
Outline

Randomized Computation

K. Subramani1

1Lane Department of Computer Science and Electrical Engineering
West Virginia University

March 27, 2009

Subramani Complexity Classes

Outline

Outline

1 Randomized Algorithms
Three paradigmatic problems
2SAT
Min-Cut
Non-singularity of a Symbolic Matrix

2 Randomized Complexity Classes

Subramani Complexity Classes

Outline

Outline

1 Randomized Algorithms
Three paradigmatic problems
2SAT
Min-Cut
Non-singularity of a Symbolic Matrix

2 Randomized Complexity Classes

Subramani Complexity Classes

Randomized Algorithms
Randomized Complexity Classes

Three paradigmatic problems
2SAT
Min-Cut
Non-singularity of a Symbolic Matrix

Outline

1 Randomized Algorithms
Three paradigmatic problems
2SAT
Min-Cut
Non-singularity of a Symbolic Matrix

2 Randomized Complexity Classes

Subramani Complexity Classes

Randomized Algorithms
Randomized Complexity Classes

Three paradigmatic problems
2SAT
Min-Cut
Non-singularity of a Symbolic Matrix

Three paradigmatic problems

How useful is randomized computation?

(i) 2SAT.

(ii) Min-Cut.

(iii) Non-singularity of a symbolic square matrix.

Subramani Complexity Classes

Randomized Algorithms
Randomized Complexity Classes

Three paradigmatic problems
2SAT
Min-Cut
Non-singularity of a Symbolic Matrix

Outline

1 Randomized Algorithms
Three paradigmatic problems
2SAT
Min-Cut
Non-singularity of a Symbolic Matrix

2 Randomized Complexity Classes

Subramani Complexity Classes

Randomized Algorithms
Randomized Complexity Classes

Three paradigmatic problems
2SAT
Min-Cut
Non-singularity of a Symbolic Matrix

Problem Description

Goal

Let φ = C1 ∧ C2 ∧ . . . ∧ Cm denote a boolean formula in CNF over the boolean
variables {x1, x2, . . . , xn}, such that each clause Ci has exactly two variables.
Determine whether φ is satisfiable.

Note

2SAT can be solved in O(m + n) time using Tarjan’s connected components algorithm.
This algorithm is a variant of the reachability method discussed in class.

Subramani Complexity Classes

Randomized Algorithms
Randomized Complexity Classes

Three paradigmatic problems
2SAT
Min-Cut
Non-singularity of a Symbolic Matrix

Problem Description

Goal

Let φ = C1 ∧ C2 ∧ . . . ∧ Cm denote a boolean formula in CNF over the boolean
variables {x1, x2, . . . , xn}, such that each clause Ci has exactly two variables.
Determine whether φ is satisfiable.

Note

2SAT can be solved in O(m + n) time using Tarjan’s connected components algorithm.
This algorithm is a variant of the reachability method discussed in class.

Subramani Complexity Classes

Randomized Algorithms
Randomized Complexity Classes

Three paradigmatic problems
2SAT
Min-Cut
Non-singularity of a Symbolic Matrix

The 2CNF Algorithm

Function SATISFIABILITY-TESTING(φ)
1: Start with an arbitrary assignment to the variables.
2: while (the current assignment is not satisfying) do
3: Pick an unsatisfied clause.
4: Uniformly and at random flip the value assigned to one of its two literals

(variables).
5: end while

Algorithm 2.1: Papadimitrious’s randomized algorithm for 2CNF Satisfiability

Subramani Complexity Classes

Randomized Algorithms
Randomized Complexity Classes

Three paradigmatic problems
2SAT
Min-Cut
Non-singularity of a Symbolic Matrix

The 2CNF Algorithm

Function SATISFIABILITY-TESTING(φ)
1: Start with an arbitrary assignment to the variables.
2: while (the current assignment is not satisfying) do
3: Pick an unsatisfied clause.
4: Uniformly and at random flip the value assigned to one of its two literals

(variables).
5: end while

Algorithm 2.2: Papadimitrious’s randomized algorithm for 2CNF Satisfiability

Subramani Complexity Classes

Randomized Algorithms
Randomized Complexity Classes

Three paradigmatic problems
2SAT
Min-Cut
Non-singularity of a Symbolic Matrix

The 2CNF Algorithm

Function SATISFIABILITY-TESTING(φ)
1: Start with an arbitrary assignment to the variables.
2: while (the current assignment is not satisfying) do
3: Pick an unsatisfied clause.
4: Uniformly and at random flip the value assigned to one of its two literals

(variables).
5: end while

Algorithm 2.3: Papadimitrious’s randomized algorithm for 2CNF Satisfiability

Subramani Complexity Classes

Randomized Algorithms
Randomized Complexity Classes

Three paradigmatic problems
2SAT
Min-Cut
Non-singularity of a Symbolic Matrix

The 2CNF Algorithm

Function SATISFIABILITY-TESTING(φ)
1: Start with an arbitrary assignment to the variables.
2: while (the current assignment is not satisfying) do
3: Pick an unsatisfied clause.
4: Uniformly and at random flip the value assigned to one of its two literals

(variables).
5: end while

Algorithm 2.4: Papadimitrious’s randomized algorithm for 2CNF Satisfiability

Subramani Complexity Classes

Randomized Algorithms
Randomized Complexity Classes

Three paradigmatic problems
2SAT
Min-Cut
Non-singularity of a Symbolic Matrix

The 2CNF Algorithm

Function SATISFIABILITY-TESTING(φ)
1: Start with an arbitrary assignment to the variables.
2: while (the current assignment is not satisfying) do
3: Pick an unsatisfied clause.
4: Uniformly and at random flip the value assigned to one of its two literals

(variables).
5: end while

Algorithm 2.5: Papadimitrious’s randomized algorithm for 2CNF Satisfiability

Subramani Complexity Classes

Randomized Algorithms
Randomized Complexity Classes

Three paradigmatic problems
2SAT
Min-Cut
Non-singularity of a Symbolic Matrix

Mathematical Preliminaries

Theorem

Let X and Y be two random variables. Then E[X] = E[E[X |Y]].

Theorem (Markov)

Let X be a non-negative random variable and let c > 0 denote a constant. Then
Pr(X ≥ c · E[X]) ≤ 1

c .

Subramani Complexity Classes

Randomized Algorithms
Randomized Complexity Classes

Three paradigmatic problems
2SAT
Min-Cut
Non-singularity of a Symbolic Matrix

Mathematical Preliminaries

Theorem

Let X and Y be two random variables. Then E[X] = E[E[X |Y]].

Theorem (Markov)

Let X be a non-negative random variable and let c > 0 denote a constant. Then
Pr(X ≥ c · E[X]) ≤ 1

c .

Subramani Complexity Classes

Randomized Algorithms
Randomized Complexity Classes

Three paradigmatic problems
2SAT
Min-Cut
Non-singularity of a Symbolic Matrix

Analysis

Modeling as a random walk

Assume that φ is satisfiable and focus on a particular satisfying assignment T̂ . Let T
denote the current assignment. We want to bound the expected number of steps
before T is transformed into T̂ .
Let t(i) denote the expected number of flips for T to become T̂ , assuming that T differs
from T̂ in exactly i variables. It follows that,

t(0) = 0

t(n) = 1 + t(n − 1)

t(i) ≤
1
2

t(i − 1) +
1
2

t(i + 1) + 1, 0 < i < n

Observation

The above system can be solved to get t(n) ≤ n2. From Markov’s inequality it follows
that the probability that T is not transformed into T̂ in at most 2 · n2 flips is less than
one-half. Running time is O(n2 · (m + n)), which is hardly impressive.

Subramani Complexity Classes

Randomized Algorithms
Randomized Complexity Classes

Three paradigmatic problems
2SAT
Min-Cut
Non-singularity of a Symbolic Matrix

Analysis

Modeling as a random walk

Assume that φ is satisfiable and focus on a particular satisfying assignment T̂ . Let T
denote the current assignment. We want to bound the expected number of steps
before T is transformed into T̂ .
Let t(i) denote the expected number of flips for T to become T̂ , assuming that T differs
from T̂ in exactly i variables. It follows that,

t(0) = 0

t(n) = 1 + t(n − 1)

t(i) ≤
1
2

t(i − 1) +
1
2

t(i + 1) + 1, 0 < i < n

Observation

The above system can be solved to get t(n) ≤ n2. From Markov’s inequality it follows
that the probability that T is not transformed into T̂ in at most 2 · n2 flips is less than
one-half. Running time is O(n2 · (m + n)), which is hardly impressive.

Subramani Complexity Classes

Randomized Algorithms
Randomized Complexity Classes

Three paradigmatic problems
2SAT
Min-Cut
Non-singularity of a Symbolic Matrix

Analysis

Modeling as a random walk

Assume that φ is satisfiable and focus on a particular satisfying assignment T̂ . Let T
denote the current assignment. We want to bound the expected number of steps
before T is transformed into T̂ .
Let t(i) denote the expected number of flips for T to become T̂ , assuming that T differs
from T̂ in exactly i variables. It follows that,

t(0) = 0

t(n) = 1 + t(n − 1)

t(i) ≤
1
2

t(i − 1) +
1
2

t(i + 1) + 1, 0 < i < n

Observation

The above system can be solved to get t(n) ≤ n2. From Markov’s inequality it follows
that the probability that T is not transformed into T̂ in at most 2 · n2 flips is less than
one-half. Running time is O(n2 · (m + n)), which is hardly impressive.

Subramani Complexity Classes

Randomized Algorithms
Randomized Complexity Classes

Three paradigmatic problems
2SAT
Min-Cut
Non-singularity of a Symbolic Matrix

Analysis

Modeling as a random walk

Assume that φ is satisfiable and focus on a particular satisfying assignment T̂ . Let T
denote the current assignment. We want to bound the expected number of steps
before T is transformed into T̂ .
Let t(i) denote the expected number of flips for T to become T̂ , assuming that T differs
from T̂ in exactly i variables. It follows that,

t(0) = 0

t(n) = 1 + t(n − 1)

t(i) ≤
1
2

t(i − 1) +
1
2

t(i + 1) + 1, 0 < i < n

Observation

The above system can be solved to get t(n) ≤ n2. From Markov’s inequality it follows
that the probability that T is not transformed into T̂ in at most 2 · n2 flips is less than
one-half. Running time is O(n2 · (m + n)), which is hardly impressive.

Subramani Complexity Classes

Randomized Algorithms
Randomized Complexity Classes

Three paradigmatic problems
2SAT
Min-Cut
Non-singularity of a Symbolic Matrix

Analysis

Modeling as a random walk

Assume that φ is satisfiable and focus on a particular satisfying assignment T̂ . Let T
denote the current assignment. We want to bound the expected number of steps
before T is transformed into T̂ .
Let t(i) denote the expected number of flips for T to become T̂ , assuming that T differs
from T̂ in exactly i variables. It follows that,

t(0) = 0

t(n) = 1 + t(n − 1)

t(i) ≤
1
2

t(i − 1) +
1
2

t(i + 1) + 1, 0 < i < n

Observation

The above system can be solved to get t(n) ≤ n2. From Markov’s inequality it follows
that the probability that T is not transformed into T̂ in at most 2 · n2 flips is less than
one-half. Running time is O(n2 · (m + n)), which is hardly impressive.

Subramani Complexity Classes

Randomized Algorithms
Randomized Complexity Classes

Three paradigmatic problems
2SAT
Min-Cut
Non-singularity of a Symbolic Matrix

Analysis

Modeling as a random walk

Assume that φ is satisfiable and focus on a particular satisfying assignment T̂ . Let T
denote the current assignment. We want to bound the expected number of steps
before T is transformed into T̂ .
Let t(i) denote the expected number of flips for T to become T̂ , assuming that T differs
from T̂ in exactly i variables. It follows that,

t(0) = 0

t(n) = 1 + t(n − 1)

t(i) ≤
1
2

t(i − 1) +
1
2

t(i + 1) + 1, 0 < i < n

Observation

The above system can be solved to get t(n) ≤ n2. From Markov’s inequality it follows
that the probability that T is not transformed into T̂ in at most 2 · n2 flips is less than
one-half. Running time is O(n2 · (m + n)), which is hardly impressive.

Subramani Complexity Classes

Randomized Algorithms
Randomized Complexity Classes

Three paradigmatic problems
2SAT
Min-Cut
Non-singularity of a Symbolic Matrix

Analysis

Modeling as a random walk

Assume that φ is satisfiable and focus on a particular satisfying assignment T̂ . Let T
denote the current assignment. We want to bound the expected number of steps
before T is transformed into T̂ .
Let t(i) denote the expected number of flips for T to become T̂ , assuming that T differs
from T̂ in exactly i variables. It follows that,

t(0) = 0

t(n) = 1 + t(n − 1)

t(i) ≤
1
2

t(i − 1) +
1
2

t(i + 1) + 1, 0 < i < n

Observation

The above system can be solved to get t(n) ≤ n2. From Markov’s inequality it follows
that the probability that T is not transformed into T̂ in at most 2 · n2 flips is less than
one-half. Running time is O(n2 · (m + n)), which is hardly impressive.

Subramani Complexity Classes

Randomized Algorithms
Randomized Complexity Classes

Three paradigmatic problems
2SAT
Min-Cut
Non-singularity of a Symbolic Matrix

Analysis

Modeling as a random walk

Assume that φ is satisfiable and focus on a particular satisfying assignment T̂ . Let T
denote the current assignment. We want to bound the expected number of steps
before T is transformed into T̂ .
Let t(i) denote the expected number of flips for T to become T̂ , assuming that T differs
from T̂ in exactly i variables. It follows that,

t(0) = 0

t(n) = 1 + t(n − 1)

t(i) ≤
1
2

t(i − 1) +
1
2

t(i + 1) + 1, 0 < i < n

Observation

The above system can be solved to get t(n) ≤ n2. From Markov’s inequality it follows
that the probability that T is not transformed into T̂ in at most 2 · n2 flips is less than
one-half. Running time is O(n2 · (m + n)), which is hardly impressive.

Subramani Complexity Classes

Randomized Algorithms
Randomized Complexity Classes

Three paradigmatic problems
2SAT
Min-Cut
Non-singularity of a Symbolic Matrix

Outline

1 Randomized Algorithms
Three paradigmatic problems
2SAT
Min-Cut
Non-singularity of a Symbolic Matrix

2 Randomized Complexity Classes

Subramani Complexity Classes

Randomized Algorithms
Randomized Complexity Classes

Three paradigmatic problems
2SAT
Min-Cut
Non-singularity of a Symbolic Matrix

Problem Description

Goal

Given an unweighted, undirected graph G = 〈,V ,E〉, find the smallest cardinality set
E ′ ⊆ E, such that G = 〈V ,E − E ′〉 has at least two components. Also called edge
connectivity.

Note

Min-Cut can be solved in polynomial time using network flow techniques.

Observation

The Min-Cut of a graph is no larger than the degree of the smallest degree vertex.

Subramani Complexity Classes

Randomized Algorithms
Randomized Complexity Classes

Three paradigmatic problems
2SAT
Min-Cut
Non-singularity of a Symbolic Matrix

Problem Description

Goal

Given an unweighted, undirected graph G = 〈,V ,E〉, find the smallest cardinality set
E ′ ⊆ E, such that G = 〈V ,E − E ′〉 has at least two components. Also called edge
connectivity.

Note

Min-Cut can be solved in polynomial time using network flow techniques.

Observation

The Min-Cut of a graph is no larger than the degree of the smallest degree vertex.

Subramani Complexity Classes

Randomized Algorithms
Randomized Complexity Classes

Three paradigmatic problems
2SAT
Min-Cut
Non-singularity of a Symbolic Matrix

Problem Description

Goal

Given an unweighted, undirected graph G = 〈,V ,E〉, find the smallest cardinality set
E ′ ⊆ E, such that G = 〈V ,E − E ′〉 has at least two components. Also called edge
connectivity.

Note

Min-Cut can be solved in polynomial time using network flow techniques.

Observation

The Min-Cut of a graph is no larger than the degree of the smallest degree vertex.

Subramani Complexity Classes

Randomized Algorithms
Randomized Complexity Classes

Three paradigmatic problems
2SAT
Min-Cut
Non-singularity of a Symbolic Matrix

Problem Description

Goal

Given an unweighted, undirected graph G = 〈,V ,E〉, find the smallest cardinality set
E ′ ⊆ E, such that G = 〈V ,E − E ′〉 has at least two components. Also called edge
connectivity.

Note

Min-Cut can be solved in polynomial time using network flow techniques.

Observation

The Min-Cut of a graph is no larger than the degree of the smallest degree vertex.

Subramani Complexity Classes

Randomized Algorithms
Randomized Complexity Classes

Three paradigmatic problems
2SAT
Min-Cut
Non-singularity of a Symbolic Matrix

Edge contraction

Procedure

(i) Identify the vertices corresponding to an edge, i.e., make them into one large
vertex.

(ii) Remove all self-loops, if formed.

(iii) Maintain all parallel edges, if formed.

Observation

Contracting an edge does not decrease the Min-Cut of a graph.

Subramani Complexity Classes

Randomized Algorithms
Randomized Complexity Classes

Three paradigmatic problems
2SAT
Min-Cut
Non-singularity of a Symbolic Matrix

Edge contraction

Procedure

(i) Identify the vertices corresponding to an edge, i.e., make them into one large
vertex.

(ii) Remove all self-loops, if formed.

(iii) Maintain all parallel edges, if formed.

Observation

Contracting an edge does not decrease the Min-Cut of a graph.

Subramani Complexity Classes

Randomized Algorithms
Randomized Complexity Classes

Three paradigmatic problems
2SAT
Min-Cut
Non-singularity of a Symbolic Matrix

Edge contraction

Procedure

(i) Identify the vertices corresponding to an edge, i.e., make them into one large
vertex.

(ii) Remove all self-loops, if formed.

(iii) Maintain all parallel edges, if formed.

Observation

Contracting an edge does not decrease the Min-Cut of a graph.

Subramani Complexity Classes

Randomized Algorithms
Randomized Complexity Classes

Three paradigmatic problems
2SAT
Min-Cut
Non-singularity of a Symbolic Matrix

Edge contraction

Procedure

(i) Identify the vertices corresponding to an edge, i.e., make them into one large
vertex.

(ii) Remove all self-loops, if formed.

(iii) Maintain all parallel edges, if formed.

Observation

Contracting an edge does not decrease the Min-Cut of a graph.

Subramani Complexity Classes

Randomized Algorithms
Randomized Complexity Classes

Three paradigmatic problems
2SAT
Min-Cut
Non-singularity of a Symbolic Matrix

Edge contraction

Procedure

(i) Identify the vertices corresponding to an edge, i.e., make them into one large
vertex.

(ii) Remove all self-loops, if formed.

(iii) Maintain all parallel edges, if formed.

Observation

Contracting an edge does not decrease the Min-Cut of a graph.

Subramani Complexity Classes

Randomized Algorithms
Randomized Complexity Classes

Three paradigmatic problems
2SAT
Min-Cut
Non-singularity of a Symbolic Matrix

The Min-Cut Algorithm

Function MIN-CUT(G = 〈(V ,E〉)
1: while (G has more than 2 vertices do) do
2: Select an edge uniformly and at random, and contract it.
3: end while
4: return(The cut determined by the two remaining vertices)

Algorithm 2.6: Karger’s Min-Cut Algorithm

Subramani Complexity Classes

Randomized Algorithms
Randomized Complexity Classes

Three paradigmatic problems
2SAT
Min-Cut
Non-singularity of a Symbolic Matrix

The Min-Cut Algorithm

Function MIN-CUT(G = 〈(V ,E〉)
1: while (G has more than 2 vertices do) do
2: Select an edge uniformly and at random, and contract it.
3: end while
4: return(The cut determined by the two remaining vertices)

Algorithm 2.7: Karger’s Min-Cut Algorithm

Subramani Complexity Classes

Randomized Algorithms
Randomized Complexity Classes

Three paradigmatic problems
2SAT
Min-Cut
Non-singularity of a Symbolic Matrix

The Min-Cut Algorithm

Function MIN-CUT(G = 〈(V ,E〉)
1: while (G has more than 2 vertices do) do
2: Select an edge uniformly and at random, and contract it.
3: end while
4: return(The cut determined by the two remaining vertices)

Algorithm 2.8: Karger’s Min-Cut Algorithm

Subramani Complexity Classes

Randomized Algorithms
Randomized Complexity Classes

Three paradigmatic problems
2SAT
Min-Cut
Non-singularity of a Symbolic Matrix

Mathematical Preliminaries

Theorem

Let E1, E2, . . . , Ek denote a collection of k events on some sample space. Then

Pr(∩n
i=1Ei) = Pr(E1)× Pr(E2|E1)× Pr(E3|(E1 ∩ E2) . . .× Pr(Ek | ∩k−1

i=1 Ei).

Proof.

By definition,

Pr(E2|E1) =
Pr(E1 ∩ E2)

Pr(E1)

⇒ Pr(E1 ∩ E2) = Pr(E1) · Pr(E2|E1).

Now use induction!

Subramani Complexity Classes

Randomized Algorithms
Randomized Complexity Classes

Three paradigmatic problems
2SAT
Min-Cut
Non-singularity of a Symbolic Matrix

Mathematical Preliminaries

Theorem

Let E1, E2, . . . , Ek denote a collection of k events on some sample space. Then

Pr(∩n
i=1Ei) = Pr(E1)× Pr(E2|E1)× Pr(E3|(E1 ∩ E2) . . .× Pr(Ek | ∩k−1

i=1 Ei).

Proof.

By definition,

Pr(E2|E1) =
Pr(E1 ∩ E2)

Pr(E1)

⇒ Pr(E1 ∩ E2) = Pr(E1) · Pr(E2|E1).

Now use induction!

Subramani Complexity Classes

Randomized Algorithms
Randomized Complexity Classes

Three paradigmatic problems
2SAT
Min-Cut
Non-singularity of a Symbolic Matrix

Mathematical Preliminaries

Theorem

Let E1, E2, . . . , Ek denote a collection of k events on some sample space. Then

Pr(∩n
i=1Ei) = Pr(E1)× Pr(E2|E1)× Pr(E3|(E1 ∩ E2) . . .× Pr(Ek | ∩k−1

i=1 Ei).

Proof.

By definition,

Pr(E2|E1) =
Pr(E1 ∩ E2)

Pr(E1)

⇒ Pr(E1 ∩ E2) = Pr(E1) · Pr(E2|E1).

Now use induction!

Subramani Complexity Classes

Randomized Algorithms
Randomized Complexity Classes

Three paradigmatic problems
2SAT
Min-Cut
Non-singularity of a Symbolic Matrix

Analysis

Steps

(i) Focus on a specific Min-Cut C of G having exactly k edges.

(ii) Clearly G must have at least kn
2 edges.

(iii) Let Ei denote the event that no edge of C is picked for contraction during the i th
iteration.

(iv) Thus, E = ∩n−1
i=1 Ei denotes the event that no edge of C is touched, i.e., the cut C

survives.

(v) The probability that an edge picked randomly in round 1 is in C is at most k
kn
2

.

Pr(E1) ≥ (1− 2
n).

(vi) Let us now bound Pr(E2|E1). If E1 has occurred, then after round 1, the graph has
at least k·(n−1)

2 edges. ⇒ Pr(E2|E1) ≥ (1− 2
n−1).

(vii) Working in identical fashion, Pr(Ei | ∩i−1
j=1 Ej) ≥ (1− 2

(n−i+1)
).

Subramani Complexity Classes

Randomized Algorithms
Randomized Complexity Classes

Three paradigmatic problems
2SAT
Min-Cut
Non-singularity of a Symbolic Matrix

Analysis

Steps

(i) Focus on a specific Min-Cut C of G having exactly k edges.

(ii) Clearly G must have at least kn
2 edges.

(iii) Let Ei denote the event that no edge of C is picked for contraction during the i th
iteration.

(iv) Thus, E = ∩n−1
i=1 Ei denotes the event that no edge of C is touched, i.e., the cut C

survives.

(v) The probability that an edge picked randomly in round 1 is in C is at most k
kn
2

.

Pr(E1) ≥ (1− 2
n).

(vi) Let us now bound Pr(E2|E1). If E1 has occurred, then after round 1, the graph has
at least k·(n−1)

2 edges. ⇒ Pr(E2|E1) ≥ (1− 2
n−1).

(vii) Working in identical fashion, Pr(Ei | ∩i−1
j=1 Ej) ≥ (1− 2

(n−i+1)
).

Subramani Complexity Classes

Randomized Algorithms
Randomized Complexity Classes

Three paradigmatic problems
2SAT
Min-Cut
Non-singularity of a Symbolic Matrix

Analysis

Steps

(i) Focus on a specific Min-Cut C of G having exactly k edges.

(ii) Clearly G must have at least kn
2 edges.

(iii) Let Ei denote the event that no edge of C is picked for contraction during the i th
iteration.

(iv) Thus, E = ∩n−1
i=1 Ei denotes the event that no edge of C is touched, i.e., the cut C

survives.

(v) The probability that an edge picked randomly in round 1 is in C is at most k
kn
2

.

Pr(E1) ≥ (1− 2
n).

(vi) Let us now bound Pr(E2|E1). If E1 has occurred, then after round 1, the graph has
at least k·(n−1)

2 edges. ⇒ Pr(E2|E1) ≥ (1− 2
n−1).

(vii) Working in identical fashion, Pr(Ei | ∩i−1
j=1 Ej) ≥ (1− 2

(n−i+1)
).

Subramani Complexity Classes

Randomized Algorithms
Randomized Complexity Classes

Three paradigmatic problems
2SAT
Min-Cut
Non-singularity of a Symbolic Matrix

Analysis

Steps

(i) Focus on a specific Min-Cut C of G having exactly k edges.

(ii) Clearly G must have at least kn
2 edges.

(iii) Let Ei denote the event that no edge of C is picked for contraction during the i th
iteration.

(iv) Thus, E = ∩n−1
i=1 Ei denotes the event that no edge of C is touched, i.e., the cut C

survives.

(v) The probability that an edge picked randomly in round 1 is in C is at most k
kn
2

.

Pr(E1) ≥ (1− 2
n).

(vi) Let us now bound Pr(E2|E1). If E1 has occurred, then after round 1, the graph has
at least k·(n−1)

2 edges. ⇒ Pr(E2|E1) ≥ (1− 2
n−1).

(vii) Working in identical fashion, Pr(Ei | ∩i−1
j=1 Ej) ≥ (1− 2

(n−i+1)
).

Subramani Complexity Classes

Randomized Algorithms
Randomized Complexity Classes

Three paradigmatic problems
2SAT
Min-Cut
Non-singularity of a Symbolic Matrix

Analysis

Steps

(i) Focus on a specific Min-Cut C of G having exactly k edges.

(ii) Clearly G must have at least kn
2 edges.

(iii) Let Ei denote the event that no edge of C is picked for contraction during the i th
iteration.

(iv) Thus, E = ∩n−1
i=1 Ei denotes the event that no edge of C is touched, i.e., the cut C

survives.

(v) The probability that an edge picked randomly in round 1 is in C is at most k
kn
2

.

Pr(E1) ≥ (1− 2
n).

(vi) Let us now bound Pr(E2|E1). If E1 has occurred, then after round 1, the graph has
at least k·(n−1)

2 edges. ⇒ Pr(E2|E1) ≥ (1− 2
n−1).

(vii) Working in identical fashion, Pr(Ei | ∩i−1
j=1 Ej) ≥ (1− 2

(n−i+1)
).

Subramani Complexity Classes

Randomized Algorithms
Randomized Complexity Classes

Three paradigmatic problems
2SAT
Min-Cut
Non-singularity of a Symbolic Matrix

Analysis

Steps

(i) Focus on a specific Min-Cut C of G having exactly k edges.

(ii) Clearly G must have at least kn
2 edges.

(iii) Let Ei denote the event that no edge of C is picked for contraction during the i th
iteration.

(iv) Thus, E = ∩n−1
i=1 Ei denotes the event that no edge of C is touched, i.e., the cut C

survives.

(v) The probability that an edge picked randomly in round 1 is in C is at most k
kn
2

.

Pr(E1) ≥ (1− 2
n).

(vi) Let us now bound Pr(E2|E1). If E1 has occurred, then after round 1, the graph has
at least k·(n−1)

2 edges. ⇒ Pr(E2|E1) ≥ (1− 2
n−1).

(vii) Working in identical fashion, Pr(Ei | ∩i−1
j=1 Ej) ≥ (1− 2

(n−i+1)
).

Subramani Complexity Classes

Randomized Algorithms
Randomized Complexity Classes

Three paradigmatic problems
2SAT
Min-Cut
Non-singularity of a Symbolic Matrix

Analysis

Steps

(i) Focus on a specific Min-Cut C of G having exactly k edges.

(ii) Clearly G must have at least kn
2 edges.

(iii) Let Ei denote the event that no edge of C is picked for contraction during the i th
iteration.

(iv) Thus, E = ∩n−1
i=1 Ei denotes the event that no edge of C is touched, i.e., the cut C

survives.

(v) The probability that an edge picked randomly in round 1 is in C is at most k
kn
2

.

Pr(E1) ≥ (1− 2
n).

(vi) Let us now bound Pr(E2|E1). If E1 has occurred, then after round 1, the graph has
at least k·(n−1)

2 edges. ⇒ Pr(E2|E1) ≥ (1− 2
n−1).

(vii) Working in identical fashion, Pr(Ei | ∩i−1
j=1 Ej) ≥ (1− 2

(n−i+1)
).

Subramani Complexity Classes

Randomized Algorithms
Randomized Complexity Classes

Three paradigmatic problems
2SAT
Min-Cut
Non-singularity of a Symbolic Matrix

Analysis

Steps

(i) Focus on a specific Min-Cut C of G having exactly k edges.

(ii) Clearly G must have at least kn
2 edges.

(iii) Let Ei denote the event that no edge of C is picked for contraction during the i th
iteration.

(iv) Thus, E = ∩n−1
i=1 Ei denotes the event that no edge of C is touched, i.e., the cut C

survives.

(v) The probability that an edge picked randomly in round 1 is in C is at most k
kn
2

.

Pr(E1) ≥ (1− 2
n).

(vi) Let us now bound Pr(E2|E1). If E1 has occurred, then after round 1, the graph has
at least k·(n−1)

2 edges. ⇒ Pr(E2|E1) ≥ (1− 2
n−1).

(vii) Working in identical fashion, Pr(Ei | ∩i−1
j=1 Ej) ≥ (1− 2

(n−i+1)
).

Subramani Complexity Classes

Randomized Algorithms
Randomized Complexity Classes

Three paradigmatic problems
2SAT
Min-Cut
Non-singularity of a Symbolic Matrix

Analysis

Steps

(i) Focus on a specific Min-Cut C of G having exactly k edges.

(ii) Clearly G must have at least kn
2 edges.

(iii) Let Ei denote the event that no edge of C is picked for contraction during the i th
iteration.

(iv) Thus, E = ∩n−1
i=1 Ei denotes the event that no edge of C is touched, i.e., the cut C

survives.

(v) The probability that an edge picked randomly in round 1 is in C is at most k
kn
2

.

Pr(E1) ≥ (1− 2
n).

(vi) Let us now bound Pr(E2|E1). If E1 has occurred, then after round 1, the graph has
at least k·(n−1)

2 edges. ⇒ Pr(E2|E1) ≥ (1− 2
n−1).

(vii) Working in identical fashion, Pr(Ei | ∩i−1
j=1 Ej) ≥ (1− 2

(n−i+1)
).

Subramani Complexity Classes

Randomized Algorithms
Randomized Complexity Classes

Three paradigmatic problems
2SAT
Min-Cut
Non-singularity of a Symbolic Matrix

Analysis

Steps

(i) Focus on a specific Min-Cut C of G having exactly k edges.

(ii) Clearly G must have at least kn
2 edges.

(iii) Let Ei denote the event that no edge of C is picked for contraction during the i th
iteration.

(iv) Thus, E = ∩n−1
i=1 Ei denotes the event that no edge of C is touched, i.e., the cut C

survives.

(v) The probability that an edge picked randomly in round 1 is in C is at most k
kn
2

.

Pr(E1) ≥ (1− 2
n).

(vi) Let us now bound Pr(E2|E1). If E1 has occurred, then after round 1, the graph has
at least k·(n−1)

2 edges. ⇒ Pr(E2|E1) ≥ (1− 2
n−1).

(vii) Working in identical fashion, Pr(Ei | ∩i−1
j=1 Ej) ≥ (1− 2

(n−i+1)
).

Subramani Complexity Classes

Randomized Algorithms
Randomized Complexity Classes

Three paradigmatic problems
2SAT
Min-Cut
Non-singularity of a Symbolic Matrix

Analysis

Steps

(i) Focus on a specific Min-Cut C of G having exactly k edges.

(ii) Clearly G must have at least kn
2 edges.

(iii) Let Ei denote the event that no edge of C is picked for contraction during the i th
iteration.

(iv) Thus, E = ∩n−1
i=1 Ei denotes the event that no edge of C is touched, i.e., the cut C

survives.

(v) The probability that an edge picked randomly in round 1 is in C is at most k
kn
2

.

Pr(E1) ≥ (1− 2
n).

(vi) Let us now bound Pr(E2|E1). If E1 has occurred, then after round 1, the graph has
at least k·(n−1)

2 edges. ⇒ Pr(E2|E1) ≥ (1− 2
n−1).

(vii) Working in identical fashion, Pr(Ei | ∩i−1
j=1 Ej) ≥ (1− 2

(n−i+1)
).

Subramani Complexity Classes

Randomized Algorithms
Randomized Complexity Classes

Three paradigmatic problems
2SAT
Min-Cut
Non-singularity of a Symbolic Matrix

Analysis (contd.)

Steps

(i) It follows that

Pr(E) ≥ Pr(∩n−2
i=1 Ei)

= Πn−2
i=1 (1−

2
(n − i + 1)

)

=
2

n · (n − 1)

≥
2
n2

(ii) Thus, the probability that C survives all the contractions is at least 2
n2 .

(iii) Thus, the probability that C does not survive all the contractions is at most
(1− 2

n2).

Subramani Complexity Classes

Randomized Algorithms
Randomized Complexity Classes

Three paradigmatic problems
2SAT
Min-Cut
Non-singularity of a Symbolic Matrix

Analysis (contd.)

Steps

(i) It follows that

Pr(E) ≥ Pr(∩n−2
i=1 Ei)

= Πn−2
i=1 (1−

2
(n − i + 1)

)

=
2

n · (n − 1)

≥
2
n2

(ii) Thus, the probability that C survives all the contractions is at least 2
n2 .

(iii) Thus, the probability that C does not survive all the contractions is at most
(1− 2

n2).

Subramani Complexity Classes

Randomized Algorithms
Randomized Complexity Classes

Three paradigmatic problems
2SAT
Min-Cut
Non-singularity of a Symbolic Matrix

Analysis (contd.)

Steps

(i) It follows that

Pr(E) ≥ Pr(∩n−2
i=1 Ei)

= Πn−2
i=1 (1−

2
(n − i + 1)

)

=
2

n · (n − 1)

≥
2
n2

(ii) Thus, the probability that C survives all the contractions is at least 2
n2 .

(iii) Thus, the probability that C does not survive all the contractions is at most
(1− 2

n2).

Subramani Complexity Classes

Randomized Algorithms
Randomized Complexity Classes

Three paradigmatic problems
2SAT
Min-Cut
Non-singularity of a Symbolic Matrix

Analysis (contd.)

Steps

(i) It follows that

Pr(E) ≥ Pr(∩n−2
i=1 Ei)

= Πn−2
i=1 (1−

2
(n − i + 1)

)

=
2

n · (n − 1)

≥
2
n2

(ii) Thus, the probability that C survives all the contractions is at least 2
n2 .

(iii) Thus, the probability that C does not survive all the contractions is at most
(1− 2

n2).

Subramani Complexity Classes

Randomized Algorithms
Randomized Complexity Classes

Three paradigmatic problems
2SAT
Min-Cut
Non-singularity of a Symbolic Matrix

Analysis (contd.)

Steps

(i) It follows that

Pr(E) ≥ Pr(∩n−2
i=1 Ei)

= Πn−2
i=1 (1−

2
(n − i + 1)

)

=
2

n · (n − 1)

≥
2
n2

(ii) Thus, the probability that C survives all the contractions is at least 2
n2 .

(iii) Thus, the probability that C does not survive all the contractions is at most
(1− 2

n2).

Subramani Complexity Classes

Randomized Algorithms
Randomized Complexity Classes

Three paradigmatic problems
2SAT
Min-Cut
Non-singularity of a Symbolic Matrix

Analysis (contd.)

Steps

(i) It follows that

Pr(E) ≥ Pr(∩n−2
i=1 Ei)

= Πn−2
i=1 (1−

2
(n − i + 1)

)

=
2

n · (n − 1)

≥
2
n2

(ii) Thus, the probability that C survives all the contractions is at least 2
n2 .

(iii) Thus, the probability that C does not survive all the contractions is at most
(1− 2

n2).

Subramani Complexity Classes

Randomized Algorithms
Randomized Complexity Classes

Three paradigmatic problems
2SAT
Min-Cut
Non-singularity of a Symbolic Matrix

Analysis (contd.)

Observation

If Karger’s algorithm is run n2

2 times on the same graph, the probability that C does not

survive any of the runs is at most (1− 2
n2)

n2
2 < 1

e .

In other words, the probability that C is obtained after n2

2 runs is at least (1− 1
e).

Note

Karger’s algorithm is both simpler and faster than any deterministic algorithm for
determining the Min-Cut of an undirected graph.

Subramani Complexity Classes

Randomized Algorithms
Randomized Complexity Classes

Three paradigmatic problems
2SAT
Min-Cut
Non-singularity of a Symbolic Matrix

Analysis (contd.)

Observation

If Karger’s algorithm is run n2

2 times on the same graph, the probability that C does not

survive any of the runs is at most (1− 2
n2)

n2
2 < 1

e .

In other words, the probability that C is obtained after n2

2 runs is at least (1− 1
e).

Note

Karger’s algorithm is both simpler and faster than any deterministic algorithm for
determining the Min-Cut of an undirected graph.

Subramani Complexity Classes

Randomized Algorithms
Randomized Complexity Classes

Three paradigmatic problems
2SAT
Min-Cut
Non-singularity of a Symbolic Matrix

Analysis (contd.)

Observation

If Karger’s algorithm is run n2

2 times on the same graph, the probability that C does not

survive any of the runs is at most (1− 2
n2)

n2
2 < 1

e .

In other words, the probability that C is obtained after n2

2 runs is at least (1− 1
e).

Note

Karger’s algorithm is both simpler and faster than any deterministic algorithm for
determining the Min-Cut of an undirected graph.

Subramani Complexity Classes

Randomized Algorithms
Randomized Complexity Classes

Three paradigmatic problems
2SAT
Min-Cut
Non-singularity of a Symbolic Matrix

Analysis (contd.)

Observation

If Karger’s algorithm is run n2

2 times on the same graph, the probability that C does not

survive any of the runs is at most (1− 2
n2)

n2
2 < 1

e .

In other words, the probability that C is obtained after n2

2 runs is at least (1− 1
e).

Note

Karger’s algorithm is both simpler and faster than any deterministic algorithm for
determining the Min-Cut of an undirected graph.

Subramani Complexity Classes

Randomized Algorithms
Randomized Complexity Classes

Three paradigmatic problems
2SAT
Min-Cut
Non-singularity of a Symbolic Matrix

Outline

1 Randomized Algorithms
Three paradigmatic problems
2SAT
Min-Cut
Non-singularity of a Symbolic Matrix

2 Randomized Complexity Classes

Subramani Complexity Classes

Randomized Algorithms
Randomized Complexity Classes

Three paradigmatic problems
2SAT
Min-Cut
Non-singularity of a Symbolic Matrix

Problem Description

Definition

Given an n × n matrix A, the determinant of A denoted by |A| is defined as:P
π σ(π)Πn

i=1Ai,π(i), where the summation is over all the permutations of n elements
and σ(π) is +1 if π is the product of an even number of transpositions and −1
otherwise. A matrix is said to be singular, if its determinant is identically 0 and
non-singular otherwise.

Definition

A symbolic matrix is a matrix whose entries are polynomials, e.g.,„
a a2 − 1

d + b e − a

«

Goal

Given a symbolic square matrix, check whether it is identically zero, i.e., regardless of
the values of the variables, the determinant always evaluates to zero.

Subramani Complexity Classes

Randomized Algorithms
Randomized Complexity Classes

Three paradigmatic problems
2SAT
Min-Cut
Non-singularity of a Symbolic Matrix

Problem Description

Definition

Given an n × n matrix A, the determinant of A denoted by |A| is defined as:P
π σ(π)Πn

i=1Ai,π(i), where the summation is over all the permutations of n elements
and σ(π) is +1 if π is the product of an even number of transpositions and −1
otherwise. A matrix is said to be singular, if its determinant is identically 0 and
non-singular otherwise.

Definition

A symbolic matrix is a matrix whose entries are polynomials, e.g.,„
a a2 − 1

d + b e − a

«

Goal

Given a symbolic square matrix, check whether it is identically zero, i.e., regardless of
the values of the variables, the determinant always evaluates to zero.

Subramani Complexity Classes

Randomized Algorithms
Randomized Complexity Classes

Three paradigmatic problems
2SAT
Min-Cut
Non-singularity of a Symbolic Matrix

Problem Description

Definition

Given an n × n matrix A, the determinant of A denoted by |A| is defined as:P
π σ(π)Πn

i=1Ai,π(i), where the summation is over all the permutations of n elements
and σ(π) is +1 if π is the product of an even number of transpositions and −1
otherwise. A matrix is said to be singular, if its determinant is identically 0 and
non-singular otherwise.

Definition

A symbolic matrix is a matrix whose entries are polynomials, e.g.,„
a a2 − 1

d + b e − a

«

Goal

Given a symbolic square matrix, check whether it is identically zero, i.e., regardless of
the values of the variables, the determinant always evaluates to zero.

Subramani Complexity Classes

Randomized Algorithms
Randomized Complexity Classes

Three paradigmatic problems
2SAT
Min-Cut
Non-singularity of a Symbolic Matrix

Issues involved in non-singularity checking

Issues

(i) Expansion is expensive!

(ii) Gaussian elimination is also expensive.

(iii) What is the complexity of this problem? Why?

Subramani Complexity Classes

Randomized Algorithms
Randomized Complexity Classes

Three paradigmatic problems
2SAT
Min-Cut
Non-singularity of a Symbolic Matrix

Issues involved in non-singularity checking

Issues

(i) Expansion is expensive!

(ii) Gaussian elimination is also expensive.

(iii) What is the complexity of this problem? Why?

Subramani Complexity Classes

Randomized Algorithms
Randomized Complexity Classes

Three paradigmatic problems
2SAT
Min-Cut
Non-singularity of a Symbolic Matrix

Issues involved in non-singularity checking

Issues

(i) Expansion is expensive!

(ii) Gaussian elimination is also expensive.

(iii) What is the complexity of this problem? Why?

Subramani Complexity Classes

Randomized Algorithms
Randomized Complexity Classes

Three paradigmatic problems
2SAT
Min-Cut
Non-singularity of a Symbolic Matrix

Issues involved in non-singularity checking

Issues

(i) Expansion is expensive!

(ii) Gaussian elimination is also expensive.

(iii) What is the complexity of this problem? Why?

Subramani Complexity Classes

Randomized Algorithms
Randomized Complexity Classes

Three paradigmatic problems
2SAT
Min-Cut
Non-singularity of a Symbolic Matrix

Mathematical Preliminaries

Theorem

Let φ(x1, x2, . . . , xm) be a polynomial, not identically zero, in m variables, each having
degree at most d. Let M > 0 denote an integer. Then the number of m-tuples
〈z1, z2, . . . , zm〉 ∈ {0, 1, . . .M − 1}m such that φ(z1, z2, . . . zm) = 0 is at most
m · d ·Mm−1.

Subramani Complexity Classes

Randomized Algorithms
Randomized Complexity Classes

Three paradigmatic problems
2SAT
Min-Cut
Non-singularity of a Symbolic Matrix

Mathematical Preliminaries (contd.)

Proof.

If m = 1, the theorem is trivially true, as per the fundamental theorem of algebra!
Assume true for m − 1 variables. Rewrite φ so that it is a polynomial in xm with
coefficients in {x1, x2, . . . , xm−1}, i.e.,
φ = (φ1(x1, x2, . . . , xm−1))xd

m + (φ2(x1, x2, . . . , xm−1))xd−1
m +

. . . (φd−1(x1, x2, . . . , xm−1))x1
m + (φd (x1, x2, . . . , xm−1)).

Let φ(z = 〈z1, z2, . . . , zm〉) = 0.
Consider the following two cases:

(i) φ1(z) = 0. This means that z is a root of φ1 and by induction, there are at most
(m− 1) · d ·Mm−2 of these. For each of the M possible values of xm, the first term
will be zero. The total number of such possibilities is (m − 1) · d ·Mm−2 ·M
= (m − 1) · d ·Mm−1.

(ii) φ1(z) 6= 0. This means that φ(z) defines a polynomial in xm with degree at most
d . Observe that for each combination of x1, x2, . . . , xm−1 ∈ {0, 1, . . . ,M − 1}, the
resultant polynomial has at most d roots. Thus, the total number of zeros is at
most d ·Mm−1.

Thus, the total number of zeros for φ is at most m · d ·Mm−1.

Subramani Complexity Classes

Randomized Algorithms
Randomized Complexity Classes

Three paradigmatic problems
2SAT
Min-Cut
Non-singularity of a Symbolic Matrix

Mathematical Preliminaries (contd.)

Proof.

If m = 1, the theorem is trivially true, as per the fundamental theorem of algebra!
Assume true for m − 1 variables. Rewrite φ so that it is a polynomial in xm with
coefficients in {x1, x2, . . . , xm−1}, i.e.,
φ = (φ1(x1, x2, . . . , xm−1))xd

m + (φ2(x1, x2, . . . , xm−1))xd−1
m +

. . . (φd−1(x1, x2, . . . , xm−1))x1
m + (φd (x1, x2, . . . , xm−1)).

Let φ(z = 〈z1, z2, . . . , zm〉) = 0.
Consider the following two cases:

(i) φ1(z) = 0. This means that z is a root of φ1 and by induction, there are at most
(m− 1) · d ·Mm−2 of these. For each of the M possible values of xm, the first term
will be zero. The total number of such possibilities is (m − 1) · d ·Mm−2 ·M
= (m − 1) · d ·Mm−1.

(ii) φ1(z) 6= 0. This means that φ(z) defines a polynomial in xm with degree at most
d . Observe that for each combination of x1, x2, . . . , xm−1 ∈ {0, 1, . . . ,M − 1}, the
resultant polynomial has at most d roots. Thus, the total number of zeros is at
most d ·Mm−1.

Thus, the total number of zeros for φ is at most m · d ·Mm−1.

Subramani Complexity Classes

Randomized Algorithms
Randomized Complexity Classes

Three paradigmatic problems
2SAT
Min-Cut
Non-singularity of a Symbolic Matrix

Mathematical Preliminaries (contd.)

Proof.

If m = 1, the theorem is trivially true, as per the fundamental theorem of algebra!
Assume true for m − 1 variables. Rewrite φ so that it is a polynomial in xm with
coefficients in {x1, x2, . . . , xm−1}, i.e.,
φ = (φ1(x1, x2, . . . , xm−1))xd

m + (φ2(x1, x2, . . . , xm−1))xd−1
m +

. . . (φd−1(x1, x2, . . . , xm−1))x1
m + (φd (x1, x2, . . . , xm−1)).

Let φ(z = 〈z1, z2, . . . , zm〉) = 0.
Consider the following two cases:

(i) φ1(z) = 0. This means that z is a root of φ1 and by induction, there are at most
(m− 1) · d ·Mm−2 of these. For each of the M possible values of xm, the first term
will be zero. The total number of such possibilities is (m − 1) · d ·Mm−2 ·M
= (m − 1) · d ·Mm−1.

(ii) φ1(z) 6= 0. This means that φ(z) defines a polynomial in xm with degree at most
d . Observe that for each combination of x1, x2, . . . , xm−1 ∈ {0, 1, . . . ,M − 1}, the
resultant polynomial has at most d roots. Thus, the total number of zeros is at
most d ·Mm−1.

Thus, the total number of zeros for φ is at most m · d ·Mm−1.

Subramani Complexity Classes

Randomized Algorithms
Randomized Complexity Classes

Three paradigmatic problems
2SAT
Min-Cut
Non-singularity of a Symbolic Matrix

Mathematical Preliminaries (contd.)

Proof.

If m = 1, the theorem is trivially true, as per the fundamental theorem of algebra!
Assume true for m − 1 variables. Rewrite φ so that it is a polynomial in xm with
coefficients in {x1, x2, . . . , xm−1}, i.e.,
φ = (φ1(x1, x2, . . . , xm−1))xd

m + (φ2(x1, x2, . . . , xm−1))xd−1
m +

. . . (φd−1(x1, x2, . . . , xm−1))x1
m + (φd (x1, x2, . . . , xm−1)).

Let φ(z = 〈z1, z2, . . . , zm〉) = 0.
Consider the following two cases:

(i) φ1(z) = 0. This means that z is a root of φ1 and by induction, there are at most
(m− 1) · d ·Mm−2 of these. For each of the M possible values of xm, the first term
will be zero. The total number of such possibilities is (m − 1) · d ·Mm−2 ·M
= (m − 1) · d ·Mm−1.

(ii) φ1(z) 6= 0. This means that φ(z) defines a polynomial in xm with degree at most
d . Observe that for each combination of x1, x2, . . . , xm−1 ∈ {0, 1, . . . ,M − 1}, the
resultant polynomial has at most d roots. Thus, the total number of zeros is at
most d ·Mm−1.

Thus, the total number of zeros for φ is at most m · d ·Mm−1.

Subramani Complexity Classes

Randomized Algorithms
Randomized Complexity Classes

Three paradigmatic problems
2SAT
Min-Cut
Non-singularity of a Symbolic Matrix

Mathematical Preliminaries (contd.)

Proof.

If m = 1, the theorem is trivially true, as per the fundamental theorem of algebra!
Assume true for m − 1 variables. Rewrite φ so that it is a polynomial in xm with
coefficients in {x1, x2, . . . , xm−1}, i.e.,
φ = (φ1(x1, x2, . . . , xm−1))xd

m + (φ2(x1, x2, . . . , xm−1))xd−1
m +

. . . (φd−1(x1, x2, . . . , xm−1))x1
m + (φd (x1, x2, . . . , xm−1)).

Let φ(z = 〈z1, z2, . . . , zm〉) = 0.
Consider the following two cases:

(i) φ1(z) = 0. This means that z is a root of φ1 and by induction, there are at most
(m− 1) · d ·Mm−2 of these. For each of the M possible values of xm, the first term
will be zero. The total number of such possibilities is (m − 1) · d ·Mm−2 ·M
= (m − 1) · d ·Mm−1.

(ii) φ1(z) 6= 0. This means that φ(z) defines a polynomial in xm with degree at most
d . Observe that for each combination of x1, x2, . . . , xm−1 ∈ {0, 1, . . . ,M − 1}, the
resultant polynomial has at most d roots. Thus, the total number of zeros is at
most d ·Mm−1.

Thus, the total number of zeros for φ is at most m · d ·Mm−1.

Subramani Complexity Classes

Randomized Algorithms
Randomized Complexity Classes

Three paradigmatic problems
2SAT
Min-Cut
Non-singularity of a Symbolic Matrix

Mathematical Preliminaries (contd.)

Proof.

If m = 1, the theorem is trivially true, as per the fundamental theorem of algebra!
Assume true for m − 1 variables. Rewrite φ so that it is a polynomial in xm with
coefficients in {x1, x2, . . . , xm−1}, i.e.,
φ = (φ1(x1, x2, . . . , xm−1))xd

m + (φ2(x1, x2, . . . , xm−1))xd−1
m +

. . . (φd−1(x1, x2, . . . , xm−1))x1
m + (φd (x1, x2, . . . , xm−1)).

Let φ(z = 〈z1, z2, . . . , zm〉) = 0.
Consider the following two cases:

(i) φ1(z) = 0. This means that z is a root of φ1 and by induction, there are at most
(m− 1) · d ·Mm−2 of these. For each of the M possible values of xm, the first term
will be zero. The total number of such possibilities is (m − 1) · d ·Mm−2 ·M
= (m − 1) · d ·Mm−1.

(ii) φ1(z) 6= 0. This means that φ(z) defines a polynomial in xm with degree at most
d . Observe that for each combination of x1, x2, . . . , xm−1 ∈ {0, 1, . . . ,M − 1}, the
resultant polynomial has at most d roots. Thus, the total number of zeros is at
most d ·Mm−1.

Thus, the total number of zeros for φ is at most m · d ·Mm−1.

Subramani Complexity Classes

Randomized Algorithms
Randomized Complexity Classes

Three paradigmatic problems
2SAT
Min-Cut
Non-singularity of a Symbolic Matrix

Mathematical Preliminaries (contd.)

Proof.

If m = 1, the theorem is trivially true, as per the fundamental theorem of algebra!
Assume true for m − 1 variables. Rewrite φ so that it is a polynomial in xm with
coefficients in {x1, x2, . . . , xm−1}, i.e.,
φ = (φ1(x1, x2, . . . , xm−1))xd

m + (φ2(x1, x2, . . . , xm−1))xd−1
m +

. . . (φd−1(x1, x2, . . . , xm−1))x1
m + (φd (x1, x2, . . . , xm−1)).

Let φ(z = 〈z1, z2, . . . , zm〉) = 0.
Consider the following two cases:

(i) φ1(z) = 0. This means that z is a root of φ1 and by induction, there are at most
(m− 1) · d ·Mm−2 of these. For each of the M possible values of xm, the first term
will be zero. The total number of such possibilities is (m − 1) · d ·Mm−2 ·M
= (m − 1) · d ·Mm−1.

(ii) φ1(z) 6= 0. This means that φ(z) defines a polynomial in xm with degree at most
d . Observe that for each combination of x1, x2, . . . , xm−1 ∈ {0, 1, . . . ,M − 1}, the
resultant polynomial has at most d roots. Thus, the total number of zeros is at
most d ·Mm−1.

Thus, the total number of zeros for φ is at most m · d ·Mm−1.

Subramani Complexity Classes

Randomized Algorithms
Randomized Complexity Classes

Three paradigmatic problems
2SAT
Min-Cut
Non-singularity of a Symbolic Matrix

Mathematical Preliminaries (contd.)

Proof.

If m = 1, the theorem is trivially true, as per the fundamental theorem of algebra!
Assume true for m − 1 variables. Rewrite φ so that it is a polynomial in xm with
coefficients in {x1, x2, . . . , xm−1}, i.e.,
φ = (φ1(x1, x2, . . . , xm−1))xd

m + (φ2(x1, x2, . . . , xm−1))xd−1
m +

. . . (φd−1(x1, x2, . . . , xm−1))x1
m + (φd (x1, x2, . . . , xm−1)).

Let φ(z = 〈z1, z2, . . . , zm〉) = 0.
Consider the following two cases:

(i) φ1(z) = 0. This means that z is a root of φ1 and by induction, there are at most
(m− 1) · d ·Mm−2 of these. For each of the M possible values of xm, the first term
will be zero. The total number of such possibilities is (m − 1) · d ·Mm−2 ·M
= (m − 1) · d ·Mm−1.

(ii) φ1(z) 6= 0. This means that φ(z) defines a polynomial in xm with degree at most
d . Observe that for each combination of x1, x2, . . . , xm−1 ∈ {0, 1, . . . ,M − 1}, the
resultant polynomial has at most d roots. Thus, the total number of zeros is at
most d ·Mm−1.

Thus, the total number of zeros for φ is at most m · d ·Mm−1.

Subramani Complexity Classes

Randomized Algorithms
Randomized Complexity Classes

Three paradigmatic problems
2SAT
Min-Cut
Non-singularity of a Symbolic Matrix

Mathematical Preliminaries (contd.)

Proof.

If m = 1, the theorem is trivially true, as per the fundamental theorem of algebra!
Assume true for m − 1 variables. Rewrite φ so that it is a polynomial in xm with
coefficients in {x1, x2, . . . , xm−1}, i.e.,
φ = (φ1(x1, x2, . . . , xm−1))xd

m + (φ2(x1, x2, . . . , xm−1))xd−1
m +

. . . (φd−1(x1, x2, . . . , xm−1))x1
m + (φd (x1, x2, . . . , xm−1)).

Let φ(z = 〈z1, z2, . . . , zm〉) = 0.
Consider the following two cases:

(i) φ1(z) = 0. This means that z is a root of φ1 and by induction, there are at most
(m− 1) · d ·Mm−2 of these. For each of the M possible values of xm, the first term
will be zero. The total number of such possibilities is (m − 1) · d ·Mm−2 ·M
= (m − 1) · d ·Mm−1.

(ii) φ1(z) 6= 0. This means that φ(z) defines a polynomial in xm with degree at most
d . Observe that for each combination of x1, x2, . . . , xm−1 ∈ {0, 1, . . . ,M − 1}, the
resultant polynomial has at most d roots. Thus, the total number of zeros is at
most d ·Mm−1.

Thus, the total number of zeros for φ is at most m · d ·Mm−1.

Subramani Complexity Classes

Randomized Algorithms
Randomized Complexity Classes

Three paradigmatic problems
2SAT
Min-Cut
Non-singularity of a Symbolic Matrix

Mathematical Preliminaries (contd.)

Proof.

If m = 1, the theorem is trivially true, as per the fundamental theorem of algebra!
Assume true for m − 1 variables. Rewrite φ so that it is a polynomial in xm with
coefficients in {x1, x2, . . . , xm−1}, i.e.,
φ = (φ1(x1, x2, . . . , xm−1))xd

m + (φ2(x1, x2, . . . , xm−1))xd−1
m +

. . . (φd−1(x1, x2, . . . , xm−1))x1
m + (φd (x1, x2, . . . , xm−1)).

Let φ(z = 〈z1, z2, . . . , zm〉) = 0.
Consider the following two cases:

(i) φ1(z) = 0. This means that z is a root of φ1 and by induction, there are at most
(m− 1) · d ·Mm−2 of these. For each of the M possible values of xm, the first term
will be zero. The total number of such possibilities is (m − 1) · d ·Mm−2 ·M
= (m − 1) · d ·Mm−1.

(ii) φ1(z) 6= 0. This means that φ(z) defines a polynomial in xm with degree at most
d . Observe that for each combination of x1, x2, . . . , xm−1 ∈ {0, 1, . . . ,M − 1}, the
resultant polynomial has at most d roots. Thus, the total number of zeros is at
most d ·Mm−1.

Thus, the total number of zeros for φ is at most m · d ·Mm−1.

Subramani Complexity Classes

Randomized Algorithms
Randomized Complexity Classes

Three paradigmatic problems
2SAT
Min-Cut
Non-singularity of a Symbolic Matrix

The Non-Singularity Checking Algorithm

Function NON-SING CHECK(A)
1: Generate m random integers between 0 and M = 2md .
2: Compute the resultant determinant of the numeric matrix A′ substituting these

integers into the symbolic matrix A.
3: if (|A′| 6= 0) then
4: A is not singular.
5: else
6: A is probably singular.
7: end if

Algorithm 2.9: The Non-Singularity Checking Algorithm

Subramani Complexity Classes

Randomized Algorithms
Randomized Complexity Classes

Three paradigmatic problems
2SAT
Min-Cut
Non-singularity of a Symbolic Matrix

The Non-Singularity Checking Algorithm

Function NON-SING CHECK(A)
1: Generate m random integers between 0 and M = 2md .
2: Compute the resultant determinant of the numeric matrix A′ substituting these

integers into the symbolic matrix A.
3: if (|A′| 6= 0) then
4: A is not singular.
5: else
6: A is probably singular.
7: end if

Algorithm 2.10: The Non-Singularity Checking Algorithm

Subramani Complexity Classes

Randomized Algorithms
Randomized Complexity Classes

Three paradigmatic problems
2SAT
Min-Cut
Non-singularity of a Symbolic Matrix

The Non-Singularity Checking Algorithm

Function NON-SING CHECK(A)
1: Generate m random integers between 0 and M = 2md .
2: Compute the resultant determinant of the numeric matrix A′ substituting these

integers into the symbolic matrix A.
3: if (|A′| 6= 0) then
4: A is not singular.
5: else
6: A is probably singular.
7: end if

Algorithm 2.11: The Non-Singularity Checking Algorithm

Subramani Complexity Classes

Randomized Algorithms
Randomized Complexity Classes

Three paradigmatic problems
2SAT
Min-Cut
Non-singularity of a Symbolic Matrix

Analysis

Error bound

The probability that Algorithm 2.9 declares that a non-singular matrix is singular is

precisely m·d·(2·m·d)m−1

(2md)m = 1
2 .

Complexity of non-singularity checking in symbolic matrices

Not only is this problem not known to be in P, it is rather unlikely that it will be.

Subramani Complexity Classes

Randomized Algorithms
Randomized Complexity Classes

Three paradigmatic problems
2SAT
Min-Cut
Non-singularity of a Symbolic Matrix

Analysis

Error bound

The probability that Algorithm 2.9 declares that a non-singular matrix is singular is

precisely m·d·(2·m·d)m−1

(2md)m = 1
2 .

Complexity of non-singularity checking in symbolic matrices

Not only is this problem not known to be in P, it is rather unlikely that it will be.

Subramani Complexity Classes

Randomized Algorithms
Randomized Complexity Classes

Three paradigmatic problems
2SAT
Min-Cut
Non-singularity of a Symbolic Matrix

Analysis

Error bound

The probability that Algorithm 2.9 declares that a non-singular matrix is singular is

precisely m·d·(2·m·d)m−1

(2md)m = 1
2 .

Complexity of non-singularity checking in symbolic matrices

Not only is this problem not known to be in P, it is rather unlikely that it will be.

Subramani Complexity Classes

Randomized Algorithms
Randomized Complexity Classes

Randomized Complexity Classes

Note

The following definitions are from [1].

Definition

The class RP consists of all languages L ⊆ Σ∗ that have a randomized algorithm A
running in worst-case polynomial time, such that for any input x ∈ Σ∗,

x ∈ L⇒ Pr[A(x)] = “yes′′] ≥ 1
2 .

x 6∈ L⇒ Pr[A(x)] = “yes′′] = 0.

Observations

(i) Rejection is unanimous, acceptance is by majority.

(ii) Only positive-sided error is allowed.

(iii) The number 1
2 can be any fixed constant between 0 and 1, without affecting the

set of languages in RP.

(iv) The three paradigmatic problems are in RP.

Subramani Complexity Classes

Randomized Algorithms
Randomized Complexity Classes

Randomized Complexity Classes

Note

The following definitions are from [1].

Definition

The class RP consists of all languages L ⊆ Σ∗ that have a randomized algorithm A
running in worst-case polynomial time, such that for any input x ∈ Σ∗,

x ∈ L⇒ Pr[A(x)] = “yes′′] ≥ 1
2 .

x 6∈ L⇒ Pr[A(x)] = “yes′′] = 0.

Observations

(i) Rejection is unanimous, acceptance is by majority.

(ii) Only positive-sided error is allowed.

(iii) The number 1
2 can be any fixed constant between 0 and 1, without affecting the

set of languages in RP.

(iv) The three paradigmatic problems are in RP.

Subramani Complexity Classes

Randomized Algorithms
Randomized Complexity Classes

Randomized Complexity Classes

Note

The following definitions are from [1].

Definition

The class RP consists of all languages L ⊆ Σ∗ that have a randomized algorithm A
running in worst-case polynomial time, such that for any input x ∈ Σ∗,

x ∈ L⇒ Pr[A(x)] = “yes′′] ≥ 1
2 .

x 6∈ L⇒ Pr[A(x)] = “yes′′] = 0.

Observations

(i) Rejection is unanimous, acceptance is by majority.

(ii) Only positive-sided error is allowed.

(iii) The number 1
2 can be any fixed constant between 0 and 1, without affecting the

set of languages in RP.

(iv) The three paradigmatic problems are in RP.

Subramani Complexity Classes

Randomized Algorithms
Randomized Complexity Classes

Randomized Complexity Classes

Note

The following definitions are from [1].

Definition

The class RP consists of all languages L ⊆ Σ∗ that have a randomized algorithm A
running in worst-case polynomial time, such that for any input x ∈ Σ∗,

x ∈ L⇒ Pr[A(x)] = “yes′′] ≥ 1
2 .

x 6∈ L⇒ Pr[A(x)] = “yes′′] = 0.

Observations

(i) Rejection is unanimous, acceptance is by majority.

(ii) Only positive-sided error is allowed.

(iii) The number 1
2 can be any fixed constant between 0 and 1, without affecting the

set of languages in RP.

(iv) The three paradigmatic problems are in RP.

Subramani Complexity Classes

Randomized Algorithms
Randomized Complexity Classes

Randomized Complexity Classes

Note

The following definitions are from [1].

Definition

The class RP consists of all languages L ⊆ Σ∗ that have a randomized algorithm A
running in worst-case polynomial time, such that for any input x ∈ Σ∗,

x ∈ L⇒ Pr[A(x)] = “yes′′] ≥ 1
2 .

x 6∈ L⇒ Pr[A(x)] = “yes′′] = 0.

Observations

(i) Rejection is unanimous, acceptance is by majority.

(ii) Only positive-sided error is allowed.

(iii) The number 1
2 can be any fixed constant between 0 and 1, without affecting the

set of languages in RP.

(iv) The three paradigmatic problems are in RP.

Subramani Complexity Classes

Randomized Algorithms
Randomized Complexity Classes

Randomized Complexity Classes (contd.)

Definition

A language L ⊆ Σ∗ is in coRP, if its complement is in RP.

Definition

A language L ⊆ Σ∗ is in ZPP is it is in RP ∩ coRP.

Definition

A language L ⊆ Σ∗ is in PP, if there exists a randomized algorithm A running in
worst-case polynomial time, such that for any input x ∈ Σ∗,

x ∈ L⇒ Pr[A(x)] = “yes′′] > 1
2 .

x 6∈ L⇒ Pr[A(x)] = “yes′′] < 1
2 .

Note

The problem MAJSAT is defined as follows: Given a formula in CNF, is it the case that
the majority of the 2n assignments satisfy it? MAJSAT is the quintessential PP problem;
in fact, it is PP-complete.

Subramani Complexity Classes

Randomized Algorithms
Randomized Complexity Classes

Randomized Complexity Classes (contd.)

Definition

A language L ⊆ Σ∗ is in coRP, if its complement is in RP.

Definition

A language L ⊆ Σ∗ is in ZPP is it is in RP ∩ coRP.

Definition

A language L ⊆ Σ∗ is in PP, if there exists a randomized algorithm A running in
worst-case polynomial time, such that for any input x ∈ Σ∗,

x ∈ L⇒ Pr[A(x)] = “yes′′] > 1
2 .

x 6∈ L⇒ Pr[A(x)] = “yes′′] < 1
2 .

Note

The problem MAJSAT is defined as follows: Given a formula in CNF, is it the case that
the majority of the 2n assignments satisfy it? MAJSAT is the quintessential PP problem;
in fact, it is PP-complete.

Subramani Complexity Classes

Randomized Algorithms
Randomized Complexity Classes

Randomized Complexity Classes (contd.)

Definition

A language L ⊆ Σ∗ is in coRP, if its complement is in RP.

Definition

A language L ⊆ Σ∗ is in ZPP is it is in RP ∩ coRP.

Definition

A language L ⊆ Σ∗ is in PP, if there exists a randomized algorithm A running in
worst-case polynomial time, such that for any input x ∈ Σ∗,

x ∈ L⇒ Pr[A(x)] = “yes′′] > 1
2 .

x 6∈ L⇒ Pr[A(x)] = “yes′′] < 1
2 .

Note

The problem MAJSAT is defined as follows: Given a formula in CNF, is it the case that
the majority of the 2n assignments satisfy it? MAJSAT is the quintessential PP problem;
in fact, it is PP-complete.

Subramani Complexity Classes

Randomized Algorithms
Randomized Complexity Classes

Randomized Complexity Classes (contd.)

Definition

A language L ⊆ Σ∗ is in coRP, if its complement is in RP.

Definition

A language L ⊆ Σ∗ is in ZPP is it is in RP ∩ coRP.

Definition

A language L ⊆ Σ∗ is in PP, if there exists a randomized algorithm A running in
worst-case polynomial time, such that for any input x ∈ Σ∗,

x ∈ L⇒ Pr[A(x)] = “yes′′] > 1
2 .

x 6∈ L⇒ Pr[A(x)] = “yes′′] < 1
2 .

Note

The problem MAJSAT is defined as follows: Given a formula in CNF, is it the case that
the majority of the 2n assignments satisfy it? MAJSAT is the quintessential PP problem;
in fact, it is PP-complete.

Subramani Complexity Classes

Randomized Algorithms
Randomized Complexity Classes

Randomized Complexity Classes (contd.)

Definition

A language L ⊆ Σ∗ is in coRP, if its complement is in RP.

Definition

A language L ⊆ Σ∗ is in ZPP is it is in RP ∩ coRP.

Definition

A language L ⊆ Σ∗ is in PP, if there exists a randomized algorithm A running in
worst-case polynomial time, such that for any input x ∈ Σ∗,

x ∈ L⇒ Pr[A(x)] = “yes′′] > 1
2 .

x 6∈ L⇒ Pr[A(x)] = “yes′′] < 1
2 .

Note

The problem MAJSAT is defined as follows: Given a formula in CNF, is it the case that
the majority of the 2n assignments satisfy it? MAJSAT is the quintessential PP problem;
in fact, it is PP-complete.

Subramani Complexity Classes

Randomized Algorithms
Randomized Complexity Classes

Randomized Complexity Classes (contd.)

Definition

A language L ⊆ Σ∗ is in coRP, if its complement is in RP.

Definition

A language L ⊆ Σ∗ is in ZPP is it is in RP ∩ coRP.

Definition

A language L ⊆ Σ∗ is in PP, if there exists a randomized algorithm A running in
worst-case polynomial time, such that for any input x ∈ Σ∗,

x ∈ L⇒ Pr[A(x)] = “yes′′] > 1
2 .

x 6∈ L⇒ Pr[A(x)] = “yes′′] < 1
2 .

Note

The problem MAJSAT is defined as follows: Given a formula in CNF, is it the case that
the majority of the 2n assignments satisfy it? MAJSAT is the quintessential PP problem;
in fact, it is PP-complete.

Subramani Complexity Classes

Randomized Algorithms
Randomized Complexity Classes

Randomized Complexity Classes (contd.)

Definition

A language L ⊆ Σ∗ is in BPP, if there exists a randomized algorithm A running in
worst-case polynomial time, such that for any input x ∈ Σ∗,

x ∈ L⇒ Pr[A(x)] = “yes′′] ≥ 3
4 .

x 6∈ L⇒ Pr[A(x)] = “yes′′] ≤ 1
4 .

Alternative view of RP

RP denotes the set of languages L which can be decided by a polynomially bounded
non-deterministic Turing machine N in the following manner: For each input x , if x ∈ L,
then at least half the computations of N on x end in accepting leaves and if x 6∈ L, the
all computations of N on x end in rejecting leaves. WIthout loss of generality, we may
assume that the degree of non-determinism is exactly 2 at each node of the
computation tree.

Subramani Complexity Classes

Randomized Algorithms
Randomized Complexity Classes

Randomized Complexity Classes (contd.)

Definition

A language L ⊆ Σ∗ is in BPP, if there exists a randomized algorithm A running in
worst-case polynomial time, such that for any input x ∈ Σ∗,

x ∈ L⇒ Pr[A(x)] = “yes′′] ≥ 3
4 .

x 6∈ L⇒ Pr[A(x)] = “yes′′] ≤ 1
4 .

Alternative view of RP

RP denotes the set of languages L which can be decided by a polynomially bounded
non-deterministic Turing machine N in the following manner: For each input x , if x ∈ L,
then at least half the computations of N on x end in accepting leaves and if x 6∈ L, the
all computations of N on x end in rejecting leaves. WIthout loss of generality, we may
assume that the degree of non-determinism is exactly 2 at each node of the
computation tree.

Subramani Complexity Classes

Randomized Algorithms
Randomized Complexity Classes

Randomized Complexity Classes (contd.)

Definition

A language L ⊆ Σ∗ is in BPP, if there exists a randomized algorithm A running in
worst-case polynomial time, such that for any input x ∈ Σ∗,

x ∈ L⇒ Pr[A(x)] = “yes′′] ≥ 3
4 .

x 6∈ L⇒ Pr[A(x)] = “yes′′] ≤ 1
4 .

Alternative view of RP

RP denotes the set of languages L which can be decided by a polynomially bounded
non-deterministic Turing machine N in the following manner: For each input x , if x ∈ L,
then at least half the computations of N on x end in accepting leaves and if x 6∈ L, the
all computations of N on x end in rejecting leaves. WIthout loss of generality, we may
assume that the degree of non-determinism is exactly 2 at each node of the
computation tree.

Subramani Complexity Classes

Randomized Algorithms
Randomized Complexity Classes

Randomized Complexity Classes (contd.)

Definition

A language L ⊆ Σ∗ is in BPP, if there exists a randomized algorithm A running in
worst-case polynomial time, such that for any input x ∈ Σ∗,

x ∈ L⇒ Pr[A(x)] = “yes′′] ≥ 3
4 .

x 6∈ L⇒ Pr[A(x)] = “yes′′] ≤ 1
4 .

Alternative view of RP

RP denotes the set of languages L which can be decided by a polynomially bounded
non-deterministic Turing machine N in the following manner: For each input x , if x ∈ L,
then at least half the computations of N on x end in accepting leaves and if x 6∈ L, the
all computations of N on x end in rejecting leaves. WIthout loss of generality, we may
assume that the degree of non-determinism is exactly 2 at each node of the
computation tree.

Subramani Complexity Classes

Randomized Algorithms
Randomized Complexity Classes

Relations between complexity classes

Observations

(i) P ⊆ RP ⊆ NP.

(ii) P ⊆ coRP ⊆ coNP.

(iii) RP ⊆ BPP ⊆ PP.

Theorem

NP ⊆ PP.

Proof.

Let L be accepted by an NDTM N in polynomial time p().
Build an NDTM N′ which contains a new initial state, with branching factor 2. One
branch moves to N and the other branch which has exactly the same number of
computations as N leads only to leaves which are all “accepting”. If x ∈ L, N′ accepts
with clear majority! If x 6∈ L, then N(x ′) does not have a clear majority of accepting
computations and hence N′ rejects.

Subramani Complexity Classes

Randomized Algorithms
Randomized Complexity Classes

Relations between complexity classes

Observations

(i) P ⊆ RP ⊆ NP.

(ii) P ⊆ coRP ⊆ coNP.

(iii) RP ⊆ BPP ⊆ PP.

Theorem

NP ⊆ PP.

Proof.

Let L be accepted by an NDTM N in polynomial time p().
Build an NDTM N′ which contains a new initial state, with branching factor 2. One
branch moves to N and the other branch which has exactly the same number of
computations as N leads only to leaves which are all “accepting”. If x ∈ L, N′ accepts
with clear majority! If x 6∈ L, then N(x ′) does not have a clear majority of accepting
computations and hence N′ rejects.

Subramani Complexity Classes

Randomized Algorithms
Randomized Complexity Classes

Relations between complexity classes

Observations

(i) P ⊆ RP ⊆ NP.

(ii) P ⊆ coRP ⊆ coNP.

(iii) RP ⊆ BPP ⊆ PP.

Theorem

NP ⊆ PP.

Proof.

Let L be accepted by an NDTM N in polynomial time p().
Build an NDTM N′ which contains a new initial state, with branching factor 2. One
branch moves to N and the other branch which has exactly the same number of
computations as N leads only to leaves which are all “accepting”. If x ∈ L, N′ accepts
with clear majority! If x 6∈ L, then N(x ′) does not have a clear majority of accepting
computations and hence N′ rejects.

Subramani Complexity Classes

Randomized Algorithms
Randomized Complexity Classes

Relations between complexity classes

Observations

(i) P ⊆ RP ⊆ NP.

(ii) P ⊆ coRP ⊆ coNP.

(iii) RP ⊆ BPP ⊆ PP.

Theorem

NP ⊆ PP.

Proof.

Let L be accepted by an NDTM N in polynomial time p().
Build an NDTM N′ which contains a new initial state, with branching factor 2. One
branch moves to N and the other branch which has exactly the same number of
computations as N leads only to leaves which are all “accepting”. If x ∈ L, N′ accepts
with clear majority! If x 6∈ L, then N(x ′) does not have a clear majority of accepting
computations and hence N′ rejects.

Subramani Complexity Classes

Randomized Algorithms
Randomized Complexity Classes

Relations between complexity classes

Observations

(i) P ⊆ RP ⊆ NP.

(ii) P ⊆ coRP ⊆ coNP.

(iii) RP ⊆ BPP ⊆ PP.

Theorem

NP ⊆ PP.

Proof.

Let L be accepted by an NDTM N in polynomial time p().
Build an NDTM N′ which contains a new initial state, with branching factor 2. One
branch moves to N and the other branch which has exactly the same number of
computations as N leads only to leaves which are all “accepting”. If x ∈ L, N′ accepts
with clear majority! If x 6∈ L, then N(x ′) does not have a clear majority of accepting
computations and hence N′ rejects.

Subramani Complexity Classes

Randomized Algorithms
Randomized Complexity Classes

Relations between complexity classes

Observations

(i) P ⊆ RP ⊆ NP.

(ii) P ⊆ coRP ⊆ coNP.

(iii) RP ⊆ BPP ⊆ PP.

Theorem

NP ⊆ PP.

Proof.

Let L be accepted by an NDTM N in polynomial time p().
Build an NDTM N′ which contains a new initial state, with branching factor 2. One
branch moves to N and the other branch which has exactly the same number of
computations as N leads only to leaves which are all “accepting”. If x ∈ L, N′ accepts
with clear majority! If x 6∈ L, then N(x ′) does not have a clear majority of accepting
computations and hence N′ rejects.

Subramani Complexity Classes

Randomized Algorithms
Randomized Complexity Classes

Relations between complexity classes

Observations

(i) P ⊆ RP ⊆ NP.

(ii) P ⊆ coRP ⊆ coNP.

(iii) RP ⊆ BPP ⊆ PP.

Theorem

NP ⊆ PP.

Proof.

Let L be accepted by an NDTM N in polynomial time p().
Build an NDTM N′ which contains a new initial state, with branching factor 2. One
branch moves to N and the other branch which has exactly the same number of
computations as N leads only to leaves which are all “accepting”. If x ∈ L, N′ accepts
with clear majority! If x 6∈ L, then N(x ′) does not have a clear majority of accepting
computations and hence N′ rejects.

Subramani Complexity Classes

Randomized Algorithms
Randomized Complexity Classes

Relations between complexity classes

Observations

(i) P ⊆ RP ⊆ NP.

(ii) P ⊆ coRP ⊆ coNP.

(iii) RP ⊆ BPP ⊆ PP.

Theorem

NP ⊆ PP.

Proof.

Let L be accepted by an NDTM N in polynomial time p().
Build an NDTM N′ which contains a new initial state, with branching factor 2. One
branch moves to N and the other branch which has exactly the same number of
computations as N leads only to leaves which are all “accepting”. If x ∈ L, N′ accepts
with clear majority! If x 6∈ L, then N(x ′) does not have a clear majority of accepting
computations and hence N′ rejects.

Subramani Complexity Classes

Randomized Algorithms
Randomized Complexity Classes

Relations between complexity classes

Observations

(i) P ⊆ RP ⊆ NP.

(ii) P ⊆ coRP ⊆ coNP.

(iii) RP ⊆ BPP ⊆ PP.

Theorem

NP ⊆ PP.

Proof.

Let L be accepted by an NDTM N in polynomial time p().
Build an NDTM N′ which contains a new initial state, with branching factor 2. One
branch moves to N and the other branch which has exactly the same number of
computations as N leads only to leaves which are all “accepting”. If x ∈ L, N′ accepts
with clear majority! If x 6∈ L, then N(x ′) does not have a clear majority of accepting
computations and hence N′ rejects.

Subramani Complexity Classes

Randomized Algorithms
Randomized Complexity Classes

The Complexity Picture

P

ZPP

RPcoRP BPP

NPcoNP

PP

Subramani Complexity Classes

Randomized Algorithms
Randomized Complexity Classes

Rajeev Motwani and Prabhakar Raghavan.
Randomized Algorithms.
Cambridge University Press, Cambridge, England, June 1995.

Subramani Complexity Classes

	Outline
	Main Talk
	Randomized Algorithms
	Three paradigmatic problems
	2SAT
	Min-Cut
	Non-singularity of a Symbolic Matrix

	Randomized Complexity Classes

