Randomized Computation

K. Subramani¹

¹Lane Department of Computer Science and Electrical Engineering West Virginia University

March 27, 2009

Outline

Outline

Randomized Algorithms

- Three paradigmatic problems
- 2SAT
- Min-Cut
- Non-singularity of a Symbolic Matrix

Outline

Outline

Randomized Algorithms

- Three paradigmatic problems
- 2SAT
- Min-Cut
- Non-singularity of a Symbolic Matrix

2 Randomized Complexity Classes

Three paradigmatic problems 2SAT Min-Cut Non-singularity of a Symbolic Matrix

Outline

Randomized Algorithms

Three paradigmatic problems

- 2SAT
- Min-Cut
- Non-singularity of a Symbolic Matrix

Randomized Complexity Classes

Three paradigmatic problems 2SAT Min-Cut Non-singularity of a Symbolic Matrix

Three paradigmatic problems

How useful is randomized computation?

- (i) 2SAT.
- (ii) Min-Cut.
- (iii) Non-singularity of a symbolic square matrix.

Three paradigmatic problems **2SAT** Min-Cut Non-singularity of a Symbolic Matrix

Outline

Randomized Algorithms

- Three paradigmatic problems
- 2SAT
- Min-Cut
- Non-singularity of a Symbolic Matrix

Randomized Complexity Classes

Three paradigmatic problems **2SAT** Min-Cut Non-singularity of a Symbolic Matrix

Problem Description

Goal

Let $\phi = C_1 \land C_2 \land \ldots \land C_m$ denote a boolean formula in CNF over the boolean variables $\{x_1, x_2, \ldots, x_n\}$, such that each clause C_i has exactly two variables. Determine whether ϕ is satisfiable.

Note

2SAT can be solved in O(m + n) time using Tarjan's connected components algorithm. This algorithm is a variant of the reachability method discussed in class.

Three paradigmatic problems 2SAT Min-Cut Non-singularity of a Symbolic Matrix

Problem Description

Goal

Let $\phi = C_1 \land C_2 \land \ldots \land C_m$ denote a boolean formula in CNF over the boolean variables $\{x_1, x_2, \ldots, x_n\}$, such that each clause C_i has exactly two variables. Determine whether ϕ is satisfiable.

Note

2SAT can be solved in O(m + n) time using Tarjan's connected components algorithm. This algorithm is a variant of the reachability method discussed in class.

The 2CNF Algorithm

Three paradigmatic problems 2SAT Min-Cut Non-singularity of a Symbolic Matrix

Function SATISFIABILITY-TESTING(ϕ)

1: Start with an arbitrary assignment to the variables.

- 2: while (the current assignment is not satisfying) dc
- Pick an unsatisfied clause.
- Uniformly and at random flip the value assigned to one of its two literals (variables).
- 5: end while

Algorithm 2.1: Papadimitrious's randomized algorithm for 2CNF Satisfiability

Three paradigmatic problems **2SAT** Min-Cut Non-singularity of a Symbolic Matrix

Function SATISFIABILITY-TESTING(ϕ)

- 1: Start with an arbitrary assignment to the variables.
- 2: while (the current assignment is not satisfying) do
- 3: Pick an unsatisfied clause
- Uniformly and at random flip the value assigned to one of its two literals (variables).
- 5: end while

Algorithm 2.2: Papadimitrious's randomized algorithm for 2CNF Satisfiability

Three paradigmatic problems **2SAT** Min-Cut Non-singularity of a Symbolic Matrix

Function SATISFIABILITY-TESTING(ϕ)

- 1: Start with an arbitrary assignment to the variables.
- 2: while (the current assignment is not satisfying) do
- 3: Pick an unsatisfied clause.
- 4: Uniformly and at random flip the value assigned to one of its two literals (variables).
- 5: end while

Algorithm 2.3: Papadimitrious's randomized algorithm for 2CNF Satisfiability

Three paradigmatic problems **2SAT** Min-Cut Non-singularity of a Symbolic Matrix

Function SATISFIABILITY-TESTING(ϕ)

- 1: Start with an arbitrary assignment to the variables.
- 2: while (the current assignment is not satisfying) do
- 3: Pick an unsatisfied clause.
- 4: Uniformly and at random flip the value assigned to one of its two literals (variables).
- 5: end while

Algorithm 2.4: Papadimitrious's randomized algorithm for 2CNF Satisfiability

Three paradigmatic problems **2SAT** Min-Cut Non-singularity of a Symbolic Matrix

Function SATISFIABILITY-TESTING(ϕ)

- 1: Start with an arbitrary assignment to the variables.
- 2: while (the current assignment is not satisfying) do
- 3: Pick an unsatisfied clause.
- 4: Uniformly and at random flip the value assigned to one of its two literals (variables).
- 5: end while

Algorithm 2.5: Papadimitrious's randomized algorithm for 2CNF Satisfiability

Three paradigmatic problems **2SAT** Min-Cut Non-singularity of a Symbolic Matrix

Mathematical Preliminaries

Theorem

Let X and Y be two random variables. Then $\mathbf{E}[X] = \mathbf{E}[\mathbf{E}[X|Y]]$.

Theorem (Markov)

Let X be a non-negative random variable and let c > 0 denote a constant. Then $\mathbf{Pr}(X \ge c \cdot \mathbf{E}[X]) \le \frac{1}{c}$.

Three paradigmatic problems 2SAT Min-Cut Non-singularity of a Symbolic Matrix

Mathematical Preliminaries

Theorem

Let X and Y be two random variables. Then E[X] = E[E[X|Y]].

Theorem (Markov)

Let X be a non-negative random variable and let c > 0 denote a constant. Then $\Pr(X \ge c \cdot E[X]) \le \frac{1}{c}$.

Three paradigmatic problems 2SAT Min-Cut Non-singularity of a Symbolic Matrix

Analysis

Modeling as a random walk

Assume that ϕ is satisfiable and focus on a particular satisfying assignment \hat{T} . Let T denote the current assignment. We want to bound the expected number of steps before T is transformed into \hat{T} . Let t(i) denote the expected number of flips for T to become \hat{T} , assuming that T differs from \hat{T} in exactly i variables. It follows that,

$$\begin{aligned} t(0) &= 0\\ t(n) &= 1 + t(n-1)\\ t(i) &\leq \frac{1}{2}t(i-1) + \frac{1}{2}t(i+1) + 1, 0 < i < n \end{aligned}$$

Observation

Three paradigmatic problems **2SAT** Min-Cut Non-singularity of a Symbolic Matrix

Analysis

Modeling as a random walk

Assume that ϕ is satisfiable and focus on a particular satisfying assignment \hat{T} . Let T denote the current assignment. We want to bound the expected number of steps before T is transformed into \hat{T} .

Let t(i) denote the expected number of flips for T to become \hat{T} , assuming that T differs from \hat{T} in exactly *i* variables. It follows that,

$$t(0) = 0$$

$$t(n) = 1 + t(n-1)$$

$$t(i) \leq \frac{1}{2}t(i-1) + \frac{1}{2}t(i+1) + 1, 0 < i < n$$

Observation

Three paradigmatic problems 2SAT Min-Cut Non-singularity of a Symbolic Matrix

Analysis

Modeling as a random walk

Assume that ϕ is satisfiable and focus on a particular satisfying assignment \hat{T} . Let T denote the current assignment. We want to bound the expected number of steps before T is transformed into \hat{T} .

Let t(i) denote the expected number of flips for T to become \hat{T} , assuming that T differs from \hat{T} in exactly *i* variables. It follows that,

$$t(0) = 0$$

$$t(n) = 1 + t(n-1)$$

$$t(i) \leq \frac{1}{2}t(i-1) + \frac{1}{2}t(i+1) + 1, 0 < i < n$$

Observation

Three paradigmatic problems 2SAT Min-Cut Non-singularity of a Symbolic Matrix

Analysis

Modeling as a random walk

Assume that ϕ is satisfiable and focus on a particular satisfying assignment \hat{T} . Let T denote the current assignment. We want to bound the expected number of steps before T is transformed into \hat{T} .

Let t(i) denote the expected number of flips for T to become \hat{T} , assuming that T differs from \hat{T} in exactly *i* variables. It follows that,

$$t(0) = 0$$

$$t(n) = 1 + t(n-1)$$

$$t(i) \leq \frac{1}{2}t(i-1) + \frac{1}{2}t(i+1) + 1, 0 < i < n$$

Observation

Analysis

Modeling as a random walk

Assume that ϕ is satisfiable and focus on a particular satisfying assignment \hat{T} . Let T denote the current assignment. We want to bound the expected number of steps before T is transformed into \hat{T} .

Let t(i) denote the expected number of flips for T to become \hat{T} , assuming that T differs from \hat{T} in exactly *i* variables. It follows that,

$$t(0) = 0$$

$$t(n) = 1 + t(n-1)$$

$$t(i) \leq \frac{1}{2}t(i-1) + \frac{1}{2}t(i+1) + 1, 0 < i < n$$

Observation

Analysis

Modeling as a random walk

Assume that ϕ is satisfiable and focus on a particular satisfying assignment \hat{T} . Let T denote the current assignment. We want to bound the expected number of steps before T is transformed into \hat{T} .

Let t(i) denote the expected number of flips for T to become \hat{T} , assuming that T differs from \hat{T} in exactly *i* variables. It follows that,

$$t(0) = 0$$

$$t(n) = 1 + t(n-1)$$

$$t(i) \leq \frac{1}{2}t(i-1) + \frac{1}{2}t(i+1) + 1, 0 < i < n$$

Observation

Analysis

Modeling as a random walk

Assume that ϕ is satisfiable and focus on a particular satisfying assignment \hat{T} . Let T denote the current assignment. We want to bound the expected number of steps before T is transformed into \hat{T} .

Let t(i) denote the expected number of flips for T to become \hat{T} , assuming that T differs from \hat{T} in exactly *i* variables. It follows that,

$$t(0) = 0$$

$$t(n) = 1 + t(n-1)$$

$$t(i) \leq \frac{1}{2}t(i-1) + \frac{1}{2}t(i+1) + 1, 0 < i < n$$

Observation

Analysis

Modeling as a random walk

Assume that ϕ is satisfiable and focus on a particular satisfying assignment \hat{T} . Let T denote the current assignment. We want to bound the expected number of steps before T is transformed into \hat{T} .

Let t(i) denote the expected number of flips for T to become \hat{T} , assuming that T differs from \hat{T} in exactly *i* variables. It follows that,

$$t(0) = 0$$

$$t(n) = 1 + t(n-1)$$

$$t(i) \leq \frac{1}{2}t(i-1) + \frac{1}{2}t(i+1) + 1, 0 < i < n$$

Observation

Three paradigmatic problems 2SAT Min-Cut Non-singularity of a Symbolic Matri

Outline

Randomized Algorithms

- Three paradigmatic problems
- 2SAT
- Min-Cut
- Non-singularity of a Symbolic Matrix

Problem Description

Goal

Given an unweighted, undirected graph $G = \langle, V, E \rangle$, find the smallest cardinality set $E' \subseteq E$, such that $G = \langle V, E - E' \rangle$ has at least two components. Also called edge connectivity.

Note

Min-Cut can be solved in polynomial time using network flow techniques.

Observation

Problem Description

Goal

Given an unweighted, undirected graph $G = \langle, V, E \rangle$, find the smallest cardinality set $E' \subseteq E$, such that $G = \langle V, E - E' \rangle$ has at least two components. Also called edge connectivity.

Note

Min-Cut can be solved in polynomial time using network flow techniques.

Observation

Problem Description

Goal

Given an unweighted, undirected graph $G = \langle, V, E \rangle$, find the smallest cardinality set $E' \subseteq E$, such that $G = \langle V, E - E' \rangle$ has at least two components. Also called edge connectivity.

Note

Min-Cut can be solved in polynomial time using network flow techniques.

Observation

Problem Description

Goal

Given an unweighted, undirected graph $G = \langle, V, E \rangle$, find the smallest cardinality set $E' \subseteq E$, such that $G = \langle V, E - E' \rangle$ has at least two components. Also called edge connectivity.

Note

Min-Cut can be solved in polynomial time using network flow techniques.

Observation

Three paradigmatic problems 2SAT Min-Cut Non-singularity of a Symbolic Matrix

Edge contraction

Procedure

- (i) Identify the vertices corresponding to an edge, i.e., make them into one large vertex.
- (ii) Remove all self-loops, if formed.
- (iii) Maintain all parallel edges, if formed.

Observation

Edge contraction

Procedure

(i) Identify the vertices corresponding to an edge, i.e., make them into one large vertex.

- (ii) Remove all self-loops, if formed.
- (iii) Maintain all parallel edges, if formed.

Observation

Edge contraction

Procedure

- (i) Identify the vertices corresponding to an edge, i.e., make them into one large vertex.
- (ii) Remove all self-loops, if formed.
- iii) Maintain all parallel edges, if formed.

Observation

Edge contraction

Three paradigmatic problems 2SAT Min-Cut Non-singularity of a Symbolic Matrix

Procedure

- (i) Identify the vertices corresponding to an edge, i.e., make them into one large vertex.
- (ii) Remove all self-loops, if formed.
- (iii) Maintain all parallel edges, if formed.

Observation

Edge contraction

Procedure

- (i) Identify the vertices corresponding to an edge, i.e., make them into one large vertex.
- (ii) Remove all self-loops, if formed.
- (iii) Maintain all parallel edges, if formed.

Observation

Three paradigmatic problems 2SAT Min-Cut Non-singularity of a Symbolic Matrix

The Min-Cut Algorithm

Function MIN-CUT($G = \langle (V, E \rangle)$

1: while (G has more than 2 vertices do) do

- 2: Select an edge uniformly and at random, and contract it.
- 3: end while
- 4: return(The cut determined by the two remaining vertices)

Algorithm 2.6: Karger's Min-Cut Algorithm

Three paradigmatic problems 2SAT Min-Cut Non-singularity of a Symbolic Matrix

The Min-Cut Algorithm

Function MIN-CUT($G = \langle (V, E \rangle)$

- 1: while (G has more than 2 vertices do) do
- 2: Select an edge uniformly and at random, and contract it.
- 3: end while
- 4: return(The cut determined by the two remaining vertices)

Algorithm 2.7: Karger's Min-Cut Algorithm

Three paradigmatic problems 2SAT Min-Cut Non-singularity of a Symbolic Matrix

The Min-Cut Algorithm

Function MIN-CUT($G = \langle (V, E \rangle)$

- 1: while (G has more than 2 vertices do) do
- 2: Select an edge uniformly and at random, and contract it.
- 3: end while
- 4: return(The cut determined by the two remaining vertices)

Algorithm 2.8: Karger's Min-Cut Algorithm
Three paradigmatic problems 2SAT Min-Cut Non-singularity of a Symbolic Matrix

Mathematical Preliminaries

Theorem

Let E_1, E_2, \ldots, E_k denote a collection of k events on some sample space. Then

 $\mathbf{Pr}(\cap_{i=1}^{n} E_i) = \mathbf{Pr}(E_1) \times \mathbf{Pr}(E_2 | E_1) \times \mathbf{Pr}(E_3 | (E_1 \cap E_2) \dots \times \mathbf{Pr}(E_k | \cap_{i=1}^{k-1} E_i).$

Proof.

By definition,

$$\mathbf{Pr}(E_2|E_1) = \frac{\mathbf{Pr}(E_1 \cap E_2)}{\mathbf{Pr}(E_1)}$$

$$\Rightarrow \mathbf{Pr}(E_1 \cap E_2) = \mathbf{Pr}(E_1) \cdot \mathbf{Pr}(E_2|E_1).$$

Now use induction!

Three paradigmatic problems 2SAT Min-Cut Non-singularity of a Symbolic Matrix

Mathematical Preliminaries

Theorem

Let E_1, E_2, \ldots, E_k denote a collection of k events on some sample space. Then

 $\mathbf{Pr}(\cap_{i=1}^{n} E_i) = \mathbf{Pr}(E_1) \times \mathbf{Pr}(E_2|E_1) \times \mathbf{Pr}(E_3|(E_1 \cap E_2) \dots \times \mathbf{Pr}(E_k|\cap_{i=1}^{k-1} E_i)).$

Proof.

By definition,

$$\mathbf{Pr}(E_2|E_1) = \frac{\mathbf{Pr}(E_1 \cap E_2)}{\mathbf{Pr}(E_1)}$$

$$\Rightarrow \mathbf{Pr}(E_1 \cap E_2) = \mathbf{Pr}(E_1) \cdot \mathbf{Pr}(E_2|E_1).$$

Now use induction

Three paradigmatic problems 2SAT Min-Cut Non-singularity of a Symbolic Matrix

Mathematical Preliminaries

Theorem

Let E_1, E_2, \ldots, E_k denote a collection of k events on some sample space. Then

 $\mathbf{Pr}(\cap_{i=1}^{n} E_i) = \mathbf{Pr}(E_1) \times \mathbf{Pr}(E_2|E_1) \times \mathbf{Pr}(E_3|(E_1 \cap E_2) \dots \times \mathbf{Pr}(E_k|\cap_{i=1}^{k-1} E_i)).$

Proof.

By definition,

$$\mathbf{Pr}(E_2|E_1) = \frac{\mathbf{Pr}(E_1 \cap E_2)}{\mathbf{Pr}(E_1)}$$

$$\Rightarrow \mathbf{Pr}(E_1 \cap E_2) = \mathbf{Pr}(E_1) \cdot \mathbf{Pr}(E_2|E_1).$$

Now use induction!

Three paradigmatic problems 2SAT Min-Cut Non-singularity of a Symbolic Matrix

Analysis

Steps

- (i) Focus on a specific Min-Cut C of G having exactly k edges.
- (ii) Clearly G must have at least $\frac{kn}{2}$ edges.
- (iii) Let E_i denote the event that no edge of C is picked for contraction during the ith iteration.
- (iv) Thus, $E = \bigcap_{i=1}^{n-1} E_i$ denotes the event that no edge of C is touched, i.e., the cut C survives.
- (v) The probability that an edge picked randomly in round 1 is in *C* is at most $\frac{k}{\frac{k_0}{2}}$ $\Pr(E_1) \ge (1 - \frac{2}{n}).$
- (vi) Let us now bound $\Pr(E_2|E_1)$. If E_1 has occurred, then after round 1, the graph has at least $\frac{k \cdot (n-1)}{2}$ edges. $\Rightarrow \Pr(E_2|E_1) \ge (1 \frac{2}{n-1})$.

(vii) Working in identical fashion, $\mathbf{Pr}(E_i | \cap_{j=1}^{i-1} E_j) \ge (1 - \frac{2}{(n-i+1)})$.

Analysis

Steps

- (i) Focus on a specific Min-Cut C of G having exactly k edges.
- (ii) Clearly G must have at least $\frac{kn}{2}$ edges.
- (iii) Let E_i denote the event that no edge of C is picked for contraction during the ith iteration.
- (iv) Thus, $E = \bigcap_{i=1}^{n-1} E_i$ denotes the event that no edge of *C* is touched, i.e., the cut *C* survives.
- (v) The probability that an edge picked randomly in round 1 is in *C* is at most $\frac{k}{\frac{k_0}{2}}$ $\Pr(E_1) > (1 - \frac{2}{2}).$
- (vi) Let us now bound $\Pr(E_2|E_1)$. If E_1 has occurred, then after round 1, the graph has at least $\frac{k \cdot (n-1)}{2}$ edges. $\Rightarrow \Pr(E_2|E_1) \ge (1 \frac{2}{n-1})$.

(vii) Working in identical fashion, $\mathbf{Pr}(E_i | \cap_{j=1}^{i-1} E_j) \ge (1 - \frac{2}{(n-i+1)})$.

Analysis

Steps

- (i) Focus on a specific Min-Cut C of G having exactly k edges.
- (ii) Clearly G must have at least $\frac{kn}{2}$ edges.
- (iii) Let E_i denote the event that no edge of *C* is picked for contraction during the *i*th *iteration.*
- (iv) Thus, $E = \bigcap_{i=1}^{n-1} E_i$ denotes the event that no edge of *C* is touched, i.e., the cut *C* survives.
- (v) The probability that an edge picked randomly in round 1 is in *C* is at most $\frac{k}{\frac{kn}{2}}$ $\Pr(E_1) \ge (1 - \frac{2}{n}).$
- (vi) Let us now bound $\Pr(E_2|E_1)$. If E_1 has occurred, then after round 1, the graph has at least $\frac{k \cdot (n-1)}{2}$ edges. $\Rightarrow \Pr(E_2|E_1) \ge (1 \frac{2}{n-1})$.

(vii) Working in identical fashion, $\Pr(E_i | \cap_{j=1}^{i-1} E_j) \ge (1 - \frac{2}{(n-i+1)})$.

Analysis

Steps

- (i) Focus on a specific Min-Cut C of G having exactly k edges.
- (ii) Clearly G must have at least $\frac{kn}{2}$ edges.
- (iii) Let E_i denote the event that no edge of C is picked for contraction during the *i*th *iteration.*
- (iv) Thus, $E = \bigcap_{i=1}^{n-1} E_i$ denotes the event that no edge of *C* is touched, i.e., the cut *C* survives.
- (v) The probability that an edge picked randomly in round 1 is in *C* is at most $\frac{k}{\frac{kn}{2}}$ **Pr**(*E*₁) > (1 - $\frac{2}{2}$)
- (vi) Let us now bound $\Pr(E_2|E_1)$. If E_1 has occurred, then after round 1, the graph has at least $\frac{k \cdot (n-1)}{2}$ edges. $\Rightarrow \Pr(E_2|E_1) \ge (1 \frac{2}{n-1})$.

(vii) Working in identical fashion, $\Pr(E_i | \cap_{j=1}^{i-1} E_j) \ge (1 - \frac{2}{(n-i+1)})$.

Analysis

Steps

- (i) Focus on a specific Min-Cut C of G having exactly k edges.
- (ii) Clearly G must have at least $\frac{kn}{2}$ edges.
- (iii) Let E_i denote the event that no edge of C is picked for contraction during the *i*th *iteration.*
- (iv) Thus, $E = \bigcap_{i=1}^{n-1} E_i$ denotes the event that no edge of *C* is touched, i.e., the cut *C* survives.
- (v) The probability that an edge picked randomly in round 1 is in C is at most $\frac{k}{kn}$.

$\Pr(E_1) \ge (1 - \frac{2}{n}).$

(vi) Let us now bound $\Pr(E_2|E_1)$. If E_1 has occurred, then after round 1, the graph has at least $\frac{k \cdot (n-1)}{2}$ edges. $\Rightarrow \Pr(E_2|E_1) \ge (1 - \frac{2}{n-1})$.

(vii) Working in identical fashion, $\Pr(E_i | \cap_{j=1}^{i-1} E_j) \ge (1 - \frac{2}{(n-i+1)})$.

Steps

- (i) Focus on a specific Min-Cut C of G having exactly k edges.
- (ii) Clearly G must have at least $\frac{kn}{2}$ edges.
- (iii) Let E_i denote the event that no edge of C is picked for contraction during the *i*th *iteration.*
- (iv) Thus, $E = \bigcap_{i=1}^{n-1} E_i$ denotes the event that no edge of *C* is touched, i.e., the cut *C* survives.
- (v) The probability that an edge picked randomly in round 1 is in C is at most $\frac{k}{kn}$.

 $\mathbf{Pr}(E_1) \geq (1 - \frac{2}{n}).$

(vi) Let us now bound $\Pr(E_2|E_1)$. If E_1 has occurred, then after round 1, the graph has at least $\frac{k \cdot (n-1)}{2}$ edges. $\Rightarrow \Pr(E_2|E_1) \ge (1 - \frac{2}{n-1})$.

vii) Working in identical fashion, $\Pr(E_i | \cap_{i=1}^{i-1} E_j) \ge (1 - \frac{2}{(n-i+1)})$.

Steps

- (i) Focus on a specific Min-Cut C of G having exactly k edges.
- (ii) Clearly G must have at least $\frac{kn}{2}$ edges.
- (iii) Let E_i denote the event that no edge of C is picked for contraction during the *i*th *iteration.*
- (iv) Thus, $E = \bigcap_{i=1}^{n-1} E_i$ denotes the event that no edge of *C* is touched, i.e., the cut *C* survives.
- (v) The probability that an edge picked randomly in round 1 is in C is at most $\frac{k}{kn}$.

 $\mathbf{Pr}(E_1) \geq (1-\tfrac{2}{n}).$

(vi) Let us now bound $\Pr(E_2|E_1)$. If E_1 has occurred, then after round 1, the graph has at least $\frac{k(n-1)}{2}$ edges. $\Rightarrow \Pr(E_2|E_1) \ge (1 - \frac{2}{n-1})$.

vii) Working in identical fashion, $\Pr(E_i | \cap_{i=1}^{i-1} E_j) \ge (1 - \frac{2}{(n-i+1)})$.

Steps

- (i) Focus on a specific Min-Cut C of G having exactly k edges.
- (ii) Clearly G must have at least $\frac{kn}{2}$ edges.
- (iii) Let E_i denote the event that no edge of C is picked for contraction during the *i*th *iteration.*
- (iv) Thus, $E = \bigcap_{i=1}^{n-1} E_i$ denotes the event that no edge of *C* is touched, i.e., the cut *C* survives.
- (v) The probability that an edge picked randomly in round 1 is in C is at most $\frac{k}{kn}$.

 $\mathbf{Pr}(E_1) \geq (1 - \frac{2}{n}).$

(vi) Let us now bound $\Pr(E_2|E_1)$. If E_1 has occurred, then after round 1, the graph has at least $\frac{k \cdot (n-1)}{2}$ edges. $\Rightarrow \Pr(E_2|E_1) \ge (1 - \frac{2}{n-1})$.

vii) Working in identical fashion, $\mathbf{Pr}(E_i | \cap_{i=1}^{i-1} E_i) \ge (1 - \frac{2}{(n-i+1)})$.

Steps

- (i) Focus on a specific Min-Cut C of G having exactly k edges.
- (ii) Clearly G must have at least $\frac{kn}{2}$ edges.
- (iii) Let E_i denote the event that no edge of C is picked for contraction during the *i*th *iteration.*
- (iv) Thus, $E = \bigcap_{i=1}^{n-1} E_i$ denotes the event that no edge of *C* is touched, i.e., the cut *C* survives.
- (v) The probability that an edge picked randomly in round 1 is in C is at most $\frac{k}{kn}$.

 $\mathbf{Pr}(E_1) \ge (1 - \frac{2}{n}).$

(vi) Let us now bound $\Pr(E_2|E_1)$. If E_1 has occurred, then after round 1, the graph has at least $\frac{k \cdot (n-1)}{2}$ edges. $\Rightarrow \Pr(E_2|E_1) \ge (1 - \frac{2}{n-1})$.

vii) Working in identical fashion, $\mathbf{Pr}(E_i | \cap_{i=1}^{i-1} E_i) \ge (1 - \frac{2}{(n-i+1)})$.

Steps

- (i) Focus on a specific Min-Cut C of G having exactly k edges.
- (ii) Clearly G must have at least $\frac{kn}{2}$ edges.
- (iii) Let E_i denote the event that no edge of C is picked for contraction during the *i*th *iteration.*
- (iv) Thus, $E = \bigcap_{i=1}^{n-1} E_i$ denotes the event that no edge of *C* is touched, i.e., the cut *C* survives.
- (v) The probability that an edge picked randomly in round 1 is in C is at most $\frac{k}{kn}$.

 $\mathbf{Pr}(E_1) \ge (1 - \frac{2}{n}).$

- (vi) Let us now bound $\Pr(E_2|E_1)$. If E_1 has occurred, then after round 1, the graph has at least $\frac{k \cdot (n-1)}{2}$ edges. $\Rightarrow \Pr(E_2|E_1) \ge (1 \frac{2}{n-1})$.
- (vii) Working in identical fashion, $\mathbf{Pr}(E_i | \bigcap_{j=1}^{i-1} E_j) \ge (1 \frac{2}{(n-i+1)}).$

Steps

- (i) Focus on a specific Min-Cut C of G having exactly k edges.
- (ii) Clearly G must have at least $\frac{kn}{2}$ edges.
- (iii) Let E_i denote the event that no edge of C is picked for contraction during the *i*th *iteration.*
- (iv) Thus, $E = \bigcap_{i=1}^{n-1} E_i$ denotes the event that no edge of *C* is touched, i.e., the cut *C* survives.
- (v) The probability that an edge picked randomly in round 1 is in C is at most $\frac{k}{kn}$.

 $\mathbf{Pr}(E_1) \ge (1 - \frac{2}{n}).$

- (vi) Let us now bound $\Pr(E_2|E_1)$. If E_1 has occurred, then after round 1, the graph has at least $\frac{k \cdot (n-1)}{2}$ edges. $\Rightarrow \Pr(E_2|E_1) \ge (1 \frac{2}{n-1})$.
- (vii) Working in identical fashion, $\mathbf{Pr}(E_i | \bigcap_{j=1}^{i-1} E_j) \ge (1 \frac{2}{(n-i+1)}).$

Three paradigmatic problems 2SAT Min-Cut Non-singularity of a Symbolic Matrix

Analysis (contd.)

Steps

(i) It follows that

$$\Pr(E) \geq \Pr(\bigcap_{i=1}^{n-2} E_i) \\ = \prod_{i=1}^{n-2} (1 - \frac{2}{(n-i+1)}) \\ = \frac{2}{n \cdot (n-1)} \\ \geq \frac{2}{n^2}$$

(ii) Thus, the probability that C survives all the contractions is at least $\frac{2}{r^2}$.

(iii) Thus, the probability that C does not survive all the contractions is at most (1 - ²/_{h²}).

Three paradigmatic problems 2SAT Min-Cut Non-singularity of a Symbolic Matrix

Analysis (contd.)

Steps

(i) It follows that

$$\Pr(E) \geq \Pr(\bigcap_{i=1}^{n-2} E_i) \\ = \prod_{i=1}^{n-2} (1 - \frac{2}{(n-i+1)}) \\ = \frac{2}{n \cdot (n-1)} \\ \geq \frac{2}{n^2}$$

(ii) Thus, the probability that C survives all the contractions is at least $\frac{2}{r^2}$.

(iii) Thus, the probability that C does not survive all the contractions is at most (1 - ²/_{n²}).

Three paradigmatic problems 2SAT Min-Cut Non-singularity of a Symbolic Matrix

Analysis (contd.)

Steps

(i) It follows that

$$\Pr(E) \geq \Pr(\bigcap_{i=1}^{n-2} E_i) \\ = \prod_{i=1}^{n-2} (1 - \frac{2}{(n-i+1)}) \\ = \frac{2}{n \cdot (n-1)} \\ \geq \frac{2}{n^2}$$

(ii) Thus, the probability that C survives all the contractions is at least $\frac{2}{r^2}$.

(iii) Thus, the probability that C does not survive all the contractions is at most (1 - ²/_{h²}).

Three paradigmatic problems 2SAT Min-Cut Non-singularity of a Symbolic Matrix

Analysis (contd.)

Steps

(i) It follows that

$$Pr(E) \geq Pr(\bigcap_{i=1}^{n-2} E_i) \\ = \prod_{i=1}^{n-2} (1 - \frac{2}{(n-i+1)}) \\ = \frac{2}{n \cdot (n-1)} \\ \geq \frac{2}{n^2}$$

(ii) Thus, the probability that C survives all the contractions is at least ²/_{n²}.
 (iii) Thus, the probability that C does not survive all the contractions is at most (1 - ²/_{n²}).

Three paradigmatic problems 2SAT Min-Cut Non-singularity of a Symbolic Matrix

Steps

Analysis (contd.)

(i) It follows that

$$Pr(E) \geq Pr(\bigcap_{i=1}^{n-2} E_i) \\ = \prod_{i=1}^{n-2} (1 - \frac{2}{(n-i+1)}) \\ = \frac{2}{n \cdot (n-1)} \\ \geq \frac{2}{n^2}$$

(ii) Thus, the probability that C survives all the contractions is at least $\frac{2}{n^2}$.

(iii) Thus, the probability that C does not survive all the contractions is at most $(1 - \frac{2}{n^2})$.

Three paradigmatic problems 2SAT Min-Cut Non-singularity of a Symbolic Matrix

Analysis (contd.)

Steps

(i) It follows that

$$\mathbf{Pr}(E) \geq \mathbf{Pr}(\bigcap_{i=1}^{n-2} E_i) \\
= \prod_{i=1}^{n-2} (1 - \frac{2}{(n-i+1)}) \\
= \frac{2}{n \cdot (n-1)} \\
\geq \frac{2}{n^2}$$

(ii) Thus, the probability that C survives all the contractions is at least $\frac{2}{n^2}$.

(iii) Thus, the probability that C does not survive all the contractions is at most $(1 - \frac{2}{n^2})$.

Analysis (contd.)

Three paradigmatic problems 2SAT Min-Cut Non-singularity of a Symbolic Matrix

Observation

If Karger's algorithm is run $\frac{n^2}{2}$ times on the same graph, the probability that *C* does not survive any of the runs is at most $(1 - \frac{2}{n^2})^{\frac{n^2}{2}} < \frac{1}{e}$. In other words, the probability that *C* is obtained after $\frac{n^2}{2}$ runs is at least $(1 - \frac{1}{e})$.

Note

Analysis (contd.)

Observation

If Karger's algorithm is run $\frac{n^2}{2}$ times on the same graph, the probability that *C* does not survive any of the runs is at most $(1 - \frac{2}{n^2})^{\frac{n^2}{2}} < \frac{1}{e}$.

Note

Analysis (contd.)

Observation

If Karger's algorithm is run $\frac{n^2}{2}$ times on the same graph, the probability that C does not survive any of the runs is at most $(1 - \frac{2}{n^2})^{\frac{n^2}{2}} < \frac{1}{e}$. In other words, the probability that C is obtained after $\frac{n^2}{2}$ runs is at least $(1 - \frac{1}{e})$.

Note

Analysis (contd.)

Observation

If Karger's algorithm is run $\frac{n^2}{2}$ times on the same graph, the probability that *C* does not survive any of the runs is at most $(1 - \frac{2}{n^2})^{\frac{n^2}{2}} < \frac{1}{e}$. In other words, the probability that *C* is obtained after $\frac{n^2}{2}$ runs is at least $(1 - \frac{1}{e})$.

Note

Min-Cut Non-singularity of a Symbolic Matrix

Outline

Randomized Algorithms

- Three paradigmatic problems
- 2SAT
- Min-Cut
- Non-singularity of a Symbolic Matrix

Problem Description

Definition

Given an $n \times n$ matrix **A**, the determinant of **A** denoted by $|\mathbf{A}|$ is defined as: $\sum_{\pi} \sigma(\pi) \Pi_{i=1}^{n} A_{i,\pi(i)}$, where the summation is over all the permutations of *n* elements and $\sigma(\pi)$ is +1 if π is the product of an even number of transpositions and -1 otherwise. A matrix is said to be singular, if its determinant is identically 0 and non-singular otherwise.

Definition

A symbolic matrix is a matrix whose entries are polynomials, e.g.,

Goal

Given a symbolic square matrix, check whether it is identically zero, i.e., regardless of the values of the variables, the determinant always evaluates to zero.

Problem Description

Definition

Given an $n \times n$ matrix **A**, the determinant of **A** denoted by $|\mathbf{A}|$ is defined as: $\sum_{\pi} \sigma(\pi) \Pi_{i=1}^{n} A_{i,\pi(i)}$, where the summation is over all the permutations of *n* elements and $\sigma(\pi)$ is +1 if π is the product of an even number of transpositions and -1 otherwise. A matrix is said to be singular, if its determinant is identically 0 and non-singular otherwise.

Definition

A symbolic matrix is a matrix whose entries are polynomials, e.g.,

$$\begin{pmatrix} a & a^2-1 \\ d+b & e-a \end{pmatrix}$$

Goal

Given a symbolic square matrix, check whether it is identically zero, i.e., regardless of the values of the variables, the determinant always evaluates to zero.

Problem Description

Definition

Given an $n \times n$ matrix **A**, the determinant of **A** denoted by $|\mathbf{A}|$ is defined as: $\sum_{\pi} \sigma(\pi) \Pi_{i=1}^{n} A_{i,\pi(i)}$, where the summation is over all the permutations of *n* elements and $\sigma(\pi)$ is +1 if π is the product of an even number of transpositions and -1 otherwise. A matrix is said to be singular, if its determinant is identically 0 and non-singular otherwise.

Definition

A symbolic matrix is a matrix whose entries are polynomials, e.g.,

Goal

Given a symbolic square matrix, check whether it is identically zero, i.e., regardless of the values of the variables, the determinant always evaluates to zero.

Three paradigmatic problems 2SAT Min-Cut Non-singularity of a Symbolic Matrix

Issues involved in non-singularity checking

- (i) Expansion is expensive!
- (ii) Gaussian elimination is also expensive.
- (iii) What is the complexity of this problem? Why?

Three paradigmatic problems 2SAT Min-Cut Non-singularity of a Symbolic Matrix

Issues involved in non-singularity checking

- (i) Expansion is expensive!
- (ii) Gaussian elimination is also expensive.
- (iii) What is the complexity of this problem? Why?

Three paradigmatic problems 2SAT Min-Cut Non-singularity of a Symbolic Matrix

Issues involved in non-singularity checking

- (i) Expansion is expensive!
- (ii) Gaussian elimination is also expensive.
- (iii) What is the complexity of this problem? Why?

Three paradigmatic problems 2SAT Min-Cut Non-singularity of a Symbolic Matrix

Issues involved in non-singularity checking

- (i) Expansion is expensive!
- (ii) Gaussian elimination is also expensive.
- (iii) What is the complexity of this problem? Why?

Three paradigmatic problems 2SAT Min-Cut Non-singularity of a Symbolic Matrix

Mathematical Preliminaries

Theorem

Let $\phi(x_1, x_2, ..., x_m)$ be a polynomial, not identically zero, in *m* variables, each having degree at most *d*. Let M > 0 denote an integer. Then the number of *m*-tuples $\langle z_1, z_2, ..., z_m \rangle \in \{0, 1, ..., M - 1\}^m$ such that $\phi(z_1, z_2, ..., z_m) = 0$ is at most $m \cdot d \cdot M^{m-1}$.

Three paradigmatic problems 2SAT Min-Cut Non-singularity of a Symbolic Matrix

Mathematical Preliminaries (contd.)

Proof.

If m = 1, the theorem is trivially true, as per the fundamental theorem of algebra! Assume true for m - 1 variables. Rewrite ϕ so that it is a polynomial in x_m with coefficients in $\{x_1, x_2, \ldots, x_{m-1}\}$, i.e., $\phi = (\phi_1(x_1, x_2, \ldots, x_{m-1}))x_m^d + (\phi_2(x_1, x_2, \ldots, x_{m-1}))x_m^{d-1} + \dots + (\phi_{d-1}(x_1, x_2, \ldots, x_{m-1}))x_m^1 + (\phi_d(x_1, x_2, \ldots, x_{m-1}))$.

Consider the following two cases:

- (i) φ₁(z) = 0. This means that z is a root of φ₁ and by induction, there are at most (m − 1) · d · M^{m−2} of these. For each of the M possible values of x_m, the first term will be zero. The total number of such possibilities is (m − 1) · d · M^{m−2} · M = (m − 1) · d · M^{m−1}.
- (ii) φ₁(z) ≠ 0. This means that φ(z) defines a polynomial in x_m with degree at most d. Observe that for each combination of x₁, x₂,..., x_{m-1} ∈ {0, 1,..., M − 1}, the resultant polynomial has at most d roots. Thus, the total number of zeros is at most d · M^{m-1}.

Thus, the total number of zeros for ϕ is at most $m\cdot d\cdot M^{m-1}$.

Three paradigmatic problems 2SAT Min-Cut Non-singularity of a Symbolic Matrix

Mathematical Preliminaries (contd.)

Proof.

If m = 1, the theorem is trivially true, as per the fundamental theorem of algebra! Assume true for m - 1 variables. Rewrite ϕ so that it is a polynomial in x_m with coefficients in $\{x_1, x_2, \ldots, x_{m-1}\}$, i.e.

- $\phi = (\phi_1(x_1, x_2, \dots, x_{m-1})) x_m^d + (\phi_2(x_1, x_2, \dots, x_{m-1})) x_m^{d-1} + \dots (\phi_{d-1}(x_1, x_2, \dots, x_{m-1})) x_1^n + (\phi_d(x_1, x_2, \dots, x_{m-1})).$ Let $\phi(z = \langle z_1, z_2, \dots, z_m \rangle) = 0.$ Consider the following two cases:
 - (i) φ₁(z) = 0. This means that z is a root of φ₁ and by induction, there are at most (m − 1) · d · M^{m−2} of these. For each of the M possible values of x_m, the first term will be zero. The total number of such possibilities is (m − 1) · d · M^{m−2} · M = (m − 1) · d · M^{m−1}.
- (ii) φ₁(z) ≠ 0. This means that φ(z) defines a polynomial in x_m with degree at most d. Observe that for each combination of x₁, x₂,..., x_{m-1} ∈ {0, 1,..., M − 1}, the resultant polynomial has at most d roots. Thus, the total number of zeros is at most d · M^{m-1}.

Thus, the total number of zeros for ϕ is at most $m\cdot d\cdot M^{m-1}$.

Three paradigmatic problems 2SAT Min-Cut Non-singularity of a Symbolic Matrix

Mathematical Preliminaries (contd.)

Proof.

If m = 1, the theorem is trivially true, as per the fundamental theorem of algebra! Assume true for m - 1 variables. Rewrite ϕ so that it is a polynomial in x_m with coefficients in $\{x_1, x_2, \ldots, x_{m-1}\}$, i.e.,

$$\phi = (\phi_1(x_1, x_2, \dots, x_{m-1}))x_m^d + (\phi_2(x_1, x_2, \dots, x_{m-1}))x_m^{d-1} + \dots (\phi_{d-1}(x_1, x_2, \dots, x_{m-1}))x_m^1 + (\phi_d(x_1, x_2, \dots, x_{m-1})).$$

Consider the following two cases:

- (i) φ₁(z) = 0. This means that z is a root of φ₁ and by induction, there are at most (m − 1) · d · M^{m−2} of these. For each of the M possible values of x_m, the first term will be zero. The total number of such possibilities is (m − 1) · d · M^{m−2} · M = (m − 1) · d · M^{m−1}.
- (ii) φ₁(z) ≠ 0. This means that φ(z) defines a polynomial in x_m with degree at most d. Observe that for each combination of x₁, x₂,..., x_{m-1} ∈ {0, 1,..., M − 1}, the resultant polynomial has at most d roots. Thus, the total number of zeros is at most d · M^{m-1}.

Thus, the total number of zeros for ϕ is at most $m\cdot d\cdot M^{m-1}$.
Three paradigmatic problems 2SAT Min-Cut Non-singularity of a Symbolic Matrix

Mathematical Preliminaries (contd.)

Proof.

If m = 1, the theorem is trivially true, as per the fundamental theorem of algebra! Assume true for m - 1 variables. Rewrite ϕ so that it is a polynomial in x_m with coefficients in $\{x_1, x_2, \dots, x_{m-1}\}$, i.e.,

$$\phi = (\phi_1(x_1, x_2, \dots, x_{m-1}))x_m^d + (\phi_2(x_1, x_2, \dots, x_{m-1}))x_m^{d-1} + \dots (\phi_{d-1}(x_1, x_2, \dots, x_{m-1}))x_m^1 + (\phi_d(x_1, x_2, \dots, x_{m-1})).$$
Let $\phi(z = \langle z_1, z_2, \dots, z_m \rangle) = 0.$

Consider the following two cases:

- (i) φ₁(z) = 0. This means that z is a root of φ₁ and by induction, there are at most (m − 1) · d · M^{m−2} of these. For each of the M possible values of x_m, the first term will be zero. The total number of such possibilities is (m − 1) · d · M^{m−2} · M = (m − 1) · d · M^{m−1}.
- (ii) φ₁(z) ≠ 0. This means that φ(z) defines a polynomial in x_m with degree at most d. Observe that for each combination of x₁, x₂,..., x_{m-1} ∈ {0, 1,..., M − 1}, the resultant polynomial has at most d roots. Thus, the total number of zeros is at most d · M^{m-1}.

Three paradigmatic problems 2SAT Min-Cut Non-singularity of a Symbolic Matrix

Mathematical Preliminaries (contd.)

Proof.

If m = 1, the theorem is trivially true, as per the fundamental theorem of algebra! Assume true for m - 1 variables. Rewrite ϕ so that it is a polynomial in x_m with coefficients in $\{x_1, x_2, \ldots, x_{m-1}\}$, i.e.,

$$\phi = (\phi_1(x_1, x_2, \dots, x_{m-1}))x_m^d + (\phi_2(x_1, x_2, \dots, x_{m-1}))x_m^{d-1} + \dots (\phi_{d-1}(x_1, x_2, \dots, x_{m-1}))x_m^1 + (\phi_d(x_1, x_2, \dots, x_{m-1})).$$
Let $\phi(z = \langle z_1, z_2, \dots, z_m \rangle) = 0.$
Consider the following two cases:

- (i) φ₁(z) = 0. This means that z is a root of φ₁ and by induction, there are at most (m − 1) · d · M^{m−2} of these. For each of the M possible values of x_m, the first term will be zero. The total number of such possibilities is (m − 1) · d · M^{m−2} · M = (m − 1) · d · M^{m−1}.
- (ii) φ₁(z) ≠ 0. This means that φ(z) defines a polynomial in x_m with degree at most d. Observe that for each combination of x₁, x₂,..., x_{m-1} ∈ {0, 1, ..., M − 1}, the resultant polynomial has at most d roots. Thus, the total number of zeros is at most d · M^{m-1}.

Three paradigmatic problems 2SAT Min-Cut Non-singularity of a Symbolic Matrix

Mathematical Preliminaries (contd.)

Proof.

If m = 1, the theorem is trivially true, as per the fundamental theorem of algebra! Assume true for m - 1 variables. Rewrite ϕ so that it is a polynomial in x_m with coefficients in $\{x_1, x_2, \ldots, x_{m-1}\}$, i.e.,

$$\phi = (\phi_1(x_1, x_2, \dots, x_{m-1}))x_m^d + (\phi_2(x_1, x_2, \dots, x_{m-1}))x_m^{d-1} + \dots (\phi_{d-1}(x_1, x_2, \dots, x_{m-1}))x_m^1 + (\phi_d(x_1, x_2, \dots, x_{m-1})).$$

Let $\phi(z = \langle z_1, z_2, \dots, z_m \rangle) = 0.$
Consider the following two cases:

- (i) $\phi_1(z) = 0$. This means that z is a root of ϕ_1 and by induction, there are at most $(m-1) \cdot d \cdot M^{m-2}$ of these. For each of the *M* possible values of x_m , the first term will be zero. The total number of such possibilities is $(m-1) \cdot d \cdot M^{m-2} \cdot M = (m-1) \cdot d \cdot M^{m-1}$.
- (ii) φ₁(z) ≠ 0. This means that φ(z) defines a polynomial in x_m with degree at most d. Observe that for each combination of x₁, x₂,..., x_{m-1} ∈ {0, 1,..., M-1}, the resultant polynomial has at most d roots. Thus, the total number of zeros is at most d · M^{m-1}.

Three paradigmatic problems 2SAT Min-Cut Non-singularity of a Symbolic Matrix

Mathematical Preliminaries (contd.)

Proof.

If m = 1, the theorem is trivially true, as per the fundamental theorem of algebra! Assume true for m - 1 variables. Rewrite ϕ so that it is a polynomial in x_m with coefficients in $\{x_1, x_2, \ldots, x_{m-1}\}$, i.e.,

$$\phi = (\phi_1(x_1, x_2, \dots, x_{m-1}))x_m^d + (\phi_2(x_1, x_2, \dots, x_{m-1}))x_m^{d-1} + \dots (\phi_{d-1}(x_1, x_2, \dots, x_{m-1}))x_m^1 + (\phi_d(x_1, x_2, \dots, x_{m-1})).$$

Let $\phi(z = \langle z_1, z_2, \dots, z_m \rangle) = 0.$
Consider the following two cases:

- (i) $\phi_1(z) = 0$. This means that z is a root of ϕ_1 and by induction, there are at most $(m-1) \cdot d \cdot M^{m-2}$ of these. For each of the *M* possible values of x_m , the first term will be zero. The total number of such possibilities is $(m-1) \cdot d \cdot M^{m-2} \cdot M = (m-1) \cdot d \cdot M^{m-1}$.
- (ii) φ₁(z) ≠ 0. This means that φ(z) defines a polynomial in x_m with degree at most d. Observe that for each combination of x₁, x₂,..., x_{m-1} ∈ {0, 1,..., M − 1}, the resultant polynomial has at most d roots. Thus, the total number of zeros is at most d · M^{m-1}.

Three paradigmatic problems 2SAT Min-Cut Non-singularity of a Symbolic Matrix

Mathematical Preliminaries (contd.)

Proof.

If m = 1, the theorem is trivially true, as per the fundamental theorem of algebra! Assume true for m - 1 variables. Rewrite ϕ so that it is a polynomial in x_m with coefficients in $\{x_1, x_2, \ldots, x_{m-1}\}$, i.e.,

$$\phi = (\phi_1(x_1, x_2, \dots, x_{m-1}))x_m^d + (\phi_2(x_1, x_2, \dots, x_{m-1}))x_m^{d-1} + \dots (\phi_{d-1}(x_1, x_2, \dots, x_{m-1}))x_1^n + (\phi_d(x_1, x_2, \dots, x_{m-1})).$$

Let $\phi(z = \langle z_1, z_2, \dots, z_m \rangle) = 0.$
Consider the following two cases:

- (i) $\phi_1(z) = 0$. This means that z is a root of ϕ_1 and by induction, there are at most $(m-1) \cdot d \cdot M^{m-2}$ of these. For each of the *M* possible values of x_m , the first term will be zero. The total number of such possibilities is $(m-1) \cdot d \cdot M^{m-2} \cdot M = (m-1) \cdot d \cdot M^{m-1}$.
- (ii) φ₁(z) ≠ 0. This means that φ(z) defines a polynomial in x_m with degree at most d. Observe that for each combination of x₁, x₂,..., x_{m-1} ∈ {0, 1,..., M − 1}, the resultant polynomial has at most d roots. Thus, the total number of zeros is at most d · M^{m-1}.

Three paradigmatic problems 2SAT Min-Cut Non-singularity of a Symbolic Matrix

Mathematical Preliminaries (contd.)

Proof.

If m = 1, the theorem is trivially true, as per the fundamental theorem of algebra! Assume true for m - 1 variables. Rewrite ϕ so that it is a polynomial in x_m with coefficients in $\{x_1, x_2, \ldots, x_{m-1}\}$, i.e.,

$$\phi = (\phi_1(x_1, x_2, \dots, x_{m-1}))x_m^d + (\phi_2(x_1, x_2, \dots, x_{m-1}))x_m^{d-1} + \dots (\phi_{d-1}(x_1, x_2, \dots, x_{m-1}))x_m^1 + (\phi_d(x_1, x_2, \dots, x_{m-1})).$$

Let $\phi(z = \langle z_1, z_2, \dots, z_m \rangle) = 0.$
Consider the following two cases:

- (i) $\phi_1(z) = 0$. This means that z is a root of ϕ_1 and by induction, there are at most $(m-1) \cdot d \cdot M^{m-2}$ of these. For each of the *M* possible values of x_m , the first term will be zero. The total number of such possibilities is $(m-1) \cdot d \cdot M^{m-2} \cdot M = (m-1) \cdot d \cdot M^{m-1}$.
- (ii) φ₁(z) ≠ 0. This means that φ(z) defines a polynomial in x_m with degree at most d. Observe that for each combination of x₁, x₂,..., x_{m-1} ∈ {0, 1, ..., M − 1}, the resultant polynomial has at most d roots. Thus, the total number of zeros is at most d · M^{m-1}.

Three paradigmatic problems 2SAT Min-Cut Non-singularity of a Symbolic Matrix

Mathematical Preliminaries (contd.)

Proof.

If m = 1, the theorem is trivially true, as per the fundamental theorem of algebra! Assume true for m - 1 variables. Rewrite ϕ so that it is a polynomial in x_m with coefficients in $\{x_1, x_2, \ldots, x_{m-1}\}$, i.e.,

$$\phi = (\phi_1(x_1, x_2, \dots, x_{m-1}))x_m^d + (\phi_2(x_1, x_2, \dots, x_{m-1}))x_m^{d-1} + \dots (\phi_{d-1}(x_1, x_2, \dots, x_{m-1}))x_m^1 + (\phi_d(x_1, x_2, \dots, x_{m-1})).$$

Let $\phi(z = \langle z_1, z_2, \dots, z_m \rangle) = 0.$
Consider the following two cases:

- (i) $\phi_1(z) = 0$. This means that z is a root of ϕ_1 and by induction, there are at most $(m-1) \cdot d \cdot M^{m-2}$ of these. For each of the *M* possible values of x_m , the first term will be zero. The total number of such possibilities is $(m-1) \cdot d \cdot M^{m-2} \cdot M = (m-1) \cdot d \cdot M^{m-1}$.
- (ii) φ₁(z) ≠ 0. This means that φ(z) defines a polynomial in x_m with degree at most d. Observe that for each combination of x₁, x₂,..., x_{m-1} ∈ {0, 1, ..., M − 1}, the resultant polynomial has at most d roots. Thus, the total number of zeros is at most d · M^{m-1}.

Three paradigmatic problems 2SAT Min-Cut Non-singularity of a Symbolic Matrix

The Non-Singularity Checking Algorithm

Function NON-SING CHECK(A)

- 1: Generate *m* random integers between 0 and M = 2md.
- Compute the resultant determinant of the numeric matrix A' substituting these integers into the symbolic matrix A.
- 3: if $(|\mathbf{A}'| \neq 0)$ then
- 4: **A** is not singular.
- 5: **else**
- 6: A is probably singular.
- 7: end if

Algorithm 2.9: The Non-Singularity Checking Algorithm

Three paradigmatic problems 2SAT Min-Cut Non-singularity of a Symbolic Matrix

The Non-Singularity Checking Algorithm

Function NON-SING CHECK(A)

- 1: Generate *m* random integers between 0 and M = 2md.
- 2: Compute the resultant determinant of the numeric matrix **A**' substituting these integers into the symbolic matrix **A**.
- 3: if (|A'| ≠ 0) then
 4: A is not singular.
 5: else
 6: A is probably singula
 7: end if

Algorithm 2.10: The Non-Singularity Checking Algorithm

Three paradigmatic problems 2SAT Min-Cut Non-singularity of a Symbolic Matrix

The Non-Singularity Checking Algorithm

Function NON-SING CHECK(A)

- 1: Generate *m* random integers between 0 and M = 2md.
- 2: Compute the resultant determinant of the numeric matrix **A**' substituting these integers into the symbolic matrix **A**.
- 3: if $(|\mathbf{A}'| \neq 0)$ then
- 4: A is not singular.
- 5: **else**
- 6: **A** is probably singular.
- 7: end if

Algorithm 2.11: The Non-Singularity Checking Algorithm

Three paradigmatic problems 2SAT Min-Cut Non-singularity of a Symbolic Matrix

Analysis

Error bound The probability that Algorithm 2.9 declares that a non-singular matrix is singular is precisely $\frac{m \cdot d \cdot (2 \cdot m \cdot d)^{m-1}}{(2md)^m} = \frac{1}{2}$.

Complexity of non-singularity checking in symbolic matrices

Not only is this problem not known to be in **P**, it is rather unlikely that it will be

Three paradigmatic problems 2SAT Min-Cut Non-singularity of a Symbolic Matrix

Analysis

Error bound

The probability that Algorithm 2.9 declares that a non-singular matrix is singular is precisely $\frac{m \cdot d \cdot (2 \cdot m \cdot d)^{m-1}}{(2md)^m} = \frac{1}{2}$.

Complexity of non-singularity checking in symbolic matrices

Not only is this problem not known to be in **P**, it is rather unlikely that it will be

Three paradigmatic problems 2SAT Min-Cut Non-singularity of a Symbolic Matrix

Analysis

Error bound

The probability that Algorithm 2.9 declares that a non-singular matrix is singular is precisely $\frac{m \cdot d \cdot (2 \cdot m \cdot d)^{m-1}}{(2md)^m} = \frac{1}{2}$.

Complexity of non-singularity checking in symbolic matrices

Not only is this problem not known to be in **P**, it is rather unlikely that it will be.

Note

The following definitions are from [1].

Definition

The class **RP** consists of all languages $L \subseteq \Sigma^*$ that have a randomized algorithm \mathcal{A} running in worst-case polynomial time, such that for any input $x \in \Sigma^*$,

• $x \in L \Rightarrow \Pr[\mathcal{A}(x)] = "yes''] \ge \frac{1}{2}$.

• $x \notin L \Rightarrow \Pr[\mathcal{A}(x)] = "yes''] = 0.$

- (i) Rejection is unanimous, acceptance is by majority.
- (ii) Only positive-sided error is allowed.
- (iii) The number ¹/₂ can be any fixed constant between 0 and 1, without affecting the set of languages in **RP**.
- (iv) The three paradigmatic problems are in **RP**.

Note

The following definitions are from [1].

Definition

The class **RP** consists of all languages $L \subseteq \Sigma^*$ that have a randomized algorithm \mathcal{A} running in worst-case polynomial time, such that for any input $x \in \Sigma^*$,

•
$$x \in L \Rightarrow \Pr[\mathcal{A}(x)] = "yes''] \geq \frac{1}{2}$$
.

•
$$x \notin L \Rightarrow \mathbf{Pr}[\mathcal{A}(x)] = "yes''] = 0.$$

- (i) Rejection is unanimous, acceptance is by majority.
- (ii) Only positive-sided error is allowed.
- (iii) The number $\frac{1}{2}$ can be any fixed constant between 0 and 1, without affecting the set of languages in **RP**.
- (iv) The three paradigmatic problems are in **RP**.

Note

The following definitions are from [1].

Definition

The class **RP** consists of all languages $L \subseteq \Sigma^*$ that have a randomized algorithm \mathcal{A} running in worst-case polynomial time, such that for any input $x \in \Sigma^*$,

•
$$x \in L \Rightarrow \Pr[\mathcal{A}(x)] = "yes''] \geq \frac{1}{2}$$
.

•
$$x \notin L \Rightarrow \mathbf{Pr}[\mathcal{A}(x)] = "yes''] = 0.$$

- (i) Rejection is unanimous, acceptance is by majority.
- (ii) Only positive-sided error is allowed.
- (iii) The number $\frac{1}{2}$ can be any fixed constant between 0 and 1, without affecting the set of languages in **RP**.
- (iv) The three paradigmatic problems are in **RP**.

Note

The following definitions are from [1].

Definition

The class **RP** consists of all languages $L \subseteq \Sigma^*$ that have a randomized algorithm \mathcal{A} running in worst-case polynomial time, such that for any input $x \in \Sigma^*$,

•
$$x \in L \Rightarrow \Pr[\mathcal{A}(x)] = "yes''] \geq \frac{1}{2}$$
.

•
$$x \notin L \Rightarrow \mathbf{Pr}[\mathcal{A}(x)] = "yes''] = 0.$$

- (i) Rejection is unanimous, acceptance is by majority.
- (ii) Only positive-sided error is allowed.
- (iii) The number $\frac{1}{2}$ can be any fixed constant between 0 and 1, without affecting the set of languages in **RP**.
- iv) The three paradigmatic problems are in **RP**.

Note

The following definitions are from [1].

Definition

The class **RP** consists of all languages $L \subseteq \Sigma^*$ that have a randomized algorithm \mathcal{A} running in worst-case polynomial time, such that for any input $x \in \Sigma^*$,

•
$$x \in L \Rightarrow \Pr[\mathcal{A}(x)] = "yes''] \geq \frac{1}{2}$$
.

•
$$x \notin L \Rightarrow \mathbf{Pr}[\mathcal{A}(x)] = "yes''] = 0.$$

- (i) Rejection is unanimous, acceptance is by majority.
- (ii) Only positive-sided error is allowed.
- (iii) The number $\frac{1}{2}$ can be any fixed constant between 0 and 1, without affecting the set of languages in **RP**.
- (iv) The three paradigmatic problems are in RP.

Definition

A language $L \subseteq \Sigma^*$ is in **coRP**, if its complement is in **RP**.

Definition

A language $L \subseteq \Sigma^*$ is in **ZPP** is it is in **RP** \cap **coRP**.

Definition

A language $L \subseteq \Sigma^*$ is in **PP**, if there exists a randomized algorithm \mathcal{A} running in worst-case polynomial time, such that for any input $x \in \Sigma^*$,

•
$$x \in L \Rightarrow \Pr[\mathcal{A}(x)] = "yes''] > \frac{1}{2}$$

•
$$x \notin L \Rightarrow \Pr[\mathcal{A}(x)] = "yes''] < \frac{1}{2}.$$

Note

Definition

A language $L \subseteq \Sigma^*$ is in **coRP**, if its complement is in **RP**.

Definition

A language $L \subseteq \Sigma^*$ is in **ZPP** is it is in **RP** \cap **coRP**.

Definition

A language $L \subseteq \Sigma^*$ is in **PP**, if there exists a randomized algorithm \mathcal{A} running in worst-case polynomial time, such that for any input $x \in \Sigma^*$,

•
$$x \in L \Rightarrow \Pr[\mathcal{A}(x)] = "yes''] > \frac{1}{2}$$

•
$$x \notin L \Rightarrow \Pr[\mathcal{A}(x)] = "yes''] < \frac{1}{2}.$$

Note

Definition

A language $L \subseteq \Sigma^*$ is in **coRP**, if its complement is in **RP**.

Definition

A language $L \subseteq \Sigma^*$ is in **ZPP** is it is in **RP** \cap **coRP**.

Definition

A language $L \subseteq \Sigma^*$ is in **PP**, if there exists a randomized algorithm \mathcal{A} running in worst-case polynomial time, such that for any input $x \in \Sigma^*$,

•
$$x \in L \Rightarrow \Pr[\mathcal{A}(x)] = "yes''] > \frac{1}{2}$$

• $x \notin L \Rightarrow \Pr[\mathcal{A}(x)] = "yes''] < \frac{1}{2}$.

Note

Definition

A language $L \subseteq \Sigma^*$ is in **coRP**, if its complement is in **RP**.

Definition

A language $L \subseteq \Sigma^*$ is in **ZPP** is it is in **RP** \cap **coRP**.

Definition

A language $L \subseteq \Sigma^*$ is in **PP**, if there exists a randomized algorithm \mathcal{A} running in worst-case polynomial time, such that for any input $x \in \Sigma^*$,

•
$$x \in L \Rightarrow \Pr[\mathcal{A}(x)] = "yes''] > \frac{1}{2}$$

•
$$x \notin L \Rightarrow \Pr[\mathcal{A}(x)] = "yes''] < \frac{1}{2}.$$

Note

Definition

A language $L \subseteq \Sigma^*$ is in **coRP**, if its complement is in **RP**.

Definition

A language $L \subseteq \Sigma^*$ is in **ZPP** is it is in **RP** \cap **coRP**.

Definition

A language $L \subseteq \Sigma^*$ is in **PP**, if there exists a randomized algorithm \mathcal{A} running in worst-case polynomial time, such that for any input $x \in \Sigma^*$,

•
$$x \in L \Rightarrow \Pr[\mathcal{A}(x)] = "yes''] > \frac{1}{2}$$

•
$$x \notin L \Rightarrow \Pr[\mathcal{A}(x)] = "yes''] < \frac{1}{2}.$$

Note

Definition

A language $L \subseteq \Sigma^*$ is in **coRP**, if its complement is in **RP**.

Definition

A language $L \subseteq \Sigma^*$ is in **ZPP** is it is in **RP** \cap **coRP**.

Definition

A language $L \subseteq \Sigma^*$ is in **PP**, if there exists a randomized algorithm \mathcal{A} running in worst-case polynomial time, such that for any input $x \in \Sigma^*$,

•
$$x \in L \Rightarrow \Pr[\mathcal{A}(x)] = "yes''] > \frac{1}{2}$$

•
$$x \notin L \Rightarrow \Pr[\mathcal{A}(x)] = "yes''] < \frac{1}{2}.$$

Note

Definition

A language $L \subseteq \Sigma^*$ is in **BPP**, if there exists a randomized algorithm \mathcal{A} running in worst-case polynomial time, such that for any input $x \in \Sigma^*$,

•
$$x \in L \Rightarrow \Pr[\mathcal{A}(x)] = "yes''] \geq \frac{3}{4}$$
.

• $x \notin L \Rightarrow \Pr[\mathcal{A}(x)] = "yes''] \leq \frac{1}{4}$.

Alternative view of **RP**

Definition

A language $L \subseteq \Sigma^*$ is in **BPP**, if there exists a randomized algorithm \mathcal{A} running in worst-case polynomial time, such that for any input $x \in \Sigma^*$,

•
$$x \in L \Rightarrow \Pr[\mathcal{A}(x)] = "yes''] \geq \frac{3}{4}$$
.

•
$$x \notin L \Rightarrow \Pr[\mathcal{A}(x)] = "yes''] \leq \frac{1}{4}$$
.

Alternative view of **RP**

Definition

A language $L \subseteq \Sigma^*$ is in **BPP**, if there exists a randomized algorithm \mathcal{A} running in worst-case polynomial time, such that for any input $x \in \Sigma^*$,

• $x \in L \Rightarrow \Pr[\mathcal{A}(x)] = "yes''] \geq \frac{3}{4}$.

•
$$x \notin L \Rightarrow \Pr[\mathcal{A}(x)] = "yes''] \leq \frac{1}{4}$$

Alternative view of RP

Definition

A language $L \subseteq \Sigma^*$ is in **BPP**, if there exists a randomized algorithm \mathcal{A} running in worst-case polynomial time, such that for any input $x \in \Sigma^*$,

•
$$x \in L \Rightarrow \Pr[\mathcal{A}(x)] = "yes''] \geq \frac{3}{4}$$
.

•
$$x \notin L \Rightarrow \Pr[\mathcal{A}(x)] = "yes''] \leq \frac{1}{4}$$
.

Alternative view of RP

Relations between complexity classes

Observations

(i) $P \subseteq RP \subseteq NP$. (ii) $P \subseteq coRP \subseteq coNP$ (iii) $RP \subseteq BPP \subseteq PP$.

Fheorem

 $NP \subseteq PP$.

Proof

Let L be accepted by an NDTM N in polynomial time p().

Relations between complexity classes

Observations

(ii) $\mathbf{P} \subseteq \mathbf{coRP} \subseteq \mathbf{coNP}$.

(iii) $\mathbf{RP} \subseteq \mathbf{BPP} \subseteq \mathbf{PP}$.

Fheorem

 $NP \subseteq PP$.

Proof

Let L be accepted by an NDTM N in polynomial time p().

Observations

Theorem

 $NP \subseteq PP$.

Proof.

Let L be accepted by an NDTM N in polynomial time p().

Observations

- (ii) $\mathbf{P} \subseteq \mathbf{coRP} \subseteq \mathbf{coNP}$.
- (iii) $\mathbf{RP} \subseteq \mathbf{BPP} \subseteq \mathbf{PP}$.

Theorem

 $NP \subseteq PP$.

Proof.

Observations

- (ii) $\mathbf{P} \subseteq \mathbf{coRP} \subseteq \mathbf{coNP}$.
- (iii) $\mathbf{RP} \subseteq \mathbf{BPP} \subseteq \mathbf{PP}$.

Theorem

 $NP \subseteq PP$.

Proof.

Let *L* be accepted by an NDTM *N* in polynomial time p().

Observations

- (ii) $\mathbf{P} \subseteq \mathbf{coRP} \subseteq \mathbf{coNP}$.
- (iii) $\mathbf{RP} \subseteq \mathbf{BPP} \subseteq \mathbf{PP}$.

Theorem

 $NP \subseteq PP$.

Proof.

Observations

- (ii) $\mathbf{P} \subseteq \mathbf{coRP} \subseteq \mathbf{coNP}$.
- (iii) $\mathbf{RP} \subseteq \mathbf{BPP} \subseteq \mathbf{PP}$.

Theorem

 $NP \subseteq PP$.

Proof.

Observations

- (ii) $\mathbf{P} \subseteq \mathbf{coRP} \subseteq \mathbf{coNP}$.
- (iii) $\mathbf{RP} \subseteq \mathbf{BPP} \subseteq \mathbf{PP}$.

Theorem

 $NP \subseteq PP$.

Proof.

Let *L* be accepted by an NDTM *N* in polynomial time p(). Build an NDTM *N'* which contains a new initial state, with branching factor 2. One branch moves to *N* and the other branch which has exactly the same number of computations as *N* leads only to leaves which are all "accepting". If $x \in L$, *N'* accepts with clear majority!
Relations between complexity classes

Observations

- (ii) $\mathbf{P} \subseteq \mathbf{coRP} \subseteq \mathbf{coNP}$.
- (iii) $\mathbf{RP} \subseteq \mathbf{BPP} \subseteq \mathbf{PP}$.

Theorem

 $NP \subseteq PP$.

Proof.

Let *L* be accepted by an NDTM *N* in polynomial time p().

Build an NDTM N' which contains a new initial state, with branching factor 2. One branch moves to N and the other branch which has exactly the same number of computations as N leads only to leaves which are all "accepting". If $x \in L$, N' accepts with clear majority! If $x \notin L$, then N(x') does not have a clear majority of accepting computations and hence N' rejects.

Randomized Algorithms Randomized Complexity Classes

The Complexity Picture

Rajeev Motwani and Prabhakar Raghavan. *Randomized Algorithms*.

Cambridge University Press, Cambridge, England, June 1995.