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What are Function Problems?

Query

What are Function Problems?

Definition

Function problems are problems that require an answer more sophisticated than a
”yes” or ”no” given by a decision problem.

Example

(i) Satisfying a boolean expression

(ii) Traveling salesman: the actual tour
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Function Problems Vs. Decision Problems

More on Function Problems

(i) Decision problems are often considered surrogates for Function problems

(ii) Useful in the context of negative complexity results

(iii) Decisions are often used to show a problem is NP-complete. Unless P = NP, then
no polynomial solution exists.

(iv) It is also important to note that a decision problem could be significantly easier to
compute than their function counterpart.

(v) However, for the examples presented here today, this is not the case.
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FSAT Defined

Definition

Problem Statement: Given an expression φ with variables x1, x2, . . . , xn, if φ is
satisfiable, return a satisfying truth assignment, otherwise return no.

FSAT Solution

(i) Test for satisfiability (Call SAT). If ”no”, stop. If ”yes”, continue.

(ii) For each xi perform a truth assignment.

(iii) If successful, move on to statement xi+1.

(iv) If unsuccessful, ”flip” xi and move on.

(v) Worse case: 2n calls to SAT.

(vi) If SAT in P→ FSAT in P.

(vii) Likewise, FSAT in P→ SAT in P.
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FSAT Final Thought

FSAT uses the self-reducing properties of SAT, like many other NP-complete problems.
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TSP Definition

Definition

Problem Statement: Given a graph G with n nodes, and a cost C, find out if there is a
tour of G that costs exactly C.

TSP Solution

(i) First, find optimal cost C, by performing a binary search and using TSP(D).

(ii) Next, select any path and set the cost to C + 1. Perform TSP(D) with C or less.

(iii) If TSP(D) returns yes, It is not part of optimal tour. Freeze its cost at C + 1.

(iv) If TSP(D) returns no, we know the path we are considering is crucial to optimum
path.

(v) Call TSP(D) n2 times to process everything; eliminate all but the critical path.
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RL Defined

What is RL?

The relationship between function and decision problems can be formalized.
This relation is known as RL.
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RL Formally Defined

(a) Suppose that L is a language in NP.

(b) There is a polynomial-time decidable, polynomial balanced relation RL such that for
all strings x :

(c) There ∃y∀x with RL(x , y) if and only if x ∈ L.
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FL Defined

Definition (FL)

The Function problem associated with L, denoted FL, is the following computational
problem:
Given x , find a string y such that RL(x , y) if such a string exists; if no such string exists,
return no.

Definition (FNP)

The class of all function problems associates as above with languages in NP is called
FNP.

Definition (FP)

The subclass of FNP that can be solved in polynomial time.
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FNP and FP Examples

Example (FNP Example)

FSAT is in FNP.

Example (FP Example)

FHORNSAT is in FP.
Finding a match in a bipartite graph is in FP.

Note

We do not say that TSP is in FNP because it probably isn’t. The reason is, in the case
of TSP, the optimal solution is not an adequate certificate, as we do not know how to
verify in polynomial time that it is optimal.
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Reductions between Function Problems

Reductions

We say that a function problem A reduces to function problem B if the following logic
holds: There are string functions R and S, both computable in log(n) space, such that
for any strings x and z the following holds: If x is an instance of A then R(x) is an
instance of B. Futhermore, if z is a correct output of R(x), then S(z) is a correct output
of x .
Notice: R produces an instance R(x) of the function problem B such that we can
construct an output S(z) for x from any correct output z of R(x).
We say that a function problem A is complete for a class FC of function problems if it
∈ FC and all problems in that class reduce to A.
FP and FNP are closed under reductions. FSAT is FNP complete.

Theorem

FP = FNP if and only if P = NP.
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Total Functions

There are some Function Problems that have no decision counterpart or no meaningful
language equivalent.
These problems in FNP are somehow guaranteed to never return no. A function is said
to be total if for every problem size, a reasonable decomposition exists.
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Total Functions – Examples

Examples of Total Functions

The following are famous examples of total functions within FNP space.

(i) FACTORING

(ii) HAPPYNET

(iii) ANOTHER HAMILTON CYCLE
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FACTORING example

Example

Problem Statement: Given an integer N, find its prime decomposition
N = pk1

1 , p
k2
2 , . . . , p

km
m together with its primality certificates p1, p2, . . . pm.

Notice the requirement that the output includes the certificates of the prime divisors;
without it the problem would not be in FNP.
Despite serious efforts, no polynomial algorithm for FACTORING is known.
It is plausible (but not universally believed) that there is no polynomial algorithm for
FACTORING.

Christopher Wilson Function Problems



Function Problems
Function Problems

Total Functions

Total Functions Defined
FACTORING
HAPPYNET
ANOTHER HAMILTON CYCLE

FACTORING example

Example

Problem Statement: Given an integer N, find its prime decomposition
N = pk1

1 , p
k2
2 , . . . , p

km
m together with its primality certificates p1, p2, . . . pm.

Notice the requirement that the output includes the certificates of the prime divisors;
without it the problem would not be in FNP.
Despite serious efforts, no polynomial algorithm for FACTORING is known.
It is plausible (but not universally believed) that there is no polynomial algorithm for
FACTORING.

Christopher Wilson Function Problems



Function Problems
Function Problems

Total Functions

Total Functions Defined
FACTORING
HAPPYNET
ANOTHER HAMILTON CYCLE

FACTORING example

Example

Problem Statement: Given an integer N, find its prime decomposition
N = pk1

1 , p
k2
2 , . . . , p

km
m together with its primality certificates p1, p2, . . . pm.

Notice the requirement that the output includes the certificates of the prime divisors;
without it the problem would not be in FNP.
Despite serious efforts, no polynomial algorithm for FACTORING is known.
It is plausible (but not universally believed) that there is no polynomial algorithm for
FACTORING.

Christopher Wilson Function Problems



Function Problems
Function Problems

Total Functions

Total Functions Defined
FACTORING
HAPPYNET
ANOTHER HAMILTON CYCLE

FACTORING example

Example

Problem Statement: Given an integer N, find its prime decomposition
N = pk1

1 , p
k2
2 , . . . , p

km
m together with its primality certificates p1, p2, . . . pm.

Notice the requirement that the output includes the certificates of the prime divisors;
without it the problem would not be in FNP.
Despite serious efforts, no polynomial algorithm for FACTORING is known.
It is plausible (but not universally believed) that there is no polynomial algorithm for
FACTORING.

Christopher Wilson Function Problems



Function Problems
Function Problems

Total Functions

Total Functions Defined
FACTORING
HAPPYNET
ANOTHER HAMILTON CYCLE

Outline

1 Function Problems defined
What are Function Problems?
FSAT Defined
TSP Defined

2 Relationship between Function and Decision Problems
RL Defined
Reductions between Function Problems

3 Total Functions Defined
Total Functions Defined
FACTORING
HAPPYNET
ANOTHER HAMILTON CYCLE

Christopher Wilson Function Problems



Function Problems
Function Problems

Total Functions

Total Functions Defined
FACTORING
HAPPYNET
ANOTHER HAMILTON CYCLE

HAPPYNET example

Example

Problem Statement: We are given an undirected graph G(V ,E) with integer (possibly
negative) weights w on its edges.
The nodes are ”people”, and the edge weight an indication of how much (or how little)
these two people like each other.
Assume it to be symmetric.
We define state S as a mapping from V to { -1, +1}.
We say node i is happy in state S if the following holds:
S(i) ∗

P
S(j)w [i, j] ≥ 0. Where i and j ∈ E .

We want to find a state in which all nodes are happy.
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HAPPYNET continued

HAPPYNET continued

The ”happy state” conveys that a node prefers to have the same value of an adjacent
node to which its connected through a positive edge, and the opposite value from a
node adjacent via a negative edge.
At first, this seems like a typical hard combinatorial problem.
There is no known polynomial-time algorithm for finding a happy state.
However, all instances of HAPPYNET are guaranteed to have a solution. (see book for
proof).
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HAPPYNET Solution

HAPPYNET Solution

The solution to HAPPYNET is iterative.
We define S′(i) = −S(i). We say that i was ”flipped”.
We start with any state S, and repeat:
Whe there is an unhappy node, flip it.
HAPPYNET ∈ TFNP.
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ANOTHER HAMILTON CYCLE

Example (Problem Statement)

We know that it is NP-complete, given a graph, to find a Hamilton cycle. But what if a
Hamilton cycle is given, and we are asked to find another Hamilton cycle? The existing
cycle should facilitate our search for the new one.
This problem, ANOTHER HAMILTON CYCLE, is FNP − complete.
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ANOTHER HAMILTON CYCLE

Assertion

Consider the same problem in a cubic graph, one with all degrees equal to three. It
turns out that if a cubic graphic has a Hamilton cycle, then it must have a second one
as well.

Proof.

i Assume we are given a Hamilton Cycle in a cubic graph, e.g. [1,2,3. . . n,1].

ii Delete the edge [1,2] to obtain a Hamilton path.

iii We shall only consider paths starting with node 1 and that do not use edge [1,2].

iv We call any such Hamilton path a candidate.

v We call any two candidate paths neighbors if they have n − 2 edges in common (all
but one).

vi Each candidate has two neighbors, unless its other endpoint lies on the deleted
path [1,2].
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Proof Conclusion

It is now obvious: Since all candidate paths have two neighbors except for those that
have endpoints 1, and 2, which have only one neighbor, then there must be an even
number of paths WITH endpoints 1 and 2. But any Hamilton path with the addition of
edge [1,2] will yield a Hamilton cycle. We conclude there is an even number of
Hamilton cycles using edge [1,2], and since we know of one, another must exist.
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The FC Classes

FP

TFNP

FNP-Complete

FNP

Christopher Wilson Function Problems


	Outline
	Main Talk
	Function Problems defined
	What are Function Problems?
	FSAT Defined
	TSP Defined

	Relationship between Function and Decision Problems
	RL Defined
	Reductions between Function Problems

	Total Functions Defined
	Total Functions Defined
	FACTORING
	HAPPYNET
	ANOTHER HAMILTON CYCLE



