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Three paradigmatic problems

How useful is randomized computation?

(i) 2SAT.

(ii) Min-Cut.

(iii) Non-singularity of a symbolic square matrix.
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Problem Description

Goal

Let φ = C1 ∧ C2 ∧ . . . ∧ Cm denote a boolean formula in CNF over the boolean
variables {x1, x2, . . . , xn}, such that each clause Ci has exactly two variables.
Determine whether φ is satisfiable.

Note

2SAT can be solved in O(m + n) time using Tarjan’s connected components algorithm.
This algorithm is a variant of the reachability method discussed in class.
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The 2CNF Algorithm

Function SATISFIABILITY-TESTING(φ)
1: Start with an arbitrary assignment to the variables.
2: while (the current assignment is not satisfying) do
3: Pick an unsatisfied clause.
4: Uniformly and at random flip the value assigned to one of its two literals

(variables).
5: end while

Algorithm 2.1: Papadimitrious’s randomized algorithm for 2CNF Satisfiability
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The 2CNF Algorithm

Function SATISFIABILITY-TESTING(φ)
1: Start with an arbitrary assignment to the variables.
2: while (the current assignment is not satisfying) do
3: Pick an unsatisfied clause.
4: Uniformly and at random flip the value assigned to one of its two literals

(variables).
5: end while

Algorithm 2.2: Papadimitrious’s randomized algorithm for 2CNF Satisfiability
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The 2CNF Algorithm

Function SATISFIABILITY-TESTING(φ)
1: Start with an arbitrary assignment to the variables.
2: while (the current assignment is not satisfying) do
3: Pick an unsatisfied clause.
4: Uniformly and at random flip the value assigned to one of its two literals

(variables).
5: end while

Algorithm 2.3: Papadimitrious’s randomized algorithm for 2CNF Satisfiability
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The 2CNF Algorithm

Function SATISFIABILITY-TESTING(φ)
1: Start with an arbitrary assignment to the variables.
2: while (the current assignment is not satisfying) do
3: Pick an unsatisfied clause.
4: Uniformly and at random flip the value assigned to one of its two literals

(variables).
5: end while

Algorithm 2.4: Papadimitrious’s randomized algorithm for 2CNF Satisfiability
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The 2CNF Algorithm

Function SATISFIABILITY-TESTING(φ)
1: Start with an arbitrary assignment to the variables.
2: while (the current assignment is not satisfying) do
3: Pick an unsatisfied clause.
4: Uniformly and at random flip the value assigned to one of its two literals

(variables).
5: end while

Algorithm 2.5: Papadimitrious’s randomized algorithm for 2CNF Satisfiability
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Mathematical Preliminaries

Theorem

Let X and Y be two random variables. Then E[X ] = E[E[X |Y ]].

Theorem (Markov)

Let X be a non-negative random variable and let c > 0 denote a constant. Then
Pr(X ≥ c · E[X ]) ≤ 1

c .
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Analysis

Modeling as a random walk

Assume that φ is satisfiable and focus on a particular satisfying assignment T̂ . Let T
denote the current assignment. We want to bound the expected number of steps
before T is transformed into T̂ .
Let t(i) denote the expected number of flips for T to become T̂ , assuming that T differs
from T̂ in exactly i variables. It follows that,

t(0) = 0

t(n) = 1 + t(n − 1)

t(i) ≤
1
2

t(i − 1) +
1
2

t(i + 1) + 1, 0 < i < n

Observation

The above system can be solved to get t(n) ≤ n2. From Markov’s inequality it follows
that the probability that T is not transformed into T̂ in at most 2 · n2 flips is less than
one-half. Running time is O(n2 · (m + n)), which is hardly impressive.
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Problem Description

Goal

Given an unweighted, undirected graph G = 〈,V ,E〉, find the smallest cardinality set
E ′ ⊆ E, such that G = 〈V ,E − E ′〉 has at least two components. Also called edge
connectivity.

Note

Min-Cut can be solved in polynomial time using network flow techniques.

Observation

The Min-Cut of a graph is no larger than the degree of the smallest degree vertex.
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Edge contraction

Procedure

(i) Identify the vertices corresponding to an edge, i.e., make them into one large
vertex.

(ii) Remove all self-loops, if formed.

(iii) Maintain all parallel edges, if formed.

Observation

Contracting an edge does not decrease the Min-Cut of a graph.
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The Min-Cut Algorithm

Function MIN-CUT(G = 〈(V ,E〉)
1: while (G has more than 2 vertices do) do
2: Select an edge uniformly and at random, and contract it.
3: end while
4: return(The cut determined by the two remaining vertices)

Algorithm 2.6: Karger’s Min-Cut Algorithm
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The Min-Cut Algorithm

Function MIN-CUT(G = 〈(V ,E〉)
1: while (G has more than 2 vertices do) do
2: Select an edge uniformly and at random, and contract it.
3: end while
4: return(The cut determined by the two remaining vertices)

Algorithm 2.7: Karger’s Min-Cut Algorithm
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The Min-Cut Algorithm

Function MIN-CUT(G = 〈(V ,E〉)
1: while (G has more than 2 vertices do) do
2: Select an edge uniformly and at random, and contract it.
3: end while
4: return(The cut determined by the two remaining vertices)

Algorithm 2.8: Karger’s Min-Cut Algorithm
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Mathematical Preliminaries

Theorem

Let E1, E2, . . . , Ek denote a collection of k events on some sample space. Then

Pr(∩n
i=1Ei ) = Pr(E1)× Pr(E2|E1)× Pr(E3|(E1 ∩ E2) . . .× Pr(Ek | ∩k−1

i=1 Ei ).

Proof.

By definition,

Pr(E2|E1) =
Pr(E1 ∩ E2)

Pr(E1)

⇒ Pr(E1 ∩ E2) = Pr(E1) · Pr(E2|E1).

Now use induction!
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Analysis

Steps

(i) Focus on a specific Min-Cut C of G having exactly k edges.

(ii) Clearly G must have at least kn
2 edges.

(iii) Let Ei denote the event that no edge of C is picked for contraction during the i th
iteration.

(iv) Thus, E = ∩n−1
i=1 Ei denotes the event that no edge of C is touched, i.e., the cut C

survives.

(v) The probability that an edge picked randomly in round 1 is in C is at most k
kn
2

.

Pr(E1) ≥ (1− 2
n ).

(vi) Let us now bound Pr(E2|E1). If E1 has occurred, then after round 1, the graph has
at least k·(n−1)

2 edges. ⇒ Pr(E2|E1) ≥ (1− 2
n−1 ).

(vii) Working in identical fashion, Pr(Ei | ∩i−1
j=1 Ej ) ≥ (1− 2

(n−i+1)
).
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Analysis (contd.)

Steps

(i) It follows that

Pr(E) ≥ Pr(∩n−2
i=1 Ei )

= Πn−2
i=1 (1−

2
(n − i + 1)

)

=
2

n · (n − 1)

≥
2
n2

(ii) Thus, the probability that C survives all the contractions is at least 2
n2 .

(iii) Thus, the probability that C does not survive all the contractions is at most
(1− 2

n2 ).
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Analysis (contd.)

Observation

If Karger’s algorithm is run n2

2 times on the same graph, the probability that C does not

survive any of the runs is at most (1− 2
n2 )

n2
2 < 1

e .

In other words, the probability that C is obtained after n2

2 runs is at least (1− 1
e ).

Note

Karger’s algorithm is both simpler and faster than any deterministic algorithm for
determining the Min-Cut of an undirected graph.
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Problem Description

Definition

Given an n × n matrix A, the determinant of A denoted by |A| is defined as:P
π σ(π)Πn

i=1Ai,π(i), where the summation is over all the permutations of n elements
and σ(π) is +1 if π is the product of an even number of transpositions and −1
otherwise. A matrix is said to be singular, if its determinant is identically 0 and
non-singular otherwise.

Definition

A symbolic matrix is a matrix whose entries are polynomials, e.g.,„
a a2 − 1

d + b e − a

«

Goal

Given a symbolic square matrix, check whether it is identically zero, i.e., regardless of
the values of the variables, the determinant always evaluates to zero.
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Issues involved in non-singularity checking

Issues

(i) Expansion is expensive!

(ii) Gaussian elimination is also expensive.

(iii) What is the complexity of this problem? Why?
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Mathematical Preliminaries

Theorem

Let φ(x1, x2, . . . , xm) be a polynomial, not identically zero, in m variables, each having
degree at most d. Let M > 0 denote an integer. Then the number of m-tuples
〈z1, z2, . . . , zm〉 ∈ {0, 1, . . .M − 1}m such that φ(z1, z2, . . . zm) = 0 is at most
m · d ·Mm−1.
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Mathematical Preliminaries (contd.)

Proof.

If m = 1, the theorem is trivially true, as per the fundamental theorem of algebra!
Assume true for m − 1 variables. Rewrite φ so that it is a polynomial in xm with
coefficients in {x1, x2, . . . , xm−1}, i.e.,
φ = (φ1(x1, x2, . . . , xm−1))xd

m + (φ2(x1, x2, . . . , xm−1))xd−1
m +

. . . (φd−1(x1, x2, . . . , xm−1))x1
m + (φd (x1, x2, . . . , xm−1)).

Let φ(z = 〈z1, z2, . . . , zm〉) = 0.
Consider the following two cases:

(i) φ1(z) = 0. This means that z is a root of φ1 and by induction, there are at most
(m− 1) · d ·Mm−2 of these. For each of the M possible values of xm, the first term
will be zero. The total number of such possibilities is (m − 1) · d ·Mm−2 ·M
= (m − 1) · d ·Mm−1.

(ii) φ1(z) 6= 0. This means that φ(z) defines a polynomial in xm with degree at most
d . Observe that for each combination of x1, x2, . . . , xm−1 ∈ {0, 1, . . . ,M − 1}, the
resultant polynomial has at most d roots. Thus, the total number of zeros is at
most d ·Mm−1.

Thus, the total number of zeros for φ is at most m · d ·Mm−1.
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The Non-Singularity Checking Algorithm

Function NON-SING CHECK(A)
1: Generate m random integers between 0 and M = 2md .
2: Compute the resultant determinant of the numeric matrix A′ substituting these

integers into the symbolic matrix A.
3: if (|A′| 6= 0) then
4: A is not singular.
5: else
6: A is probably singular.
7: end if

Algorithm 2.9: The Non-Singularity Checking Algorithm

Subramani Complexity Classes



Randomized Algorithms
Randomized Complexity Classes

Three paradigmatic problems
2SAT
Min-Cut
Non-singularity of a Symbolic Matrix

The Non-Singularity Checking Algorithm

Function NON-SING CHECK(A)
1: Generate m random integers between 0 and M = 2md .
2: Compute the resultant determinant of the numeric matrix A′ substituting these
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3: if (|A′| 6= 0) then
4: A is not singular.
5: else
6: A is probably singular.
7: end if

Algorithm 2.10: The Non-Singularity Checking Algorithm
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The Non-Singularity Checking Algorithm

Function NON-SING CHECK(A)
1: Generate m random integers between 0 and M = 2md .
2: Compute the resultant determinant of the numeric matrix A′ substituting these

integers into the symbolic matrix A.
3: if (|A′| 6= 0) then
4: A is not singular.
5: else
6: A is probably singular.
7: end if

Algorithm 2.11: The Non-Singularity Checking Algorithm
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Analysis

Error bound

The probability that Algorithm 2.9 declares that a non-singular matrix is singular is

precisely m·d·(2·m·d)m−1

(2md)m = 1
2 .

Complexity of non-singularity checking in symbolic matrices

Not only is this problem not known to be in P, it is rather unlikely that it will be.
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Randomized Complexity Classes

Note

The following definitions are from [1].

Definition

The class RP consists of all languages L ⊆ Σ∗ that have a randomized algorithm A
running in worst-case polynomial time, such that for any input x ∈ Σ∗,

x ∈ L⇒ Pr[A(x)] = “yes′′] ≥ 1
2 .

x 6∈ L⇒ Pr[A(x)] = “yes′′] = 0.

Observations

(i) Rejection is unanimous, acceptance is by majority.

(ii) Only positive-sided error is allowed.

(iii) The number 1
2 can be any fixed constant between 0 and 1, without affecting the

set of languages in RP.

(iv) The three paradigmatic problems are in RP.
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Randomized Complexity Classes (contd.)

Definition

A language L ⊆ Σ∗ is in coRP, if its complement is in RP.

Definition

A language L ⊆ Σ∗ is in ZPP is it is in RP ∩ coRP.

Definition

A language L ⊆ Σ∗ is in PP, if there exists a randomized algorithm A running in
worst-case polynomial time, such that for any input x ∈ Σ∗,

x ∈ L⇒ Pr[A(x)] = “yes′′] > 1
2 .

x 6∈ L⇒ Pr[A(x)] = “yes′′] < 1
2 .

Note

The problem MAJSAT is defined as follows: Given a formula in CNF, is it the case that
the majority of the 2n assignments satisfy it? MAJSAT is the quintessential PP problem;
in fact, it is PP-complete.
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Randomized Complexity Classes (contd.)

Definition

A language L ⊆ Σ∗ is in BPP, if there exists a randomized algorithm A running in
worst-case polynomial time, such that for any input x ∈ Σ∗,

x ∈ L⇒ Pr[A(x)] = “yes′′] ≥ 3
4 .

x 6∈ L⇒ Pr[A(x)] = “yes′′] ≤ 1
4 .

Alternative view of RP

RP denotes the set of languages L which can be decided by a polynomially bounded
non-deterministic Turing machine N in the following manner: For each input x , if x ∈ L,
then at least half the computations of N on x end in accepting leaves and if x 6∈ L, the
all computations of N on x end in rejecting leaves. WIthout loss of generality, we may
assume that the degree of non-determinism is exactly 2 at each node of the
computation tree.
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Relations between complexity classes

Observations

(i) P ⊆ RP ⊆ NP.

(ii) P ⊆ coRP ⊆ coNP.

(iii) RP ⊆ BPP ⊆ PP.

Theorem

NP ⊆ PP.

Proof.

Let L be accepted by an NDTM N in polynomial time p().
Build an NDTM N′ which contains a new initial state, with branching factor 2. One
branch moves to N and the other branch which has exactly the same number of
computations as N leads only to leaves which are all “accepting”. If x ∈ L, N′ accepts
with clear majority! If x 6∈ L, then N(x ′) does not have a clear majority of accepting
computations and hence N′ rejects.
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computations as N leads only to leaves which are all “accepting”. If x ∈ L, N′ accepts
with clear majority! If x 6∈ L, then N(x ′) does not have a clear majority of accepting
computations and hence N′ rejects.
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The Complexity Picture
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