node *j* is in *S*, so (i, j) is a cut edge.

(4) Node *i* is in V - S and node *j* is in V - S.

For any edge, its expectation of being in the cut is therefore $\frac{1}{2}$. By linearity of expectation, the cut size expectation is the sum of the expectations for each cut, so the size of the cut cannot be worse than $\frac{|E|}{2}$.

Consider a randomized heuristic similar to the previous one: for each $x \in V$, put x in S with probability $\frac{1}{2}$ uniformly at random.

For any edge $(i, j) \in E$, there are four possibilities.

- (1) Node i is in S and node j is in S.
- (2) Node *i* is in *S* and node *j* is in V S, so (i, j) is a cut edge.
- (3) Node *i* is in V S and node *j* is in *S*, so (i, j) is a cut edge.

(4) Node *i* is in V - S and node *j* is in V - S

For any edge, its expectation of being in the cut is therefore $\frac{1}{2}$. By linearity of expectation, the cut size expectation is the sum of the expectations for each cut, so the size of the cut cannot be worse than $\frac{|E|}{2}$.

Consider a randomized heuristic similar to the previous one: for each $x \in V$, put x in S with probability $\frac{1}{2}$ uniformly at random.

For any edge $(i, j) \in E$, there are four possibilities.

- (1) Node i is in S and node j is in S.
- (2) Node *i* is in S and node *j* is in V S, so (i, j) is a cut edge.
- (3) Node *i* is in V S and node *j* is in *S*, so (i, j) is a cut edge.
- (4) Node *i* is in V S and node *j* is in V S.

For any edge, its expectation of being in the cut is therefore $\frac{1}{2}$. By linearity of expectation, the cut size expectation is the sum of the expectations for each cut, so the size of the cut cannot be worse than $\frac{|E|}{2}$.

Consider a randomized heuristic similar to the previous one: for each $x \in V$, put x in S with probability $\frac{1}{2}$ uniformly at random.

For any edge $(i, j) \in E$, there are four possibilities.

- (1) Node i is in S and node j is in S.
- (2) Node *i* is in S and node *j* is in V S, so (i, j) is a cut edge.
- (3) Node *i* is in V S and node *j* is in *S*, so (i, j) is a cut edge.
- (4) Node *i* is in V S and node *j* is in V S.

For any edge, its expectation of being in the cut is therefore $\frac{1}{2}$. By linearity of expectation, the cut size expectation is the sum of the expectations for each cut, so the size of the cut cannot be worse than $\frac{|E|}{2}$.

Consider a randomized heuristic similar to the previous one: for each $x \in V$, put x in S with probability $\frac{1}{2}$ uniformly at random.

For any edge $(i, j) \in E$, there are four possibilities.

- (1) Node i is in S and node j is in S.
- (2) Node *i* is in *S* and node *j* is in V S, so (i, j) is a cut edge.
- (3) Node *i* is in V S and node *j* is in *S*, so (i, j) is a cut edge.
- (4) Node *i* is in V S and node *j* is in V S.

For any edge, its expectation of being in the cut is therefore $\frac{1}{2}$. By linearity of expectation, the cut size expectation is the sum of the expectations for each cut, so the size of the cut cannot be worse than $\frac{|E|}{2}$.

Consider a randomized heuristic similar to the previous one: for each $x \in V$, put x in S with probability $\frac{1}{2}$ uniformly at random.

For any edge $(i, j) \in E$, there are four possibilities.

- (1) Node i is in S and node j is in S.
- (2) Node *i* is in *S* and node *j* is in V S, so (i, j) is a cut edge.
- (3) Node *i* is in V S and node *j* is in *S*, so (i, j) is a cut edge.
- (4) Node *i* is in V S and node *j* is in V S.

For any edge, its expectation of being in the cut is therefore $\frac{1}{2}$. By linearity of expectation, the cut size expectation is the sum of the expectations for each cut, so the size of the cut cannot be worse than $\frac{|E|}{2}$.

Introduction

- Notion of Approximability
- Constant Factor Approximations

Problems

- Node Cover
- Independent Set
- MaxSat
- Max-Cut
- TSP
- Knapsack

Given a graph G = (V, E), find a tour (a cycle which visits every node in G exactly once or a Hamilton cycle) of minimum weight.

Observation

A polytime ϵ -approximation algorithm for this NP-complete problem can only exist if P = NP. If this were not so, the NP-complete problem HAMILTON-CYCLE could be decided in polytime.

Goal

Given a graph G = (V, E), find a tour (a cycle which visits every node in G exactly once or a Hamilton cycle) of minimum weight.

Observation

A polytime ϵ -approximation algorithm for this NP-complete problem can only exist if P = NP. If this were not so, the NP-complete problem HAMILTON-CYCLE could be decided in polytime.

Goal

Given a graph G = (V, E), find a tour (a cycle which visits every node in G exactly once or a Hamilton cycle) of minimum weight.

Observation

A polytime ϵ -approximation algorithm for this NP-complete problem can only exist if P = NP. If this were not so, the NP-complete problem HAMILTON-CYCLE could be decided in polytime.

Goal

Given a graph G = (V, E), find a tour (a cycle which visits every node in G exactly once or a Hamilton cycle) of minimum weight.

Observation

A polytime ϵ -approximation algorithm for this NP-complete problem can only exist if P = NP. If this were not so, the NP-complete problem HAMILTON-CYCLE could be decided in polytime.

Goal

Proof

Given a graph G = (V, E), construct a complete graph G' with all cities from V. The distance of edge $(i, j) \in G'$ is 1 if there is an edge $(i, j) \in G$ or ϵ otherwise. Now run the hypothetical polytime ϵ -approximation algorithm for TSP on graph G'. There are two possible outcomes.

- The returned tour has a cost of exactly |V|. This indicates a successful tour with |V| edges of distance 1. This confirms the presence of a Hamilton cycle in G.
- (2) The returned tour has a cost more than |V| but no more than ε · |V|. This indicates the use of between 1 and |V| edges of length ε in a tour of G'. This confirms the absence of a Hamilton cycle in G.

This would decide HAMILTON-CYCLE in polytime despite it being NP-complete.

This would prove $\mathbf{P} = \mathbf{NP}$. Win a prize and go home.

Proof

Given a graph G = (V, E), construct a complete graph G' with all cities from V. The distance of edge $(i, j) \in G'$ is 1 if there is an edge $(i, j) \in G$ or ϵ otherwise. Now run the hypothetical polytime ϵ -approximation algorithm for TSP on graph G'. There are two possible outcomes.

- (1) The returned tour has a cost of exactly |V|. This indicates a successful tour with |V| edges of distance 1. This confirms the presence of a Hamilton cycle in G.
- (2) The returned tour has a cost more than |V| but no more than $\epsilon \cdot |V|$. This indicates the use of between 1 and |V| edges of length ϵ in a tour of G'. This confirms the absence of a Hamilton cycle in G.

This would decide HAMILTON-CYCLE in polytime despite it being NP-complete.

This would prove $\mathbf{P} = \mathbf{NP}$. Win a prize and go home.

Given a graph G = (V, E), construct a complete graph G' with all cities from V. The distance of edge $(i, j) \in G'$ is 1 if there is an edge $(i, j) \in G$ or ϵ otherwise. Now run the hypothetical polytime ϵ -approximation algorithm for TSP on graph G'. There are two possible outcomes.

- (1) The returned tour has a cost of exactly |V|. This indicates a successful tour with |V| edges of distance 1. This confirms the presence of a Hamilton cycle in G.
- (2) The returned tour has a cost more than |V| but no more than ε · |V|. This indicates the use of between 1 and |V| edges of length ε in a tour of G'. This confirms the absence of a Hamilton cycle in G.

This would decide HAMILTON-CYCLE in polytime despite it being NP-complete.

Given a graph G = (V, E), construct a complete graph G' with all cities from V. The distance of edge $(i, j) \in G'$ is 1 if there is an edge $(i, j) \in G$ or ϵ otherwise. Now run the hypothetical polytime ϵ -approximation algorithm for TSP on graph G'. There are two possible outcomes.

- (1) The returned tour has a cost of exactly |V|. This indicates a successful tour with |V| edges of distance 1. This confirms the presence of a Hamilton cycle in *G*.
- (2) The returned tour has a cost more than |V| but no more than ε · |V|. This indicates the use of between 1 and |V| edges of length ε in a tour of G'. This confirms the absence of a Hamilton cycle in G.

This would decide HAMILTON-CYCLE in polytime despite it being NP-complete.

Given a graph G = (V, E), construct a complete graph G' with all cities from V. The distance of edge $(i, j) \in G'$ is 1 if there is an edge $(i, j) \in G$ or ϵ otherwise. Now run the hypothetical polytime ϵ -approximation algorithm for TSP on graph G'. There are two possible outcomes.

- The returned tour has a cost of exactly |V|. This indicates a successful tour with |V| edges of distance 1. This confirms the presence of a Hamilton cycle in G.
- (2) The returned tour has a cost more than |V| but no more than ε · |V|. This indicates the use of between 1 and |V| edges of length ε in a tour of G'. This confirms the absence of a Hamilton cycle in G.

This would decide HAMILTON-CYCLE in polytime despite it being NP-complete.

This would prove P = NP. Win a prize and go home.

Given a graph G = (V, E), construct a complete graph G' with all cities from V. The distance of edge $(i, j) \in G'$ is 1 if there is an edge $(i, j) \in G$ or ϵ otherwise. Now run the hypothetical polytime ϵ -approximation algorithm for TSP on graph G'. There are two possible outcomes.

- The returned tour has a cost of exactly |V|. This indicates a successful tour with |V| edges of distance 1. This confirms the presence of a Hamilton cycle in G.
- (2) The returned tour has a cost more than |V| but no more than ε · |V|. This indicates the use of between 1 and |V| edges of length ε in a tour of G'. This confirms the absence of a Hamilton cycle in G.

This would decide HAMILTON-CYCLE in polytime despite it being NP-complete.

This would prove P = NP. Win a prize and go home.

Given a graph G = (V, E), construct a complete graph G' with all cities from V. The distance of edge $(i, j) \in G'$ is 1 if there is an edge $(i, j) \in G$ or ϵ otherwise. Now run the hypothetical polytime ϵ -approximation algorithm for TSP on graph G'. There are two possible outcomes.

- (1) The returned tour has a cost of exactly |V|. This indicates a successful tour with |V| edges of distance 1. This confirms the presence of a Hamilton cycle in *G*.
- (2) The returned tour has a cost more than |V| but no more than ε · |V|. This indicates the use of between 1 and |V| edges of length ε in a tour of G'. This confirms the absence of a Hamilton cycle in G.

This would decide HAMILTON-CYCLE in polytime despite it being NP-complete.

Given a graph G = (V, E), construct a complete graph G' with all cities from V. The distance of edge $(i, j) \in G'$ is 1 if there is an edge $(i, j) \in G$ or ϵ otherwise. Now run the hypothetical polytime ϵ -approximation algorithm for TSP on graph G'. There are two possible outcomes.

- (1) The returned tour has a cost of exactly |V|. This indicates a successful tour with |V| edges of distance 1. This confirms the presence of a Hamilton cycle in *G*.
- (2) The returned tour has a cost more than |V| but no more than ε · |V|. This indicates the use of between 1 and |V| edges of length ε in a tour of G'. This confirms the absence of a Hamilton cycle in G.

This would decide HAMILTON-CYCLE in polytime despite it being NP-complete.

Given a graph G = (V, E), construct a complete graph G' with all cities from V. The distance of edge $(i, j) \in G'$ is 1 if there is an edge $(i, j) \in G$ or ϵ otherwise. Now run the hypothetical polytime ϵ -approximation algorithm for TSP on graph G'. There are two possible outcomes.

- The returned tour has a cost of exactly |V|. This indicates a successful tour with |V| edges of distance 1. This confirms the presence of a Hamilton cycle in G.
- (2) The returned tour has a cost more than |V| but no more than ε · |V|. This indicates the use of between 1 and |V| edges of length ε in a tour of G'. This confirms the absence of a Hamilton cycle in G.

This would decide HAMILTON-CYCLE in polytime despite it being **NP-complete**.

Given a graph G = (V, E), construct a complete graph G' with all cities from V. The distance of edge $(i, j) \in G'$ is 1 if there is an edge $(i, j) \in G$ or ϵ otherwise. Now run the hypothetical polytime ϵ -approximation algorithm for TSP on graph G'. There are two possible outcomes.

- (1) The returned tour has a cost of exactly |V|. This indicates a successful tour with |V| edges of distance 1. This confirms the presence of a Hamilton cycle in *G*.
- (2) The returned tour has a cost more than |V| but no more than $\epsilon \cdot |V|$. This indicates the use of between 1 and |V| edges of length ϵ in a tour of G'. This confirms the absence of a Hamilton cycle in G.

This would decide HAMILTON-CYCLE in polytime despite it being NP-complete.

Given a graph G = (V, E), construct a complete graph G' with all cities from V. The distance of edge $(i, j) \in G'$ is 1 if there is an edge $(i, j) \in G$ or ϵ otherwise. Now run the hypothetical polytime ϵ -approximation algorithm for TSP on graph G'. There are two possible outcomes.

- (1) The returned tour has a cost of exactly |V|. This indicates a successful tour with |V| edges of distance 1. This confirms the presence of a Hamilton cycle in *G*.
- (2) The returned tour has a cost more than |V| but no more than ε · |V|. This indicates the use of between 1 and |V| edges of length ε in a tour of G'. This confirms the absence of a Hamilton cycle in G.

This would decide HAMILTON-CYCLE in polytime despite it being NP-complete.

1 Introductio

- Notion of Approximability
- Constant Factor Approximations

Problems

- Node Cover
- Independent Set
- MaxSat
- Max-Cut
- TSP
- Knapsack

Given a set $I = \{1, 2, ..., n\}$ of items *i* with associated weights w_i and values v_i and given a weight limit *W*, find a subset $S \subseteq I$ such that $\sum_{i \in S} w_i \leq W$ with $\sum_{i \in S} v_i$ maximized. That is, find a selection of items such that their value is as high as possible while the sum of their weights does not exceed the weight limit *W*.

Observation

A polytime ϵ -approximation algorithm for this (not strongly) NP-complete maximization problem can be found for any $\epsilon < 1$. That is, solutions can be arbitrarily close to the optimum. Unlike with TSP, this does not prove that P = NP because KNAPSACK has a pseudopolynomial algorithm.

Goal

Given a set $I = \{1, 2, ..., n\}$ of items *i* with associated weights w_i and values v_i and given a weight limit W, find a subset $S \subseteq I$ such that $\sum_{i \in S} w_i \leq W$ with $\sum_{i \in S} v_i$ maximized. That is, find a selection of items such that their value is as high as possible while the sum of their weights does not exceed the weight limit W.

Observation

A polytime ϵ -approximation algorithm for this (not strongly) NP-complete maximization problem can be found for any $\epsilon < 1$. That is, solutions can be arbitrarily close to the optimum. Unlike with TSP, this does not prove that P = NP because KNAPSACK has a pseudopolynomial algorithm.

Goal

Given a set $I = \{1, 2, ..., n\}$ of items *i* with associated weights w_i and values v_i and given a weight limit W, find a subset $S \subseteq I$ such that $\sum_{i \in S} w_i \leq W$ with $\sum_{i \in S} v_i$ maximized. That is, find a selection of items such that their value is as high as possible while the sum of their weights does not exceed the weight limit W.

Observation

A polytime ϵ -approximation algorithm for this (not strongly) NP-complete maximization problem can be found for any $\epsilon < 1$. That is, solutions can be arbitrarily close to the optimum. Unlike with TSP, this does not prove that P = NP because KNAPSACK has a pseudopolynomial algorithm.

Goal

Given a set $I = \{1, 2, ..., n\}$ of items *i* with associated weights w_i and values v_i and given a weight limit W, find a subset $S \subseteq I$ such that $\sum_{i \in S} w_i \leq W$ with $\sum_{i \in S} v_i$ maximized. That is, find a selection of items such that their value is as high as possible while the sum of their weights does not exceed the weight limit W.

Observation

A polytime ϵ -approximation algorithm for this (not strongly) NP-complete maximization problem can be found for any $\epsilon < 1$. That is, solutions can be arbitrarily close to the optimum. Unlike with TSP, this does not prove that P = NP because KNAPSACK has a pseudopolynomial algorithm.

Goal

Given a set $I = \{1, 2, ..., n\}$ of items *i* with associated weights w_i and values v_i and given a weight limit W, find a subset $S \subseteq I$ such that $\sum_{i \in S} w_i \leq W$ with $\sum_{i \in S} v_i$ maximized. That is, find a selection of items such that their value is as high as possible while the sum of their weights does not exceed the weight limit W.

Observation

A polytime ϵ -approximation algorithm for this (not strongly) NP-complete maximization problem can be found for any $\epsilon < 1$. That is, solutions can be arbitrarily close to the optimum. Unlike with TSP, this does not prove that P = NP because KNAPSACK has a pseudopolynomial algorithm.

Goal

Given a set $I = \{1, 2, ..., n\}$ of items *i* with associated weights w_i and values v_i and given a weight limit W, find a subset $S \subseteq I$ such that $\sum_{i \in S} w_i \leq W$ with $\sum_{i \in S} v_i$ maximized. That is, find a selection of items such that their value is as high as possible while the sum of their weights does not exceed the weight limit W.

Observation

A polytime ϵ -approximation algorithm for this (not strongly) NP-complete maximization problem can be found for any $\epsilon < 1$. That is, solutions can be arbitrarily close to the optimum. Unlike with TSP, this does not prove that $\mathbf{P} = \mathbf{NP}$ because KNAPSACK has a pseudopolynomial algorithm.

Goal

Given a set $I = \{1, 2, ..., n\}$ of items *i* with associated weights w_i and values v_i and given a weight limit W, find a subset $S \subseteq I$ such that $\sum_{i \in S} w_i \leq W$ with $\sum_{i \in S} v_i$ maximized. That is, find a selection of items such that their value is as high as possible while the sum of their weights does not exceed the weight limit W.

Observation

A polytime ϵ -approximation algorithm for this (not strongly) NP-complete maximization problem can be found for any $\epsilon < 1$. That is, solutions can be arbitrarily close to the optimum. Unlike with TSP, this does not prove that $\mathbf{P} = \mathbf{NP}$ because KNAPSACK has a pseudopolynomial algorithm.

Goal

Let V be the maximum item value. Now we define the quantity W(i, s) for $1 \le i \le n$ and $0 \le s \le n \cdot V$. This is the minimum weight attainable by selecting some of the first *i* items such that the sum of their values is exactly *s*. Recognize the following.

 $\begin{array}{lll} W(0,s) & = & \infty \\ W(i+1,s) & = & \min\{W(i,s), W(i,s-v_{i+1})+w_{i+1}\} \end{array}$

Pick the largest s such that $W(n, s) \leq W$. This solution is found in time $O(n^2V)$ and is the standard pseudopolynomial algorithm for the optimal solution.

To speed it up, eschew accuracy in the v_i 's if the numbers are very large. That is, redefine the values to be $u_i = 2^b \lfloor \frac{v_i}{2^b} \rfloor$ and use U as the maximum item value instead of V. This just means to ignore the b least significant bits.

This improves the running time to $\mathcal{O}(\frac{n^2V}{2^b})$. The value returned for the solution item set is at most $n2^b$ less than the optimum. Because V is a lower bound on the value of the optimum solution, $\epsilon = \frac{n2^b}{V}$. This oddly allows for any $\epsilon < 1$ the truncation of $b = \lceil \log \frac{\epsilon V}{n} \rceil$ bits for the values to yield an $\mathcal{O}(\frac{n^3}{\epsilon})$ polytime algorithm.

This means ${
m KNAPSACK}$'s approximation threshold is 1.

Let V be the maximum item value. Now we define the quantity W(i, s) for $1 \le i \le n$ and $0 \le s \le n \cdot V$. This is the minimum weight attainable by selecting some of the first *i* items such that the sum of their values is exactly *s*. Recognize the following.

 $W(0,s) = \infty$ $W(i+1,s) = \min\{W(i,s), W(i,s-v_{i+1}) + w_{i+1}\}$

Pick the largest s such that $W(n, s) \leq W$. This solution is found in time $O(n^2 V)$ and is the standard pseudopolynomial algorithm for the optimal solution.

To speed it up, eschew accuracy in the v_i 's if the numbers are very large. That is, redefine the values to be $u_i = 2^b \lfloor \frac{v_i}{2^b} \rfloor$ and use U as the maximum item value instead of V. This just means to ignore the b least significant bits.

This improves the running time to $\mathcal{O}(\frac{n^2V}{2^b})$. The value returned for the solution item set is at most $n2^b$ less than the optimum. Because V is a lower bound on the value of the optimum solution, $\epsilon = \frac{n2^b}{V}$. This oddly allows for any $\epsilon < 1$ the truncation of $b = \lceil \log \frac{\epsilon V}{n} \rceil$ bits for the values to yield an $\mathcal{O}(\frac{n^3}{\epsilon})$ polytime algorithm.

This means KNAPSACK's approximation threshold is 1.

Let V be the maximum item value. Now we define the quantity W(i, s) for $1 \le i \le n$ and $0 \le s \le n \cdot V$. This is the minimum weight attainable by selecting some of the first *i* items such that the sum of their values is exactly *s*. Recognize the following.

 $\begin{array}{lll} W(0,s) & = & \infty \\ W(i+1,s) & = & \min\{W(i,s), W(i,s-v_{i+1})+w_{i+1}\} \end{array}$

Pick the largest s such that $W(n, s) \leq W$. This solution is found in time $O(n^2V)$ and is the standard pseudopolynomial algorithm for the optimal solution.

To speed it up, eschew accuracy in the v_i 's if the numbers are very large. That is, redefine the values to be $u_i = 2^b \lfloor \frac{v_i}{2b} \rfloor$ and use U as the maximum item value instead of V. This just means to ignore the b least significant bits.

This improves the running time to $\mathcal{O}(\frac{n^2V}{2^b})$. The value returned for the solution item set is at most $n2^b$ less than the optimum. Because V is a lower bound on the value of the optimum solution, $\epsilon = \frac{n2^b}{V}$. This oddly allows for any $\epsilon < 1$ the truncation of $b = \lceil \log \frac{\epsilon V}{n} \rceil$ bits for the values to yield an $\mathcal{O}(\frac{n^3}{\epsilon})$ polytime algorithm.

This means ${
m KNAPSACK}$'s approximation threshold is 1.

Let V be the maximum item value. Now we define the quantity W(i, s) for $1 \le i \le n$ and $0 \le s \le n \cdot V$. This is the minimum weight attainable by selecting some of the first *i* items such that the sum of their values is exactly *s*. Recognize the following.

 $\begin{array}{lll} W(0,s) & = & \infty \\ W(i+1,s) & = & \min\{W(i,s), W(i,s-v_{i+1})+w_{i+1}\} \end{array}$

Pick the largest s such that $W(n, s) \leq W$. This solution is found in time $O(n^2 V)$ and is the standard pseudopolynomial algorithm for the optimal solution.

To speed it up, eschew accuracy in the v_i 's if the numbers are very large. That is, redefine the values to be $u_i = 2^b \lfloor \frac{v_i}{2^b} \rfloor$ and use U as the maximum item value instead of V. This just means to ignore the b least significant bits.

This improves the running time to $\mathcal{O}(\frac{n^2V}{2b})$. The value returned for the solution item set is at most $n2^b$ less than the optimum. Because V is a lower bound on the value of the optimum solution, $\epsilon = \frac{n2^b}{V}$. This oddly allows for any $\epsilon < 1$ the truncation of $b = \lceil \log \frac{\epsilon V}{n} \rceil$ bits for the values to yield an $\mathcal{O}(\frac{n^3}{\epsilon})$ polytime algorithm.

This means ${
m KNAPSACK}$'s approximation threshold is 1.

Let V be the maximum item value. Now we define the quantity W(i, s) for $1 \le i \le n$ and $0 \le s \le n \cdot V$. This is the minimum weight attainable by selecting some of the first *i* items such that the sum of their values is exactly *s*. Recognize the following.

 $\begin{array}{lll} W(0,s) & = & \infty \\ W(i+1,s) & = & \min\{W(i,s), W(i,s-v_{i+1})+w_{i+1}\} \end{array}$

Pick the largest s such that $W(n, s) \leq W$. This solution is found in time $O(n^2V)$ and is the standard pseudopolynomial algorithm for the optimal solution.

To speed it up, eschew accuracy in the v_i 's if the numbers are very large. That is, redefine the values to be $u_i = 2^b \lfloor \frac{v_i}{2b} \rfloor$ and use U as the maximum item value instead of V. This just means to ignore the b least significant bits.

This improves the running time to $\mathcal{O}(\frac{n^2V}{2^b})$. The value returned for the solution item set is at most $n2^b$ less than the optimum. Because V is a lower bound on the value of the optimum solution, $\epsilon = \frac{n2^b}{V}$. This oddly allows for any $\epsilon < 1$ the truncation of $b = \lceil \log \frac{\epsilon V}{n} \rceil$ bits for the values to yield an $\mathcal{O}(\frac{n^3}{\epsilon})$ polytime algorithm.

This means KNAPSACK's approximation threshold is 1.

Let V be the maximum item value. Now we define the quantity W(i, s) for $1 \le i \le n$ and $0 \le s \le n \cdot V$. This is the minimum weight attainable by selecting some of the first *i* items such that the sum of their values is exactly *s*. Recognize the following.

 $\begin{array}{lll} W(0,s) & = & \infty \\ W(i+1,s) & = & \min\{W(i,s), W(i,s-v_{i+1})+w_{i+1}\} \end{array}$

Pick the largest s such that $W(n, s) \leq W$. This solution is found in time $\mathcal{O}(n^2 V)$ and is the standard pseudopolynomial algorithm for the optimal solution.

To speed it up, eschew accuracy in the v_i 's if the numbers are very large. That is, redefine the values to be $u_i = 2^b \lfloor \frac{v_i}{2^b} \rfloor$ and use U as the maximum item value instead of V. This just means to ignore the b least significant bits.

This improves the running time to $\mathcal{O}(\frac{n^2V}{2b})$. The value returned for the solution item set is at most $n2^b$ less than the optimum. Because V is a lower bound on the value of the optimum solution, $\epsilon = \frac{n2^b}{V}$. This oddly allows for any $\epsilon < 1$ the truncation of $b = \lceil \log \frac{\epsilon V}{n} \rceil$ bits for the values to yield an $\mathcal{O}(\frac{n^3}{\epsilon})$ polytime algorithm.

This means KNAPSACK's approximation threshold is 1.

Let V be the maximum item value. Now we define the quantity W(i, s) for $1 \le i \le n$ and $0 \le s \le n \cdot V$. This is the minimum weight attainable by selecting some of the first *i* items such that the sum of their values is exactly *s*. Recognize the following.

 $\begin{array}{lll} W(0,s) & = & \infty \\ W(i+1,s) & = & \min\{W(i,s), W(i,s-v_{i+1})+w_{i+1}\} \end{array}$

Pick the largest s such that $W(n, s) \leq W$. This solution is found in time $\mathcal{O}(n^2 V)$ and is the standard pseudopolynomial algorithm for the optimal solution.

To speed it up, eschew accuracy in the v_i 's if the numbers are very large. That is, redefine the values to be $u_i = 2^b \lfloor \frac{v_i}{2^b} \rfloor$ and use U as the maximum item value instead of V. This just means to ignore the *b* least significant bits.

This improves the running time to $\mathcal{O}(\frac{n^2V}{2b})$. The value returned for the solution item set is at most $n2^b$ less than the optimum. Because V is a lower bound on the value of the optimum solution, $\epsilon = \frac{n2^b}{V}$. This oddly allows for any $\epsilon < 1$ the truncation of $b = \lceil \log \frac{\epsilon V}{n} \rceil$ bits for the values to yield an $\mathcal{O}(\frac{n^3}{\epsilon})$ polytime algorithm.

This means ${
m KNAPSACK}$'s approximation threshold is 1.

Let V be the maximum item value. Now we define the quantity W(i, s) for $1 \le i \le n$ and $0 \le s \le n \cdot V$. This is the minimum weight attainable by selecting some of the first *i* items such that the sum of their values is exactly *s*. Recognize the following.

 $\begin{array}{lll} W(0,s) & = & \infty \\ W(i+1,s) & = & \min\{W(i,s), W(i,s-v_{i+1})+w_{i+1}\} \end{array}$

Pick the largest s such that $W(n, s) \leq W$. This solution is found in time $\mathcal{O}(n^2 V)$ and is the standard pseudopolynomial algorithm for the optimal solution.

To speed it up, eschew accuracy in the v_i 's if the numbers are very large. That is, redefine the values to be $u_i = 2^b \lfloor \frac{v_i}{2^b} \rfloor$ and use U as the maximum item value instead of V. This just means to ignore the b least significant bits.

This improves the running time to $\mathcal{O}(\frac{n^2V}{2b})$. The value returned for the solution item set is at most $n2^b$ less than the optimum. Because V is a lower bound on the value of the optimum solution, $\epsilon = \frac{n2^b}{V}$. This oddly allows for any $\epsilon < 1$ the truncation of $b = \lceil \log \frac{\epsilon V}{n} \rceil$ bits for the values to yield an $\mathcal{O}(\frac{n^3}{\epsilon})$ polytime algorithm.

This means ${
m KNAPSACK}$'s approximation threshold is 1.

Let V be the maximum item value. Now we define the quantity W(i, s) for $1 \le i \le n$ and $0 \le s \le n \cdot V$. This is the minimum weight attainable by selecting some of the first *i* items such that the sum of their values is exactly *s*. Recognize the following.

 $\begin{array}{lll} W(0,s) & = & \infty \\ W(i+1,s) & = & \min\{W(i,s), W(i,s-v_{i+1})+w_{i+1}\} \end{array}$

Pick the largest s such that $W(n, s) \leq W$. This solution is found in time $\mathcal{O}(n^2 V)$ and is the standard pseudopolynomial algorithm for the optimal solution.

To speed it up, eschew accuracy in the v_i 's if the numbers are very large. That is, redefine the values to be $u_i = 2^b \lfloor \frac{v_i}{2^b} \rfloor$ and use U as the maximum item value instead of V. This just means to ignore the b least significant bits.

This improves the running time to $\mathcal{O}(\frac{n^2V}{2b})$. The value returned for the solution item set is at most $n2^b$ less than the optimum. Because V is a lower bound on the value of the optimum solution, $\epsilon = \frac{n2^b}{V}$. This oddly allows for any $\epsilon < 1$ the truncation of $b = \lceil \log \frac{eV}{n} \rceil$ bits for the values to yield an $\mathcal{O}(\frac{n^2}{\epsilon})$ polytime algorithm.

Let V be the maximum item value. Now we define the quantity W(i, s) for $1 \le i \le n$ and $0 \le s \le n \cdot V$. This is the minimum weight attainable by selecting some of the first *i* items such that the sum of their values is exactly *s*. Recognize the following.

 $\begin{array}{lll} W(0,s) & = & \infty \\ W(i+1,s) & = & \min\{W(i,s), W(i,s-v_{i+1})+w_{i+1}\} \end{array}$

Pick the largest s such that $W(n, s) \leq W$. This solution is found in time $\mathcal{O}(n^2 V)$ and is the standard pseudopolynomial algorithm for the optimal solution.

To speed it up, eschew accuracy in the v_i 's if the numbers are very large. That is, redefine the values to be $u_i = 2^b \lfloor \frac{v_i}{2^b} \rfloor$ and use U as the maximum item value instead of V. This just means to ignore the b least significant bits.

This improves the running time to $\mathcal{O}(\frac{n^2 V}{2^b})$. The value returned for the solution item set is at most $n2^b$ less than the optimum. Because V is a lower bound on the value of the optimum solution, $\epsilon = \frac{n2^b}{V}$. This oddly allows for any $\epsilon < 1$ the truncation of $b = \lceil \log \frac{eV}{n} \rceil$ bits for the values to yield an $\mathcal{O}(\frac{n^2}{c})$ polytime algorithm.

Let V be the maximum item value. Now we define the quantity W(i, s) for $1 \le i \le n$ and $0 \le s \le n \cdot V$. This is the minimum weight attainable by selecting some of the first *i* items such that the sum of their values is exactly *s*. Recognize the following.

 $\begin{array}{lll} W(0,s) & = & \infty \\ W(i+1,s) & = & \min\{W(i,s), W(i,s-v_{i+1})+w_{i+1}\} \end{array}$

Pick the largest s such that $W(n, s) \leq W$. This solution is found in time $\mathcal{O}(n^2 V)$ and is the standard pseudopolynomial algorithm for the optimal solution.

To speed it up, eschew accuracy in the v_i 's if the numbers are very large. That is, redefine the values to be $u_i = 2^b \lfloor \frac{v_i}{2^b} \rfloor$ and use U as the maximum item value instead of V. This just means to ignore the b least significant bits.

This improves the running time to $\mathcal{O}(\frac{n^2V}{2b})$. The value returned for the solution item set is at most $n2^b$ less than the optimum. Because V is a lower bound on the value of the optimum solution, $\epsilon = \frac{n2^b}{V}$. This oddly allows for any $\epsilon < 1$ the truncation of $b = \lceil \log \frac{aV}{n} \rceil$ bits for the values to yield an $\mathcal{O}(\frac{n^2}{\epsilon})$ polytime algorithm. This means KNAPSACK's approximation threshold is 1.

Let V be the maximum item value. Now we define the quantity W(i, s) for $1 \le i \le n$ and $0 \le s \le n \cdot V$. This is the minimum weight attainable by selecting some of the first *i* items such that the sum of their values is exactly *s*. Recognize the following.

 $\begin{array}{lll} W(0,s) & = & \infty \\ W(i+1,s) & = & \min\{W(i,s), W(i,s-v_{i+1})+w_{i+1}\} \end{array}$

Pick the largest s such that $W(n, s) \leq W$. This solution is found in time $\mathcal{O}(n^2 V)$ and is the standard pseudopolynomial algorithm for the optimal solution.

To speed it up, eschew accuracy in the v_i 's if the numbers are very large. That is, redefine the values to be $u_i = 2^b \lfloor \frac{v_i}{2^b} \rfloor$ and use U as the maximum item value instead of V. This just means to ignore the b least significant bits.

This improves the running time to $\mathcal{O}(\frac{n^2 V}{2^b})$. The value returned for the solution item set is at most $n2^b$ less than the optimum. Because V is a lower bound on the value of the optimum solution, $\epsilon = \frac{n2^b}{V}$. This oddly allows for any $\epsilon < 1$ the truncation of $b = \lceil \log \frac{\epsilon V}{n} \rceil$ bits for the values to yield an $\mathcal{O}(\frac{n^3}{\epsilon})$ polytime algorithm.

This means KNAPSACK's approximation threshold is 1.

Let V be the maximum item value. Now we define the quantity W(i, s) for $1 \le i \le n$ and $0 \le s \le n \cdot V$. This is the minimum weight attainable by selecting some of the first *i* items such that the sum of their values is exactly *s*. Recognize the following.

 $\begin{array}{lll} W(0,s) & = & \infty \\ W(i+1,s) & = & \min\{W(i,s), W(i,s-v_{i+1})+w_{i+1}\} \end{array}$

Pick the largest s such that $W(n, s) \leq W$. This solution is found in time $\mathcal{O}(n^2 V)$ and is the standard pseudopolynomial algorithm for the optimal solution.

To speed it up, eschew accuracy in the v_i 's if the numbers are very large. That is, redefine the values to be $u_i = 2^b \lfloor \frac{v_i}{2^b} \rfloor$ and use U as the maximum item value instead of V. This just means to ignore the b least significant bits.

This improves the running time to $\mathcal{O}(\frac{n^2 V}{2^b})$. The value returned for the solution item set is at most $n2^b$ less than the optimum. Because V is a lower bound on the value of the optimum solution, $\epsilon = \frac{n2^b}{V}$. This oddly allows for any $\epsilon < 1$ the truncation of $b = \lceil \log \frac{\epsilon V}{n} \rceil$ bits for the values to yield an $\mathcal{O}(\frac{n^3}{\epsilon})$ polytime algorithm.

This means KNAPSACK's approximation threshold is 1.

Where b = 8, consider the following items with their weights and values.

The algorithm can use U = 38 rather than V = 9,806. The approximate solution is off by a factor no more than $\frac{n^2 V}{V} \approx 18\%$. The running time is $\mathcal{O}(\frac{n^2 V}{2^b}) \approx \mathcal{O}(1,877)$ instead of $\mathcal{O}(n^2 V) = \approx \mathcal{O}(480,494)$ which is 256 times as fast because many possible value sums are avoided during the test on W(i,s).

Summary

Where b = 8, consider the following items with their weights and values.

$i \in I$	Wi	Vi	(<i>v</i> _i) ₂	$(u_i)_2$	ui
1	5	9806	10,0110,0100,1110	$10,0110 * 2^8$	38
2	4	4570	1,0001,1101,1010	$1,0001 * 2^8$	17
3	5	1039	100,0000,1111	100 * 2 ⁸	4
4	6	5413	1,0101,0010,0101	$1,0101 * 2^8$	21
5	4	6008	1,0111,0111,1000	$1,0111 * 2^8$	23
6	3	5014	1,0011,1000,0110	$1,0011 * 2^8$	19
7	3	2243	1000, 1100, 0011	$1000 * 2^8$	8

The algorithm can use U = 38 rather than V = 9,806. The approximate solution is off by a factor no more than $\frac{n^2 V}{V} \approx 18\%$. The running time is $\mathcal{O}(\frac{n^2 V}{2^b}) \approx \mathcal{O}(1,877)$ instead of $\mathcal{O}(n^2 V) = \approx \mathcal{O}(480,494)$ which is 256 times as fast because many possible value sums are avoided during the test on W(i,s).

Summary

Where b = 8, consider the following items with their weights and values.

$i \in I$	Wi	Vi	(<i>v_i</i>) ₂	$(u_i)_2$	ui
1	5	9806	10,0110,0100,1110	$10,0110 * 2^8$	38
2	4	4570	1,0001,1101,1010	$1,0001 * 2^8$	17
3	5	1039	100,0000,1111	100 * 2 ⁸	4
4	6	5413	1,0101,0010,0101	$1,0101 * 2^8$	21
5	4	6008	1,0111,0111,1000	$1,0111 * 2^8$	23
6	3	5014	1,0011,1000,0110	$1,0011 * 2^8$	19
7	3	2243	1000, 1100, 0011	$1000 * 2^8$	8

The algorithm can use U = 38 rather than V = 9,806. The approximate solution is off by a factor no more than $\frac{n2^{b}}{V} \approx 18\%$. The running time is $\mathcal{O}(\frac{n^{2}V}{2^{b}}) \approx \mathcal{O}(1,877)$ instead of $\mathcal{O}(n^{2}V) = \approx \mathcal{O}(480,494)$ which is 256 times as fast because many possible value sums are avoided during the test on W(I, s).

Summary

Where b = 8, consider the following items with their weights and values.

$i \in I$	Wi	Vi	(<i>v</i> _i) ₂	$(u_i)_2$	ui
1	5	9806	10,0110,0100,1110	$10,0110 * 2^8$	38
2	4	4570	1,0001,1101,1010	$1,0001 * 2^8$	17
3	5	1039	100,0000,1111	100 * 2 ⁸	4
4	6	5413	1,0101,0010,0101	$1,0101 * 2^8$	21
5	4	6008	1,0111,0111,1000	$1,0111 * 2^8$	23
6	3	5014	1,0011,1000,0110	$1,0011 * 2^8$	19
7	3	2243	1000, 1100, 0011	$1000 * 2^8$	8

The algorithm can use U = 38 rather than V = 9,806. The approximate solution is off by a factor no more than $\frac{n2^b}{V} \approx 18\%$. The running time is $\mathcal{O}(\frac{n^2 V}{2^b}) \approx \mathcal{O}(1,877)$ instead of $\mathcal{O}(n^2 V) = \approx \mathcal{O}(480,494)$ which is 256 times as fast because many possible value sums are avoided during the test on W(i, s).

Summary

Where b = 8, consider the following items with their weights and values.

$i \in I$	Wi	Vi	$(v_i)_2$	$(u_i)_2$	ui
1	5	9806	10,0110,0100,1110	$10,0110 * 2^8$	38
2	4	4570	1,0001,1101,1010	$1,0001 * 2^8$	17
3	5	1039	100,0000,1111	100 * 2 ⁸	4
4	6	5413	1,0101,0010,0101	$1,0101 * 2^8$	21
5	4	6008	1,0111,0111,1000	$1,0111 * 2^8$	23
6	3	5014	1,0011,1000,0110	$1,0011 * 2^8$	19
7	3	2243	1000, 1100, 0011	$1000 * 2^8$	8

The algorithm can use U = 38 rather than V = 9,806. The approximate solution is off by a factor no more than $\frac{n2^b}{V} \approx 18\%$. The running time is $\mathcal{O}(\frac{n^2V}{2^b}) \approx \mathcal{O}(1,877)$ instead of $\mathcal{O}(n^2V) = \approx \mathcal{O}(480,494)$ which is 256 times as fast because many possible value sums are avoided during the test on W(t,s).

Summary

Where b = 8, consider the following items with their weights and values.

$i \in I$	Wi	Vi	$(v_i)_2$	$(u_i)_2$	ui
1	5	9806	10,0110,0100,1110	$10,0110 * 2^8$	38
2	4	4570	1,0001,1101,1010	$1,0001 * 2^8$	17
3	5	1039	100,0000,1111	100 * 2 ⁸	4
4	6	5413	1,0101,0010,0101	$1,0101 * 2^8$	21
5	4	6008	1,0111,0111,1000	$1,0111 * 2^8$	23
6	3	5014	1,0011,1000,0110	$1,0011 * 2^8$	19
7	3	2243	1000, 1100, 0011	$1000 * 2^8$	8

The algorithm can use U = 38 rather than V = 9,806. The approximate solution is off by a factor no more than $\frac{n2^b}{V} \approx 18\%$. The running time is $\mathcal{O}(\frac{n^2V}{2^b}) \approx \mathcal{O}(1,877)$ instead of $\mathcal{O}(n^2V) = \approx \mathcal{O}(480,494)$ which is 256 times as fast because many possible value sums are avoided during the test on W(i, s).

Summary

Where b = 8, consider the following items with their weights and values.

$i \in I$	Wi	Vi	$(v_i)_2$	$(u_i)_2$	ui
1	5	9806	10,0110,0100,1110	$10,0110 * 2^8$	38
2	4	4570	1,0001,1101,1010	$1,0001 * 2^8$	17
3	5	1039	100,0000,1111	100 * 2 ⁸	4
4	6	5413	1,0101,0010,0101	$1,0101 * 2^8$	21
5	4	6008	1,0111,0111,1000	$1,0111 * 2^8$	23
6	3	5014	1,0011,1000,0110	$1,0011 * 2^8$	19
7	3	2243	1000, 1100, 0011	$1000 * 2^8$	8

The algorithm can use U = 38 rather than V = 9,806. The approximate solution is off by a factor no more than $\frac{n2^b}{V} \approx 18\%$. The running time is $\mathcal{O}(\frac{n^2V}{2^b}) \approx \mathcal{O}(1,877)$ instead of $\mathcal{O}(n^2V) = \approx \mathcal{O}(480,494)$ which is 256 times as fast because many possible value sums are avoided during the test on W(i, s).

Summary

Where b = 8, consider the following items with their weights and values.

$i \in I$	Wi	Vi	(<i>v</i> _i) ₂	$(u_i)_2$	ui
1	5	9806	10,0110,0100,1110	$10,0110 * 2^8$	38
2	4	4570	1,0001,1101,1010	$1,0001 * 2^8$	17
3	5	1039	100,0000,1111	100 * 2 ⁸	4
4	6	5413	1,0101,0010,0101	$1,0101 * 2^8$	21
5	4	6008	1,0111,0111,1000	$1,0111 * 2^8$	23
6	3	5014	1,0011,1000,0110	$1,0011 * 2^8$	19
7	3	2243	1000, 1100, 0011	$1000 * 2^8$	8

The algorithm can use U = 38 rather than V = 9,806. The approximate solution is off by a factor no more than $\frac{n2^b}{V} \approx 18\%$. The running time is $\mathcal{O}(\frac{n^2V}{2^b}) \approx \mathcal{O}(1,877)$ instead of $\mathcal{O}(n^2V) = \approx \mathcal{O}(480,494)$ which is 256 times as fast because many possible value sums are avoided during the test on W(i, s).

Summary

An algorithm which has such unlimited approximability is said to have a *polytime approximation scheme*. So KNAPSACK has a polytime approximation scheme.

Fully Polynomial Behavior

If a polynomial time ϵ -approximation algorithm depends polynomially in its time complexity on $\frac{1}{\epsilon}$, it is called *fully polynomial* as with KNAPSACK's time of $\mathcal{O}(\frac{a^3}{\epsilon})$

An algorithm which has such unlimited approximability is said to have a *polytime approximation scheme*. So $\rm KNAPSACK$ has a polytime approximation scheme.

Fully Polynomial Behavior

If a polynomial time ϵ -approximation algorithm depends polynomially in its time complexity on $\frac{1}{\epsilon}$, it is called *fully polynomial* as with KNAPSACK's time of $O(\frac{n^3}{\epsilon})$.

An algorithm which has such unlimited approximability is said to have a *polytime* approximation scheme. So KNAPSACK has a polytime approximation scheme.

Fully Polynomial Behavior

If a polynomial time ϵ -approximation algorithm depends polynomially in its time complexity on $\frac{1}{\epsilon}$, it is called *fully polynomial* as with KNAPSACK's time of $O(\frac{\epsilon^2}{\epsilon})$

An algorithm which has such unlimited approximability is said to have a *polytime approximation scheme*. So KNAPSACK has a polytime approximation scheme.

Fully Polynomial Behavior

If a polynomial time ϵ -approximation algorithm depends polynomially in its time complexity on $\frac{1}{\epsilon}$, it is called *fully polynomial* as with KNAPSACK's time of $\mathcal{O}(\frac{n^3}{\epsilon})$.