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Approximability

For NP-complete problems, we want polytime means to find “good enough” solutions
that are not too far from the optimal. This is called approximation.

Types of Problems

We may be able to develop approximation algorithms for optimization and search
problems, but we cannot for decision problems: “yes”/“no” answers cannot be
approximated in any meaningful manner. We do not need approximation algorithms for
problems that can already be solved in polytime, because these would not be useful.
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Minimization Problems

Let M1 be a minimization problem and x be any valid input. Let A1 be a polytime
algorithm for which A1(x) is a feasible solution iff M1(x) is a feasible solution. Then
A1 is an ε-approximation algorithm if

A1(x) ≤ ε ·M1(x)

for some constant ε ≥ 1.

Maximization Problems

Let M2 be a maximization problem and x be any valid input. Let A2 be a polytime
algorithm for which A2(x) is a feasible solution iff M2(x) is a feasible solution. Then
A2 is an ε-approximation algorithm if

A2(x) ≥ ε ·M2(x)

for some constant 0 ≤ ε ≤ 1.

Summary

An ε-approximation algorithm will find solutions within at worst the constant factor ε
times the optimum for all inputs of a given optimization problem.
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Observation

There could only be a polytime 1-approximation algorithm for any NP-complete
optimization problem if P = NP.

Approximation Threshold

The approximation threshold for a problem is the best known ε for which there is an
ε-approximation algorithm for that problem.

Reductions

Reductions from one NP-complete problem to another tend not to preserve
approximation thresholds. This will be seen later with Independent Set.
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Node-Cover

For a graph G = (V ,E), find the smallest set of nodes C ⊆ V such that every edge in
E has at least one of its nodes in C .

Goal

Find a good minimizing heuristic for this NP-complete problem.

First Approach

Consider that if a node has a high degree it is probably useful for covering many
edges. This leads to a greedy heuristic as follows: starting with C = ∅, while there are
still edges left in G find a node of highest degree, add it to C , and remove it from G .

Unfortunately this is not an ε-approximation algorithm for Node-Cover because it is
off by a factor that is logarithmic in n rather than constant.
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Second Approach

Trying to be simpler, consider the following heuristic: starting with C = ∅, while there
are still edges left in G choose arbitrarily any one, add its endnodes to C , and delete it
from G .

The nodes of C will comprise a matching of 1
2
|C | edges in G . Any node cover, even

the optimum, must have at least one node from each edge in a matching of G . So
this is a 2-approximation algorithm for Node-Cover.

Because this is the best known ε, the approximation threshold is 2 also.
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Independent Set

An independent set in a graph is an induced set of nodes among which there are no
edges. Given a graph G = (V ,E) where n = |V |, find the independent set I with the
most nodes.

Observation

There is a simple reduction from Independent Set to Node Cover. (The maximum
clique in Ḡ is exactly I in G .) However, despite the polytime approximability of Node
Cover, there is no ε-approximation for Independent Set in time O(n1−ε) for any
constant ε > 0 unless P = NP. In other words, it is not possible to distinguish in
polytime whether |I | is near 1 or near n. The proof is omitted herein.

Best Approach

The best known approximation is the following trivial heuristic: pick a vertex v from
V and return I = {v}. Since |I | is between 1 and n, this heuristic is an obviously
polytime 1

n
-approximation. As the graph grows, 1

n
approaches 0. Given that this is the

best known approach, the approximation threshold is a useless 0.
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MaxSat

For a CNF formula of k-variable clauses φ1, φ2, . . . , φn over variables x1, x2, . . . , xm,
find a truth assignment for x that will satisfy the most φ.

Goal

Find a good maximizing heuristic for this NP-complete problem.

Randomized Approach

Consider this very simple randomized heuristic: set each x to either true or false
uniformly at random.

Each φ is expected to be satisfied with a probability of 2k−1
2k because there will be

only one assignment, all-false, that will fail to satisfy the clause. In the worst case this

would be for k = 1 where the expectation per φ would be 21−1
21 = 1

2
. By linearity of

expectation, the sum of the expectations for all φ would be 1
2
n. So at least n

2
clauses

are expected to be satisfied by this heuristic.

Therefore this is a 1
2

-approximation algorithm for MaxSat.

Reaser Approximation Algorithms



Introduction Problems Node Cover Independent Set MaxSat Max-Cut TSP Knapsack

MaxSat

For a CNF formula of k-variable clauses φ1, φ2, . . . , φn over variables x1, x2, . . . , xm,
find a truth assignment for x that will satisfy the most φ.

Goal

Find a good maximizing heuristic for this NP-complete problem.

Randomized Approach

Consider this very simple randomized heuristic: set each x to either true or false
uniformly at random.

Each φ is expected to be satisfied with a probability of 2k−1
2k because there will be

only one assignment, all-false, that will fail to satisfy the clause. In the worst case this

would be for k = 1 where the expectation per φ would be 21−1
21 = 1

2
. By linearity of

expectation, the sum of the expectations for all φ would be 1
2
n. So at least n

2
clauses

are expected to be satisfied by this heuristic.

Therefore this is a 1
2

-approximation algorithm for MaxSat.

Reaser Approximation Algorithms



Introduction Problems Node Cover Independent Set MaxSat Max-Cut TSP Knapsack

MaxSat

For a CNF formula of k-variable clauses φ1, φ2, . . . , φn over variables x1, x2, . . . , xm,
find a truth assignment for x that will satisfy the most φ.

Goal

Find a good maximizing heuristic for this NP-complete problem.

Randomized Approach

Consider this very simple randomized heuristic: set each x to either true or false
uniformly at random.

Each φ is expected to be satisfied with a probability of 2k−1
2k because there will be

only one assignment, all-false, that will fail to satisfy the clause. In the worst case this

would be for k = 1 where the expectation per φ would be 21−1
21 = 1

2
. By linearity of

expectation, the sum of the expectations for all φ would be 1
2
n. So at least n

2
clauses

are expected to be satisfied by this heuristic.

Therefore this is a 1
2

-approximation algorithm for MaxSat.

Reaser Approximation Algorithms



Introduction Problems Node Cover Independent Set MaxSat Max-Cut TSP Knapsack

MaxSat

For a CNF formula of k-variable clauses φ1, φ2, . . . , φn over variables x1, x2, . . . , xm,
find a truth assignment for x that will satisfy the most φ.

Goal

Find a good maximizing heuristic for this NP-complete problem.

Randomized Approach

Consider this very simple randomized heuristic: set each x to either true or false
uniformly at random.

Each φ is expected to be satisfied with a probability of 2k−1
2k because there will be

only one assignment, all-false, that will fail to satisfy the clause. In the worst case this

would be for k = 1 where the expectation per φ would be 21−1
21 = 1

2
. By linearity of

expectation, the sum of the expectations for all φ would be 1
2
n. So at least n

2
clauses

are expected to be satisfied by this heuristic.

Therefore this is a 1
2

-approximation algorithm for MaxSat.

Reaser Approximation Algorithms



Introduction Problems Node Cover Independent Set MaxSat Max-Cut TSP Knapsack

MaxSat

For a CNF formula of k-variable clauses φ1, φ2, . . . , φn over variables x1, x2, . . . , xm,
find a truth assignment for x that will satisfy the most φ.

Goal

Find a good maximizing heuristic for this NP-complete problem.

Randomized Approach

Consider this very simple randomized heuristic: set each x to either true or false
uniformly at random.

Each φ is expected to be satisfied with a probability of 2k−1
2k because there will be

only one assignment, all-false, that will fail to satisfy the clause. In the worst case this

would be for k = 1 where the expectation per φ would be 21−1
21 = 1

2
. By linearity of

expectation, the sum of the expectations for all φ would be 1
2
n. So at least n

2
clauses

are expected to be satisfied by this heuristic.

Therefore this is a 1
2

-approximation algorithm for MaxSat.

Reaser Approximation Algorithms



Introduction Problems Node Cover Independent Set MaxSat Max-Cut TSP Knapsack

MaxSat

For a CNF formula of k-variable clauses φ1, φ2, . . . , φn over variables x1, x2, . . . , xm,
find a truth assignment for x that will satisfy the most φ.

Goal

Find a good maximizing heuristic for this NP-complete problem.

Randomized Approach

Consider this very simple randomized heuristic: set each x to either true or false
uniformly at random.

Each φ is expected to be satisfied with a probability of 2k−1
2k because there will be

only one assignment, all-false, that will fail to satisfy the clause. In the worst case this

would be for k = 1 where the expectation per φ would be 21−1
21 = 1

2
. By linearity of

expectation, the sum of the expectations for all φ would be 1
2
n. So at least n

2
clauses

are expected to be satisfied by this heuristic.

Therefore this is a 1
2

-approximation algorithm for MaxSat.

Reaser Approximation Algorithms



Introduction Problems Node Cover Independent Set MaxSat Max-Cut TSP Knapsack

MaxSat

For a CNF formula of k-variable clauses φ1, φ2, . . . , φn over variables x1, x2, . . . , xm,
find a truth assignment for x that will satisfy the most φ.

Goal

Find a good maximizing heuristic for this NP-complete problem.

Randomized Approach

Consider this very simple randomized heuristic: set each x to either true or false
uniformly at random.

Each φ is expected to be satisfied with a probability of 2k−1
2k because there will be

only one assignment, all-false, that will fail to satisfy the clause. In the worst case this

would be for k = 1 where the expectation per φ would be 21−1
21 = 1

2
. By linearity of

expectation, the sum of the expectations for all φ would be 1
2
n. So at least n

2
clauses

are expected to be satisfied by this heuristic.

Therefore this is a 1
2

-approximation algorithm for MaxSat.

Reaser Approximation Algorithms



Introduction Problems Node Cover Independent Set MaxSat Max-Cut TSP Knapsack

MaxSat

For a CNF formula of k-variable clauses φ1, φ2, . . . , φn over variables x1, x2, . . . , xm,
find a truth assignment for x that will satisfy the most φ.

Goal

Find a good maximizing heuristic for this NP-complete problem.

Randomized Approach

Consider this very simple randomized heuristic: set each x to either true or false
uniformly at random.

Each φ is expected to be satisfied with a probability of 2k−1
2k because there will be

only one assignment, all-false, that will fail to satisfy the clause. In the worst case this

would be for k = 1 where the expectation per φ would be 21−1
21 = 1

2
. By linearity of

expectation, the sum of the expectations for all φ would be 1
2
n. So at least n

2
clauses

are expected to be satisfied by this heuristic.

Therefore this is a 1
2

-approximation algorithm for MaxSat.

Reaser Approximation Algorithms



Introduction Problems Node Cover Independent Set MaxSat Max-Cut TSP Knapsack

1 Introduction
Notion of Approximability
Constant Factor Approximations

2 Problems
Node Cover
Independent Set
MaxSat
Max-Cut
TSP
Knapsack

Reaser Approximation Algorithms



Introduction Problems Node Cover Independent Set MaxSat Max-Cut TSP Knapsack

Max-Cut

For a graph G = (V ,E), let a cut be a partitioning of the vertices in V such that some
are in a set S and the rest are in V − S. A cut edge is an edge from a vertex in S to a
vertex in V − S . The cut size is the number of cut edges. Maximize this quantity.

Goal

Find a good maximizing heuristic for this NP-complete problem.
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Randomized Approach

Consider a randomized heuristic similar to the previous one: for each x ∈ V , put x in
S with probability 1

2
uniformly at random.

For any edge (i , j) ∈ E , there are four possibilities.

(1) Node i is in S and node j is in S .

(2) Node i is in S and node j is in V − S, so (i , j) is a cut edge.

(3) Node i is in V − S and node j is in S, so (i , j) is a cut edge.

(4) Node i is in V − S and node j is in V − S.

For any edge, its expectation of being in the cut is therefore 1
2

. By linearity of
expectation, the cut size expectation is the sum of the expectations for each cut, so

the size of the cut cannot be worse than |E |
2

.

Therefore this is a 1
2

-approximation algorithm for Max-Cut.
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TSP

Given a graph G = (V ,E), find a tour (a cycle which visits every node in G exactly
once or a Hamilton cycle) of minimum weight.

Observation

A polytime ε-approximation algorithm for this NP-complete problem can only exist if
P = NP. If this were not so, the NP-complete problem Hamilton-Cycle could be
decided in polytime.

Goal

Prove that a polytime ε-approximation algorithm does not exist for this problem.
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Proof

Given a graph G = (V ,E), construct a complete graph G ′ with all cities from V . The
distance of edge (i , j) ∈ G ′ is 1 if there is an edge (i , j) ∈ G or ε otherwise. Now run
the hypothetical polytime ε-approximation algorithm for TSP on graph G ′. There are
two possible outcomes.

(1) The returned tour has a cost of exactly |V |. This indicates a successful tour with
|V | edges of distance 1. This confirms the presence of a Hamilton cycle in G .

(2) The returned tour has a cost more than |V | but no more than ε · |V |. This
indicates the use of between 1 and |V | edges of length ε in a tour of G ′. This
confirms the absence of a Hamilton cycle in G .

This would decide Hamilton-Cycle in polytime despite it being NP-complete.

This would prove P = NP. Win a prize and go home.
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Knapsack

Given a set I = {1, 2, . . . , n} of items i with associated weights wi and values vi and
given a weight limit W , find a subset S ⊆ I such that

P
i∈S wi ≤W with

P
i∈S vi

maximized. That is, find a selection of items such that their value is as high as
possible while the sum of their weights does not exceed the weight limit W .

Observation

A polytime ε-approximation algorithm for this (not strongly) NP-complete
maximization problem can be found for any ε < 1. That is, solutions can be arbitrarily
close to the optimum. Unlike with TSP, this does not prove that P = NP because
Knapsack has a pseudopolynomial algorithm.

Goal

Prove that a polytime ε-approximation algorithm exists for this problem for any ε < 1.
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Proof

Let V be the maximum item value. Now we define the quantity W (i , s) for 1 ≤ i ≤ n
and 0 ≤ s ≤ n · V . This is the minimum weight attainable by selecting some of the
first i items such that the sum of their values is exactly s. Recognize the following.

W (0, s) = ∞
W (i + 1, s) = min{W (i , s),W (i , s − vi+1) + wi+1}

Pick the largest s such that W (n, s) ≤W . This solution is found in time O(n2V ) and
is the standard pseudopolynomial algorithm for the optimal solution.

To speed it up, eschew accuracy in the vi ’s if the numbers are very large. That is,
redefine the values to be ui = 2bb vi

2b c and use U as the maximum item value instead
of V . This just means to ignore the b least significant bits.

This improves the running time to O( n2V
2b ). The value returned for the solution item

set is at most n2b less than the optimum. Because V is a lower bound on the value of

the optimum solution, ε = n2b

V
. This oddly allows for any ε < 1 the truncation of

b = dlog εV
n
e bits for the values to yield an O( n3

ε
) polytime algorithm.

This means Knapsack’s approximation threshold is 1.
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Example

Where b = 8, consider the following items with their weights and values.

i ∈ I wi vi (vi )2 (ui )2 ui

1 5 9806 10, 0110, 0100, 1110 10, 0110 ∗ 28 38
2 4 4570 1, 0001, 1101, 1010 1, 0001 ∗ 28 17
3 5 1039 100, 0000, 1111 100 ∗ 28 4
4 6 5413 1, 0101, 0010, 0101 1, 0101 ∗ 28 21
5 4 6008 1, 0111, 0111, 1000 1, 0111 ∗ 28 23
6 3 5014 1, 0011, 1000, 0110 1, 0011 ∗ 28 19
7 3 2243 1000, 1100, 0011 1000 ∗ 28 8

The algorithm can use U = 38 rather than V = 9, 806. The approximate solution is

off by a factor no more than n2b

V
≈ 18%. The running time is O( n2V

2b ) ≈ O(1, 877)

instead of O(n2V ) =≈ O(480, 494) which is 256 times as fast because many possible
value sums are avoided during the test on W (i , s).

Summary

Using a larger b will make the solution worse but the time better. Contrariwise, using
a smaller b will make the solution better but the time worse. This is why the
approximability is not limited.
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≈ 18%. The running time is O( n2V
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Polytime Approximation Schemes

An algorithm which has such unlimited approximability is said to have a polytime
approximation scheme. So Knapsack has a polytime approximation scheme.

Fully Polynomial Behavior

If a polynomial time ε-approximation algorithm depends polynomially in its time

complexity on 1
ε

, it is called fully polynomial as with Knapsack’s time of O( n3

ε
).
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