Relations between Complexity Classes

K. Subramani¹

¹Lane Department of Computer Science and Electrical Engineering West Virginia University

General Techniques

< D > < A > < B >

Outline

Complexity of Classes

- Specification
- Complements of complexity classes

The Hierarchy Theorem

- Setup Lemmata
- The Theorem
- Consequences of the Hierarchy Theorem

< D > < A > < B >

Outline

Complexity of Classes

- Specification
- Complements of complexity classes

2 The Hierarchy Theorem

- Setup Lemmata
- The Theorem
- Consequences of the Hierarchy Theorem

- Specification
- Complements of complexity classes

2 The Hierarchy Theorem

- Setup Lemmata
- The Theorem
- Consequences of the Hierarchy Theorem

< ロ > < 同 > < 回 > < 回 > < 回 > <

Class Characteristics

- (i) Model of Computatiion multi-string Turing Machine
- (ii) Mode of Computation Deterministic or Non-deterministic
- (iii) Resource of interest Time, space, etc.
- (iv) Bound A function $f : \mathcal{N} \to \mathcal{N}$.

Definition

A complexity class is the set of all languages decided by a multi-string string Turing machine M operating in the appropriate mode and such that for any input x, M spends at most f(|x|) of the specified resource.

<ロ> < 四> < 四> < 回> < 回> < 回> < 回> <

Class Characteristics

- (i) Model of Computatiion multi-string Turing Machine
- (ii) Mode of Computation Deterministic or Non-deterministic
- (iii) Resource of interest Time, space, etc.
- (iv) Bound A function $f : \mathcal{N} \to \mathcal{N}$.

Definition

A complexity class is the set of all languages decided by a multi-string string Turing machine M operating in the appropriate mode and such that for any input x, M spends at most f(|x|) of the specified resource.

< ロ > < 同 > < 回 > < 回 > .

Class Characteristics

- (i) Model of Computatiion multi-string Turing Machine
- (ii) Mode of Computation Deterministic or Non-deterministic
- (iii) Resource of interest Time, space, etc.
- (iv) Bound A function $f : \mathcal{N} \to \mathcal{N}$.

Definition

A complexity class is the set of all languages decided by a multi-string string Turing machine M operating in the appropriate mode and such that for any input x, M spends at most f(|x|) of the specified resource.

• □ ▶ • • □ ▶ • □ ▶ • • □ ▶ •

Class Characteristics

- (i) Model of Computatiion multi-string Turing Machine
- (ii) Mode of Computation Deterministic or Non-deterministic
- iii) Resource of interest Time, space, etc.
- (iv) Bound A function $f : \mathcal{N} \to \mathcal{N}$.

Definition

A complexity class is the set of all languages decided by a multi-string string Turing machine M operating in the appropriate mode and such that for any input x, M spends at most f(|x|) of the specified resource.

• □ ▶ • • □ ▶ • □ ▶ • • □ ▶ •

Class Characteristics

- (i) Model of Computatiion multi-string Turing Machine
- (ii) Mode of Computation Deterministic or Non-deterministic
- iii) Resource of interest Time, space, etc.

(iv) Bound - A function $f : \mathcal{N} \to \mathcal{N}$.

Definition

A complexity class is the set of all languages decided by a multi-string string Turing machine M operating in the appropriate mode and such that for any input x, M spends at most f(|x|) of the specified resource.

< D > < P > < E > < E > <</p>

Class Characteristics

- (i) Model of Computatiion multi-string Turing Machine
- (ii) Mode of Computation Deterministic or Non-deterministic
- (iii) Resource of interest Time, space, etc.
- (iv) Bound A function $f : \mathcal{N} \to \mathcal{N}$.

Definition

A complexity class is the set of all languages decided by a multi-string string Turing machine M operating in the appropriate mode and such that for any input x, M spends at most f(|x|) of the specified resource.

• □ ▶ • • □ ▶ • □ ▶ • • □ ▶ •

Class Characteristics

- (i) Model of Computatiion multi-string Turing Machine
- (ii) Mode of Computation Deterministic or Non-deterministic
- (iii) Resource of interest Time, space, etc.

(iv) Bound - A function $f : \mathcal{N} \to \mathcal{N}$.

Definition

A complexity class is the set of all languages decided by a multi-string string Turing machine M operating in the appropriate mode and such that for any input x, M spends at most f(|x|) of the specified resource.

< D > < P > < E > < E > <</p>

Class Characteristics

- (i) Model of Computatiion multi-string Turing Machine
- (ii) Mode of Computation Deterministic or Non-deterministic
- (iii) Resource of interest Time, space, etc.
- (iv) Bound A function $f : \mathcal{N} \to \mathcal{N}$.

Definition

A complexity class is the set of all languages decided by a multi-string string Turing machine M operating in the appropriate mode and such that for any input x, M spends at most f(|x|) of the specified resource.

< ロ > < 同 > < 回 > < 回 > < 回 > <

Class Characteristics

- (i) Model of Computatiion multi-string Turing Machine
- (ii) Mode of Computation Deterministic or Non-deterministic
- (iii) Resource of interest Time, space, etc.
- (iv) Bound A function $f : \mathcal{N} \to \mathcal{N}$.

Definition

A complexity class is the set of all languages decided by a multi-string string Turing machine M operating in the appropriate mode and such that for any input x, M spends at most f(|x|) of the specified resource.

< ロ > < 同 > < 回 > < 回 > < 回 > <

Class Characteristics

- (i) Model of Computatiion multi-string Turing Machine
- (ii) Mode of Computation Deterministic or Non-deterministic
- (iii) Resource of interest Time, space, etc.
- (iv) Bound A function $f : \mathcal{N} \to \mathcal{N}$.

Definition

A complexity class is the set of all languages decided by a multi-string string Turing machine *M* operating in the appropriate mode and such that for any input *x*, *M* spends at most f(|x|) of the specified resource.

< ロ > < 同 > < 三 > < 三 > 、

Definition

A function *f* is said to be a *proper complexity function*, if $(\forall n \ge 0)(f(n+1) \ge f(n))$ and there exists a *k*-string Turing machine $M_f = (K, \Sigma, \delta, s)$ with input and output, which on input *x*, computes $\sqcap^{f(|x|)}$ in O(|x| + f(|x|) steps and uses O(f(|x|) space besides its input.

Typical proper complexity functions

 $c, n, n!, \sqrt{n}, \log n, \ldots$

Notational Convenience

- (i) $\mathbf{P} = \mathsf{TIME}(n^k) = \bigcup_{j>0} \mathsf{TIME}(n^j)$.
- (ii) **NP** = **NTIME** $(n^k) = \bigcup_{j>0}$ **NTIME** (n^j) .
- (iii) **PSPACE** = **SPACE** (n^k) = $\cup_{j>0}$ **SPACE** (n^j) .
- (iv) **NPSPACE** = **NSPACE** (n^k) = $\bigcup_{j>0}$ **NSPACE** (n^j) .

- (v) **EXP** = TIME (2^{n^k}) = $\bigcup_{i>0}$ TIME (2^{n^j}) .
- (vi) $\mathbf{L} = \mathbf{SPACE}(\log n)$.
- (vii) $NL = NSPACE(\log n)$.

Definition

A function *f* is said to be a *proper complexity function*, if $(\forall n \ge 0)(f(n+1) \ge f(n))$ and there exists a *k*-string Turing machine $M_f = (K, \Sigma, \delta, s)$ with input and output, which on input *x*, computes $\sqcap^{f(|x|)}$ in O(|x| + f(|x|) steps and uses O(f(|x|) space besides its input.

Typical proper complexity functions

 $c, n, n!, \sqrt{n}, \log n, \dots$

Notational Convenience

- (i) $\mathbf{P} = \mathsf{TIME}(n^k) = \bigcup_{j>0} \mathsf{TIME}(n^j)$
- (ii) **NP** = **NTIME** $(n^k) = \bigcup_{j>0}$ **NTIME** (n^j) .
- (iii) **PSPACE** = **SPACE** (n^k) = $\cup_{j>0}$ **SPACE** (n^j) .
- (iv) **NPSPACE** = **NSPACE** (n^k) = $\cup_{j>0}$ **NSPACE** (n^j) .

- (v) **EXP** = TIME (2^{n^k}) = $\bigcup_{i>0}$ TIME (2^{n^j}) .
- (vi) $\mathbf{L} = \mathbf{SPACE}(\log n)$.
- (vii) $NL = NSPACE(\log n)$.

Definition

A function *f* is said to be a *proper complexity function*, if $(\forall n \ge 0)(f(n+1) \ge f(n))$ and there exists a *k*-string Turing machine $M_f = (K, \Sigma, \delta, s)$ with input and output, which on input *x*, computes $\sqcap^{f(|x|)}$ in O(|x| + f(|x|) steps and uses O(f(|x|) space besides its input.

Typical proper complexity functions

 $c, n, n!, \sqrt{n}, \log n, ...$

Notational Convenience

- (i) $\mathbf{P} = \mathsf{TIME}(n^k) = \bigcup_{j>0} \mathsf{TIME}(n^j)$
- ii) NP = NTIME $(n^k) = \cup_{j>0}$ NTIME (n^j)
- ii) **PSPACE** = **SPACE** (n^k) = $\cup_{j>0}$ **SPACE** (n^j) .
- v) NPSPACE = NSPACE $(n^k) = \bigcup_{j>0}$ NSPACE (n^j) .

- (v) **EXP** = **TIME** (2^{n^k}) = $\cup_{j>0}$ **TIME** (2^{n^j}) . (vi) **L** = **SPACE** $(\log n)$.
- (vii) $NL = NSPACE(\log n)$.

Definition

A function *f* is said to be a *proper complexity function*, if $(\forall n \ge 0)(f(n+1) \ge f(n))$ and there exists a *k*-string Turing machine $M_f = (K, \Sigma, \delta, s)$ with input and output, which on input *x*, computes $\sqcap^{f(|x|)}$ in O(|x| + f(|x|) steps and uses O(f(|x|) space besides its input.

Typical proper complexity functions

 $c, n, n!, \sqrt{n}, \log n, \ldots$

Notational Convenience

- (i) $\mathbf{P} = \mathbf{TIME}(n^k) = \bigcup_{j>0} \mathbf{TIME}(n^j)$
- (ii) $NP = NTIME(n^k) = \cup_{j>0} NTIME(n^j)$
- ii) **PSPACE** = **SPACE** (n^k) = $\cup_{j>0}$ **SPACE** (n^j) .
- v) NPSPACE = NSPACE $(n^k) = \bigcup_{j>0}$ NSPACE (n^j) .

Definition

A function *f* is said to be a *proper complexity function*, if $(\forall n \ge 0)(f(n+1) \ge f(n))$ and there exists a *k*-string Turing machine $M_f = (K, \Sigma, \delta, s)$ with input and output, which on input *x*, computes $\sqcap^{f(|x|)}$ in O(|x| + f(|x|) steps and uses O(f(|x|) space besides its input.

Typical proper complexity functions

 $c, n, n!, \sqrt{n}, \log n, ...$

Notational Convenience

TIME(*f*), **SPACE**(*f*), **NTIME**(*f*), **NSPACE**(*f*). Parameterized complexity classes:

- (i) $\mathbf{P} = \mathsf{TIME}(n^k) = \cup_{j>0} \mathsf{TIME}(n^j).$
- (ii) $\mathsf{NP} = \mathsf{NTIME}(n^k) = \cup_{j>0} \mathsf{NTIME}(n^j)$
- ii) **PSPACE** = **SPACE** (n^k) = $\cup_{j>0}$ **SPACE** (n^j) .
- v) NPSPACE = NSPACE $(n^k) = \bigcup_{j>0}$ NSPACE (n^j) .

(v) EXP = TIME (2^{n^k}) = $\cup_{j>0}$ TIME (2^{n^j}) . (vi) L = SPACE(log n). vii) NL = NSPACE(log n)

Definition

A function *f* is said to be a *proper complexity function*, if $(\forall n \ge 0)(f(n+1) \ge f(n))$ and there exists a *k*-string Turing machine $M_f = (K, \Sigma, \delta, s)$ with input and output, which on input *x*, computes $\sqcap^{f(|x|)}$ in O(|x| + f(|x|) steps and uses O(f(|x|) space besides its input.

Typical proper complexity functions

 $c, n, n!, \sqrt{n}, \log n, ...$

Notational Convenience

TIME(*f*), **SPACE**(*f*), **NTIME**(*f*), **NSPACE**(*f*). Parameterized complexity classes:

(i) $\mathbf{P} = \mathsf{TIME}(n^k) = \bigcup_{j>0} \mathsf{TIME}(n^j).$

(ii)
$$NP = NTIME(n^k) = \bigcup_{j>0} NTIME(n^j)$$

- ii) **PSPACE** = **SPACE** (n^k) = $\cup_{j>0}$ **SPACE** (n^j) .
- iv) NPSPACE = NSPACE $(n^k) = \bigcup_{j>0}$ NSPACE (n^j) .

Definition

A function *f* is said to be a *proper complexity function*, if $(\forall n \ge 0)(f(n+1) \ge f(n))$ and there exists a *k*-string Turing machine $M_f = (K, \Sigma, \delta, s)$ with input and output, which on input *x*, computes $\sqcap^{f(|x|)}$ in O(|x| + f(|x|) steps and uses O(f(|x|) space besides its input.

Typical proper complexity functions

 $c, n, n!, \sqrt{n}, \log n, ...$

Notational Convenience

TIME(*f*), **SPACE**(*f*), **NTIME**(*f*), **NSPACE**(*f*). Parameterized complexity classes:

- (i) $\mathbf{P} = \mathsf{TIME}(n^k) = \cup_{j>0} \mathsf{TIME}(n^j).$
- (ii) NP = NTIME $(n^k) = \bigcup_{j>0}$ NTIME (n^j) .
- (iii) **PSPACE** = **SPACE** (n^k) = $\bigcup_{j>0}$ **SPACE** (n^j) .
- iv) NPSPACE = NSPACE $(n^k) = \bigcup_{j>0}$ NSPACE (n^j) .

(v) EXP = TIME (2^{n^k}) = $\cup_{j>0}$ TIME (2^{n^j}) . (vi) L = SPACE(log n). (vii) NL = NSPACE(log n).

Definition

A function *f* is said to be a *proper complexity function*, if $(\forall n \ge 0)(f(n+1) \ge f(n))$ and there exists a *k*-string Turing machine $M_f = (K, \Sigma, \delta, s)$ with input and output, which on input *x*, computes $\sqcap^{f(|x|)}$ in O(|x| + f(|x|) steps and uses O(f(|x|) space besides its input.

Typical proper complexity functions

 $c, n, n!, \sqrt{n}, \log n, ...$

Notational Convenience

TIME(*f*), **SPACE**(*f*), **NTIME**(*f*), **NSPACE**(*f*). Parameterized complexity classes:

- (i) $\mathbf{P} = \mathsf{TIME}(n^k) = \cup_{j>0} \mathsf{TIME}(n^j).$
- (ii) NP = NTIME $(n^k) = \bigcup_{j>0}$ NTIME (n^j) .
- (iii) **PSPACE** = **SPACE** (n^k) = $\bigcup_{j>0}$ **SPACE** (n^j) .
- (iv) NPSPACE = NSPACE $(n^k) = \bigcup_{j>0}$ NSPACE (n^j) .

(v) $\mathbf{EXP} = \mathbf{TIME}(2^{n^k}) = \bigcup_{j>0} \mathbf{TIME}(2^{n^j}).$ (vi) $\mathbf{L} = \mathbf{SPACE}(\log n).$ (vii) $\mathbf{NL} = \mathbf{NSPACE}(\log n)$

Definition

A function *f* is said to be a *proper complexity function*, if $(\forall n \ge 0)(f(n+1) \ge f(n))$ and there exists a *k*-string Turing machine $M_f = (K, \Sigma, \delta, s)$ with input and output, which on input *x*, computes $\sqcap^{f(|x|)}$ in O(|x| + f(|x|) steps and uses O(f(|x|) space besides its input.

Typical proper complexity functions

 $c, n, n!, \sqrt{n}, \log n, ...$

Notational Convenience

- (i) $\mathbf{P} = \mathsf{TIME}(n^k) = \bigcup_{j>0} \mathsf{TIME}(n^j).$
- (ii) NP = NTIME $(n^k) = \bigcup_{j>0}$ NTIME (n^j) .
- (iii) **PSPACE** = **SPACE** (n^k) = $\bigcup_{j>0}$ **SPACE** (n^j) .
- (iv) NPSPACE = NSPACE $(n^k) = \bigcup_{j>0}$ NSPACE (n^j) .

(v) EXP = TIME
$$(2^{n^k}) = \bigcup_{j>0}$$
TIME (2^{n^j}) .
(vi) L = SPACE(log n).
(vi) NL = NSPACE(log n).

Definition

A function *f* is said to be a *proper complexity function*, if $(\forall n \ge 0)(f(n+1) \ge f(n))$ and there exists a *k*-string Turing machine $M_f = (K, \Sigma, \delta, s)$ with input and output, which on input *x*, computes $\sqcap^{f(|x|)}$ in O(|x| + f(|x|) steps and uses O(f(|x|) space besides its input.

Typical proper complexity functions

 $c, n, n!, \sqrt{n}, \log n, ...$

Notational Convenience

- (i) $\mathbf{P} = \mathsf{TIME}(n^k) = \cup_{j>0} \mathsf{TIME}(n^j).$
- (ii) NP = NTIME $(n^k) = \bigcup_{j>0}$ NTIME (n^j) .
- (iii) **PSPACE** = **SPACE** (n^k) = $\bigcup_{j>0}$ **SPACE** (n^j) .
- (iv) NPSPACE = NSPACE $(n^k) = \bigcup_{j>0}$ NSPACE (n^j) .

(v)
$$\mathbf{EXP} = \mathbf{TIME}(2^{n^k}) = \bigcup_{j>0} \mathbf{TIME}(2^{n^j}).$$

(vi)
$$\mathbf{L} = \mathbf{SPACE}(\log n)$$
.

(vii)
$$NL = NSPACE(\log n)$$
.

Definition

A function *f* is said to be a *proper complexity function*, if $(\forall n \ge 0)(f(n+1) \ge f(n))$ and there exists a *k*-string Turing machine $M_f = (K, \Sigma, \delta, s)$ with input and output, which on input *x*, computes $\sqcap^{f(|x|)}$ in O(|x| + f(|x|) steps and uses O(f(|x|) space besides its input.

Typical proper complexity functions

 $c, n, n!, \sqrt{n}, \log n, \ldots$

Notational Convenience

- (i) $\mathbf{P} = \mathsf{TIME}(n^k) = \cup_{j>0} \mathsf{TIME}(n^j).$
- (ii) NP = NTIME $(n^k) = \bigcup_{j>0}$ NTIME (n^j) .
- (iii) **PSPACE** = **SPACE** (n^k) = $\bigcup_{j>0}$ **SPACE** (n^j) .
- (iv) NPSPACE = NSPACE $(n^k) = \bigcup_{j>0}$ NSPACE (n^j) .

(v) **EXP** = **TIME**
$$(2^{n^k})$$
 =

(vi)
$$\mathbf{L} = \mathbf{SPACE}(\log n)$$
.

(vii)
$$NL = NSPACE(\log n)$$
.

- Specification
- Complements of complexity classes

2 The Hierarchy Theorem

- Setup Lemmata
- The Theorem
- Consequences of the Hierarchy Theorem

(日)

Complementing Languages, Problems and Complexity Classes

Definition

Let $L \subseteq \Sigma^*$ denote a language. The complement of L denoted by $\overline{L} = \Sigma^* - L$.

Definition

The complement of a decision problem A, called A-COMPLEMENT, is the problem whose

"yes"-instances and "no"-instances correspond to the "no"-instances and "yes"-instances of A respectively, e.g. SAT COMPLEMENT, Hamilton Path COMPLEMENT, ...

Definition

The complement of a complexity class C, called **co**C denotes the class { $\overline{L} : L \in C$ }.

(1)

Complementing Languages, Problems and Complexity Classes

Definition

Let $L \subseteq \Sigma^*$ denote a language. The complement of L denoted by $\overline{L} = \Sigma^* - L$.

Definition

The complement of a decision problem A, called A-COMPLEMENT, is the problem whose

"yes"-instances and "no"-instances correspond to the "no"-instances and "yes"-instances of A

respectively, e.g. SAT COMPLEMENT, Hamilton Path COMPLEMENT,

Definition

The complement of a complexity class C, called **co**C denotes the class { $\overline{L} : L \in C$ }.

< ロ > < 同 > < 回 > < 回 > < 回 > <

Complementing Languages, Problems and Complexity Classes

Definition

Let $L \subseteq \Sigma^*$ denote a language. The complement of L denoted by $\overline{L} = \Sigma^* - L$.

Definition

The complement of a decision problem A, called A-COMPLEMENT, is the problem whose

"yes"-instances and "no"-instances correspond to the "no"-instances and "yes"-instances of A

respectively, e.g. SAT COMPLEMENT, Hamilton Path COMPLEMENT, ...

Definition

The complement of a complexity class C, called **co**C denotes the class { $\overline{L} : L \in C$ }.

< ロ > < 同 > < 回 > < 回 > :

Specification Complements of complexity classes

Complement of Complexity Classes

Relationship between ${\mathcal C}$ and ${\boldsymbol{co}}{\mathcal C}$

- (i) C is deterministic.
- (ii) C is non-deterministic.

(日)

э

Specification Complements of complexity classes

Complement of Complexity Classes

Relationship between $\mathcal C$ and $\boldsymbol{co}\mathcal C$

- (i) C is deterministic.
- (ii) C is non-deterministic.

э

Specification Complements of complexity classes

Complement of Complexity Classes

Relationship between ${\mathcal C}$ and ${\boldsymbol{co}}{\mathcal C}$

- (i) C is deterministic.
- (ii) C is non-deterministic.

э

• □ ▶ • • □ ▶ • □ ▶ • • □ ▶ •

Setup Lemmata The Theorem

< ロ > < 同 > < 回 > < 回 > < 回 > <

Outline

- Specification
- Complements of complexity classes

2 The Hierarchy Theorem

- Setup Lemmata
- The Theorem
- Consequences of the Hierarchy Theorem

Setup Lemmata The Theorem Consequences of the Hierarchy Theorem

э

Setup Lemmata

Goal

To show that with sufficiently greater time, Turing machines can in fact perform more complex computational tasks.

Setup

Let $f(n) \ge n$ denote a property complexity function. We define the the f-bounded Halting Problem, H_f as follows: H_f = { $\langle M; x \rangle$: M accepts input x after are most f(|x|) steps }.

Setup Lemmata The Theorem Consequences of the Hierarchy Theorem

э

Setup Lemmata

Goal

To show that with sufficiently greater time, Turing machines can in fact perform more complex computational tasks.

Setup

Let $f(n) \ge n$ denote a property complexity function. We define the the f-bounded Halting Problem, H_f as follows: $H_f = \{ \langle M; x \rangle : M$ accepts input x after are most f(|x|) steps $\}$.

Setup Lemmata The Theorem Consequences of the Hierarchy Theorem

Ъ.

Setup Lemmata

Goal

To show that with sufficiently greater time, Turing machines can in fact perform more complex computational tasks.

Setup

Let $f(n) \ge n$ denote a property complexity function. We define the the f-bounded Halting Problem, H_f as follows: H_f = { $\langle M; x \rangle$: M accepts input x after are most f(|x|) steps }.

Setup Lemmata The Theorem Consequences of the Hierarchy Theorem

・ロン ・四 ・ ・ ヨ ・ ・ ヨ ・

э

Setup Lemmata (contd.)

Lemma

 $H_f \in \mathbf{TIME}((f(n))^3).$

Proof.

Use a 4-string Turing Machine U_f that is a combination of the following machines:

(c) The linear speedup machine, (d) The "yardstick" machine that computes I(n) precisely. Approach:

- U_t copies x onto its first string and then uses M_t to initialize its 4th string with □^{t(|x|)}. (Each move of M is marked off on this string.) Total time used thus far is O(|x| + t(|x|)).
- (ii) U_f also copies M on its third string and s on its second string.
- (iii) U_f then simulates M on x, precisely as the Universal Turing Machine does.
- (iv) A single move of *M* takes $O(I_M \cdot k_M^2 \cdot f(|x|) = O((f(n))^2)$ steps, where I_M is the length of the description of each state and symbol of *M* and k_M is the number of strings of *M*.
- (v) Entire simulation takes O((f(n))³) time which can be made precisely (f(n))³ using linear speedup.

Setup Lemmata The Theorem Consequences of the Hierarchy Theorem

・ロト ・四ト ・ヨト ・ヨト

э

Setup Lemmata (contd.)

Lemma

 $H_f \in \mathbf{TIME}((f(n))^3).$

Proof.

Use a 4-string Turing Machine U_t that is a combination of the following machines: (a) The Universal Turing machine, (b) The single-string simulator of multi-string Turing machines, (c) The linear speedup machine, (c) The single-string simulator of multi-string Turing machines, (c) The linear speedup machine, (c) The single-string simulator of multi-string Turing machines, (c) The linear speedup machine, (c) The single-string simulator of multi-string turing machines, (c) The linear speedup machine, (c) The single-string simulator of multi-string turing machines, (c) The linear speedup machine, (c) The single-string simulator of multi-string turing machines, (c) The single-string simulator of multi-string simulator of mu

- (i) U_t copies x onto its first string and then uses M_t to initialize its 4th string with $\Box^{t(|x|)}$. (Each move of *M* is marked off on this string.) Total time used thus far is O(|x| + f(|x|)).
- (ii) U_f also copies M on its third string and s on its second string.
- (iii) U_f then simulates M on x, precisely as the Universal Turing Machine does.
- (iv) A single move of *M* takes $O(I_M \cdot k_M^2 \cdot f(|x|) = O((f(n))^2)$ steps, where I_M is the length of the description of each state and symbol of *M* and k_M is the number of strings of *M*.
- (v) Entire simulation takes O((f(n))³) time which can be made precisely (f(n))³ using linear speedup.

Setup Lemmata The Theorem Consequences of the Hierarchy Theorem

・ロト ・四ト ・ヨト ・ヨト

э

Setup Lemmata (contd.)

Lemma

 $H_f \in \mathbf{TIME}((f(n))^3).$

Proof.

- U_t copies x onto its first string and then uses M_t to initialize its 4th string with □^{t(|x|)}. (Each
 move of M is marked off on this string.) Total time used thus far is O(|x| + t(|x|)).
- (ii) U_f also copies M on its third string and s on its second string.
- (iii) U_f then simulates M on x, precisely as the Universal Turing Machine does.
- (iv) A single move of *M* takes $O(I_M \cdot k_M^2 \cdot f(|x|) = O((f(n))^2)$ steps, where I_M is the length of the description of each state and symbol of *M* and k_M is the number of strings of *M*.
- (v) Entire simulation takes O((f(n))³) time which can be made precisely (f(n))³ using linear speedup.

Setup Lemmata The Theorem Consequences of the Hierarchy Theorem

・ロン ・四 ・ ・ ヨ ・ ・ ヨ ・

э

Setup Lemmata (contd.)

Lemma

 $H_f \in \mathbf{TIME}((f(n))^3).$

Proof.

- U_t copies x onto its first string and then uses M_t to initialize its 4th string with □^{t(|x|)}. (Each
 move of M is marked off on this string.) Total time used thus far is O(|x| + f(|x|)).
- (ii) U_f also copies M on its third string and s on its second string.
- (iii) U_f then simulates *M* on *x*, precisely as the Universal Turing Machine does.
- (iv) A single move of *M* takes $O(I_M \cdot k_M^2 \cdot f(|x|) = O((f(n))^2)$ steps, where I_M is the length of the description of each state and symbol of *M* and k_M is the number of strings of *M*.
- (v) Entire simulation takes O((f(n))³) time which can be made precisely (f(n))³ using linear speedup.

Setup Lemmata The Theorem Consequences of the Hierarchy Theorem

ъ

Setup Lemmata (contd.)

Lemma

 $H_f \in \mathbf{TIME}((f(n))^3).$

Proof.

- U_t copies x onto its first string and then uses M_t to initialize its 4th string with □^{f(|x|)}. (Each move of M is marked off on this string.) Total time used thus far is O(|x| + f(|x|)).
- (ii) U_f also copies M on its third string and s on its second string.
- (iii) U_f then simulates M on x, precisely as the Universal Turing Machine does.
- (iv) A single move of *M* takes $O(I_M \cdot k_M^2 \cdot f(|x|) = O((f(n))^2)$ steps, where I_M is the length of the description of each state and symbol of *M* and k_M is the number of strings of *M*.
- (v) Entire simulation takes O((f(n))³) time which can be made precisely (f(n))³ using linear speedup.

Setup Lemmata The Theorem Consequences of the Hierarchy Theorem

ъ

Setup Lemmata (contd.)

Lemma

 $H_f \in \mathbf{TIME}((f(n))^3).$

Proof.

- U_t copies x onto its first string and then uses M_t to initialize its 4th string with □^t(|x|). (Each move of M is marked off on this string.) Total time used thus far is O(|x| + t(|x|)).
- (ii) U_f also copies *M* on its third string and *s* on its second string.
- (iii) U_f then simulates M on x, precisely as the Universal Turing Machine does.
- (iv) A single move of *M* takes $O(I_M \cdot k_M^2 \cdot f(|x|) = O((f(n))^2)$ steps, where I_M is the length of the description of each state and symbol of *M* and k_M is the number of strings of *M*.
- (v) Entire simulation takes O((f(n))³) time which can be made precisely (f(n))³ using linear speedup.

Setup Lemmata The Theorem Consequences of the Hierarchy Theorem

ъ

Setup Lemmata (contd.)

Lemma

 $H_f \in \mathbf{TIME}((f(n))^3).$

Proof.

- (i) U_f copies x onto its first string and then uses M_f to initialize its 4th string with $\Box^{f(|x|)}$. (Each move of *M* is marked off on this string.) Total time used thus far is O(|x| + f(|x|)).
- (ii) U_f also copies *M* on its third string and *s* on its second string.
- (iii) U_f then simulates M on x, precisely as the Universal Turing Machine does.
- (iv) A single move of *M* takes $O(I_M \cdot k_M^2 \cdot f(|x|) = O((f(n))^2)$ steps, where I_M is the length of the description of each state and symbol of *M* and k_M is the number of strings of *M*.
- (v) Entire simulation takes O((f(n))³) time which can be made precisely (f(n))³ using linear speedup.

Setup Lemmata The Theorem Consequences of the Hierarchy Theorem

(ロ) (部) (E) (E)

Setup Lemmata (contd.)

Lemma

 $H_f \in \mathbf{TIME}((f(n))^3).$

Proof.

- (i) U_f copies x onto its first string and then uses M_f to initialize its 4th string with $\Box^{f(|x|)}$. (Each move of *M* is marked off on this string.) Total time used thus far is O(|x| + f(|x|)).
- (ii) U_f also copies *M* on its third string and *s* on its second string.
- (iii) U_f then simulates M on x, precisely as the Universal Turing Machine does.
- (iv) A single move of *M* takes $O(I_M \cdot k_M^2 \cdot f(|x|) = O((f(n))^2)$ steps, where I_M is the length of the description of each state and symbol of *M* and k_M is the number of strings of *M*.
- (v) Entire simulation takes O((f(n))³) time which can be made precisely (f(n))³ using linear speedup.

Setup Lemmata The Theorem Consequences of the Hierarchy Theorem

(ロ) (部) (E) (E)

Setup Lemmata (contd.)

Lemma

 $H_f \in \mathbf{TIME}((f(n))^3).$

Proof.

- (i) U_f copies x onto its first string and then uses M_f to initialize its 4th string with $\Box^{f(|x|)}$. (Each move of *M* is marked off on this string.) Total time used thus far is O(|x| + f(|x|)).
- (ii) U_f also copies M on its third string and s on its second string.
- (iii) U_f then simulates M on x, precisely as the Universal Turing Machine does.
- (iv) A single move of *M* takes $O(I_M \cdot k_M^2 \cdot f(|x|) = O((f(n))^2)$ steps, where I_M is the length of the description of each state and symbol of *M* and k_M is the number of strings of *M*.
- (v) Entire simulation takes $O((f(n))^3)$ time which can be made precisely $(f(n))^3$ using linear speedup.

Setup Lemmata The Theorem Consequences of the Hierarchy Theorem

Setup Lemmata (contd.)

Lemma

 $H_f \in \mathbf{TIME}((f(n))^3).$

Proof.

Use a 4-string Turing Machine U_t that is a combination of the following machines: (a) The Universal Turing machine, (b) The single-string simulator of multi-string Turing machines, (c) The linear speedup machine, (d) The "yardstick" machine that computes f(n) precisely. Approach:

- (i) U_f copies x onto its first string and then uses M_f to initialize its 4th string with $\Box^{f(|x|)}$. (Each move of *M* is marked off on this string.) Total time used thus far is O(|x| + f(|x|)).
- (ii) U_f also copies M on its third string and s on its second string.
- (iii) U_f then simulates *M* on *x*, precisely as the Universal Turing Machine does.
- (iv) A single move of *M* takes $O(I_M \cdot k_M^2 \cdot f(|x|) = O((f(n))^2)$ steps, where I_M is the length of the description of each state and symbol of *M* and k_M is the number of strings of *M*.

 (v) Entire simulation takes O((f(n))³) time which can be made precisely (f(n))³ using linear speedup.

Setup Lemmata The Theorem Consequences of the Hierarchy Theorem

Setup Lemmata (contd.)

Lemma

 $H_f \in \mathbf{TIME}((f(n))^3).$

Proof.

- (i) U_f copies x onto its first string and then uses M_f to initialize its 4th string with $\Box^{f(|x|)}$. (Each move of *M* is marked off on this string.) Total time used thus far is O(|x| + f(|x|)).
- (ii) U_f also copies M on its third string and s on its second string.
- (iii) U_f then simulates M on x, precisely as the Universal Turing Machine does.
- (iv) A single move of *M* takes $O(I_M \cdot k_M^2 \cdot f(|x|) = O((f(n))^2)$ steps, where I_M is the length of the description of each state and symbol of *M* and k_M is the number of strings of *M*.
- (v) Entire simulation takes $O((f(n))^3)$ time which can be made precisely $(f(n))^3$ using linear speedup.

Setup Lemmata The Theorem Consequences of the Hierarchy Theorem

Ъ.

Setup Lemmata (contd.)

Lemma

 $H_f \not\in \mathbf{TIME}(f(\lfloor \frac{n}{2} \rfloor)).$

Proof.

Assume that there exists a Turing machine M_{H_f} that decides H_f in time $f(\lfloor \frac{n}{2} \rfloor)$. Construct D_f as follows:

 $D_f(M)$: if $M_{H_f}(M; M) =$ "yes" then "no" else "yes".

 $D_t(M)$ takes the same time as $M_{H_f}(M; M)$ which is $f(\lfloor \frac{2n+1}{2} \rfloor) = f(n)$. What about $D_t(D_t)$? If $(D_t(D_t)) = "yes"$, then $M_{H_f}(D_t; D_t) = "no"$ and hence $\langle D_t ; D_t \rangle \notin H_t$. But this means that D_t does not accept its description in f(n) steps, i.e., $D_t(D_t) = "no"$! Similarly, $D_t(D_t) = "no"$ implies $D_t(D_t) = "yes"$. It follows that $H_t \notin \mathsf{TIME}(f(\lfloor \frac{n}{2} \rfloor))$.

Setup Lemmata The Theorem Consequences of the Hierarchy Theorem

Ъ.

Setup Lemmata (contd.)

Lemma

 $H_f \not\in \mathbf{TIME}(f(\lfloor \frac{n}{2} \rfloor)).$

Proof.

Assume that there exists a Turing machine M_{H_f} that decides H_f in time $f(\lfloor \frac{n}{2} \rfloor)$. Construct D_f as follows:

 $D_f(M)$: if $M_{H_f}(M; M) = "yes"$ then "no" else "yes".

 $D_t(M)$ takes the same time as $M_{H_f}(M; M)$ which is $f(\lfloor \frac{2n+1}{2} \rfloor) = f(n)$. What about $D_t(D_t)$? If $(D_t(D_t)) = "yes"$, then $M_{H_f}(D_t; D_t) = "no"$ and hence $\langle D_t ; D_t \rangle \notin H_t$. But this means that D_t does not accept its description in f(n) steps, i.e., $D_t(D_t) = "no"$! Similarly, $D_t(D_t) = "no"$ implies $D_t(D_t) = "yes"$. It follows that $H_t \notin \mathsf{TIME}(f(\lfloor \frac{n}{2} \rfloor))$.

Setup Lemmata The Theorem Consequences of the Hierarchy Theorem

Ъ.

Setup Lemmata (contd.)

Lemma

 $H_f \not\in \mathbf{TIME}(f(\lfloor \frac{n}{2} \rfloor)).$

Proof.

Assume that there exists a Turing machine M_{H_f} that decides H_f in time $f(\lfloor \frac{n}{2} \rfloor)$. Construct D_f as follows:

$$D_f(M)$$
: if $M_{H_f}(M; M) =$ "yes" then "no" else "yes".

 $D_t(M)$ takes the same time as $M_{H_f}(M; M)$ which is $f(\lfloor \frac{2n+1}{2} \rfloor) = f(n)$. What about $D_t(D_t)$? If $(D_t(D_t)) = "yes"$, then $M_{H_f}(D_t; D_t) = "no"$ and hence $\langle D_t ; D_t \rangle \notin H_t$. But this means that D_t does not accept its description in f(n) steps, i.e., $D_t(D_t) = "no"$! Similarly, $D_t(D_t) = "no"$ implies $D_t(D_t) = "yes"$. It follows that $H_t \notin \mathsf{TIME}(f(\lfloor \frac{n}{2} \rfloor))$.

Setup Lemmata The Theorem Consequences of the Hierarchy Theorem

Ъ.

Setup Lemmata (contd.)

Lemma

 $H_f \not\in \mathbf{TIME}(f(\lfloor \frac{n}{2} \rfloor)).$

Proof.

Assume that there exists a Turing machine M_{H_f} that decides H_f in time $f(\lfloor \frac{n}{2} \rfloor)$. Construct D_f as follows:

$$D_f(M)$$
: if $M_{H_f}(M; M) =$ "yes" then "no" else "yes".

 $D_t(M)$ takes the same time as $M_{H_t}(M; M)$ which is $f(\lfloor \frac{2n+1}{2} \rfloor) = f(n)$. What about $D_t(D_t)$? If $(D_t(D_t)) = "yes"$, then $M_{H_t}(D_t) = "no"$ and hence $(D_t; D_t) \notin H_t$. But this means that D_t does not accept its description in f(n) steps. i.e., $D_t(D_t) = "no"$. Similarly, $D_t(D_t) = "no"$ implies the second steps of the steps. I.e., $D_t(D_t) = mo"$.

 $D_f(D_f) = "yes"$. It follows that $H_f \not\in \mathsf{TIME}(f(\lfloor \frac{n}{2} \rfloor))$.

Setup Lemmata The Theorem Consequences of the Hierarchy Theorem

Ъ.

Setup Lemmata (contd.)

Lemma

 $H_f \not\in \mathbf{TIME}(f(\lfloor \frac{n}{2} \rfloor)).$

Proof.

Assume that there exists a Turing machine M_{H_f} that decides H_f in time $f(\lfloor \frac{n}{2} \rfloor)$. Construct D_f as follows:

$$D_f(M)$$
: if $M_{H_f}(M; M) =$ "yes" then "no" else "yes".

 $D_f(M)$ takes the same time as $M_{H_f}(M; M)$ which is $f(\lfloor \frac{2n+1}{2} \rfloor) = f(n)$. What about $D_f(D_f)$?

 $(D_t(D_t)) =$ "yes", then $M_{H_t}(D_t; D_t) =$ "no" and hence $\langle D_t; D_t \rangle \notin H_t$. But this means that D_t does not accept its description in f(n) steps, i.e., $D_t(D_t) =$ "no"! Similarly, $D_t(D_t) =$ "no" implies $D_t(D_t) =$ "yes". It follows that $H_t \notin \text{TIME}(f(\lfloor \frac{n}{2} \rfloor))$.

Setup Lemmata The Theorem Consequences of the Hierarchy Theorem

Ъ.

Setup Lemmata (contd.)

Lemma

 $H_f \not\in \mathbf{TIME}(f(\lfloor \frac{n}{2} \rfloor)).$

Proof.

Assume that there exists a Turing machine M_{H_f} that decides H_f in time $f(\lfloor \frac{n}{2} \rfloor)$. Construct D_f as follows:

$$D_f(M)$$
: if $M_{H_f}(M; M) =$ "yes" then "no" else "yes".

 $D_f(M)$ takes the same time as $M_{H_f}(M; M)$ which is $f(\lfloor \frac{2n+1}{2} \rfloor) = f(n)$. What about $D_f(D_f)$? If $(D_f(D_f)) = "yes"$, then $M_{H_f}(D_f; D_f) = "no"$ and hence $\langle D_f; D_f \rangle \notin H_f$. But this means that D_f does not accept its description in f(n) steps. i.e., $D_f(D_f) = "no"$! Similarly, $D_f(D_f) = "no"$ implies $D_f(D_f) = "yes"$. It follows that $H_f \notin \text{TIME}(f(\lfloor \frac{n}{2} \rfloor))$

Setup Lemmata The Theorem Consequences of the Hierarchy Theorem

Ъ.

Setup Lemmata (contd.)

Lemma

 $H_f \not\in \mathbf{TIME}(f(\lfloor \frac{n}{2} \rfloor)).$

Proof.

Assume that there exists a Turing machine M_{H_f} that decides H_f in time $f(\lfloor \frac{n}{2} \rfloor)$. Construct D_f as follows:

$$D_f(M)$$
: if $M_{H_f}(M; M) =$ "yes" then "no" else "yes".

 $D_f(M)$ takes the same time as $M_{H_f}(M; M)$ which is $f(\lfloor \frac{2n+1}{2} \rfloor) = f(n)$. What about $D_f(D_f)$? If $(D_f(D_f)) = "yes"$, then $M_{H_f}(D_f; D_f) = "no"$ and hence $\langle D_f; D_f \rangle \notin H_f$. But this means that D_f does not accept its description in f(n) steps, i.e., $D_f(D_f) = "no"$? Similarly, $D_f(D_f) = "no"$ implies $D_f(D_f) = "yes"$. It follows that $H_f \notin \text{TIME}(f(\lfloor g \rfloor))$.

Setup Lemmata The Theorem Consequences of the Hierarchy Theorem

Ъ.

Setup Lemmata (contd.)

Lemma

 $H_f \not\in \mathbf{TIME}(f(\lfloor \frac{n}{2} \rfloor)).$

Proof.

Assume that there exists a Turing machine M_{H_f} that decides H_f in time $f(\lfloor \frac{n}{2} \rfloor)$. Construct D_f as follows:

$$D_f(M)$$
: if $M_{H_f}(M; M) =$ "yes" then "no" else "yes".

 $D_t(M)$ takes the same time as $M_{H_f}(M; M)$ which is $f(\lfloor \frac{2n+1}{2} \rfloor) = f(n)$. What about $D_f(D_f)$? If $(D_f(D_f)) = "yes"$, then $M_{H_f}(D_f; D_f) = "no"$ and hence $\langle D_f ; D_f \rangle \notin H_f$. But this means that D_f does not accept its description in f(n) steps, i.e., $D_f(D_f) = "no"$! Similarly, $D_f(D_f) = "no"$ implies $D_f(D_f) = "yes"$. It follows that $H_f \notin \text{TIME}(f(\lfloor \frac{n}{2} \rfloor))$.

Setup Lemmata The Theorem Consequences of the Hierarchy Theorem

< ロ > < 同 > < 三 > < 三 > -

Ъ.

Setup Lemmata (contd.)

Lemma

 $H_f \not\in \mathbf{TIME}(f(\lfloor \frac{n}{2} \rfloor)).$

Proof.

Assume that there exists a Turing machine M_{H_f} that decides H_f in time $f(\lfloor \frac{n}{2} \rfloor)$. Construct D_f as follows:

$$D_f(M)$$
: if $M_{H_f}(M; M) =$ "yes" then "no" else "yes".

 $D_f(M)$ takes the same time as $M_{H_f}(M; M)$ which is $f(\lfloor \frac{2n+1}{2} \rfloor) = f(n)$. What about $D_f(D_f)$? If $(D_f(D_f)) = "yes"$, then $M_{H_f}(D_f; D_f) = "no"$ and hence $\langle D_f ; D_f \rangle \notin H_f$. But this means that D_f does not accept its description in f(n) steps, i.e., $D_f(D_f) = "no"$! Similarly, $D_f(D_f) = "no"$ implies $D_f(D_f) = "yes"$. It follows that $H_f \notin \mathsf{TIME}(f(\lfloor \frac{n}{2} \rfloor))$.

Setup Lemmata The Theorem Consequences of the Hierarchy Theorem

< ロ > < 同 > < 回 > < 回 > < 回 > <

Outline

Complexity of Classes

- Specification
- Complements of complexity classes

2 The Hierarchy Theorem

- Setup Lemmata
- The Theorem
- Consequences of the Hierarchy Theorem

Setup Lemmata The Theorem Consequences of the Hierarchy Theorem

э

The Hierarchy Theorem

Theorem (The Time Hierarchy Theorem)

If $f(n) \ge n$ is a proper complexity function, then the class $\mathsf{TIME}(f(n))$ is strictly contained in the class $\mathsf{TIME}((f(2n + 1))^3)$.

Setup Lemmata The Theorem Consequences of the Hierarchy Theorem

Ъ.

The Hierarchy Theorem

Theorem (The Time Hierarchy Theorem)

If $f(n) \ge n$ is a proper complexity function, then the class **TIME**(f(n)) is strictly contained in the class **TIME** $((f(2n + 1))^3)$.

Setup Lemmata The Theorem **Consequences of the Hierarchy Theorem**

< □ > < 同 > < Ξ > < Ξ >

Outline

- Specification
- Complements of complexity classes

2 The Hierarchy Theorem

- Setup Lemmata
- The Theorem
- Consequences of the Hierarchy Theorem

Setup Lemmata The Theorem Consequences of the Hierarchy Theorem

Ъ.

Consequences of the Hierarchy Theorem

Lemma

P is a proper subset of EXP.

Proof.

Clearly $\mathbf{P} \subseteq \mathsf{TIME}(2^n)$. As per the Hierarchy theorem, $\mathsf{TIME}(2^n) \subset \mathsf{TIME}((2^{(2n+1)})^3)$. But $\mathsf{TIME}((2^{(2n+1)})^3) \subset \mathsf{TIME}(2^{n^2}) \subseteq \mathsf{EXP}!$

_emma

If f(n) is a proper complexity function, then SPACE(f(n)) is proper subset of SPACE $(f(n) \cdot \log f(n))$.

Theorem (The Gap Theorem)

There exists a recursive function $f: \mathcal{N} \to \mathcal{N}$ such that $\mathsf{TIME}(f(n)) = \mathsf{TIME}(2^{f(n)})$

Setup Lemmata The Theorem Consequences of the Hierarchy Theorem

Ъ.

Consequences of the Hierarchy Theorem

Lemma

P is a proper subset of EXP.

Proof.

Clearly $P \subseteq \text{TIME}(2^n)$. As per the Hierarchy theorem, $\text{TIME}(2^n) \subset \text{TIME}((2^{(2n+1)})^3)$. But $\text{TIME}((2^{(2n+1)})^3) \subset \text{TIME}(2^{n^2}) \subseteq \text{EXP}!$

Lemma

If f(n) is a proper complexity function, then SPACE(f(n)) is proper subset of SPACE $(f(n) \cdot \log f(n))$.

Theorem (The Gap Theorem)

There exists a recursive function $f: \mathcal{N} \to \mathcal{N}$ such that $\mathsf{TIME}(f(n)) = \mathsf{TIME}(2^{f(n)})$.

Setup Lemmata The Theorem Consequences of the Hierarchy Theorem

Ъ.

Consequences of the Hierarchy Theorem

Lemma

P is a proper subset of EXP.

Proof.

Clearly $\mathbf{P} \subseteq \mathsf{TIME}(2^n)$. As per the Hierarchy theorem, $\mathsf{TIME}(2^n) \subset \mathsf{TIME}((2^{(2n+1)})^3)$. But $\mathsf{TIME}((2^{(2n+1)})^3) \subset \mathsf{TIME}(2^n) \subseteq \mathsf{EXP}(2^n)$

Lemma

If f(n) is a proper complexity function, then **SPACE**(f(n)) is proper subset of **SPACE** $(f(n) \cdot \log f(n))$.

Theorem (The Gap Theorem)

There exists a recursive function $f: \mathcal{N} \to \mathcal{N}$ such that $\mathsf{TIME}(f(n)) = \mathsf{TIME}(2^{f(n)})$

Setup Lemmata The Theorem Consequences of the Hierarchy Theorem

(D) (A) (B) (B)

Consequences of the Hierarchy Theorem

Lemma

P is a proper subset of EXP.

Proof.

Clearly $\mathbf{P} \subseteq \text{TIME}(2^n)$. As per the Hierarchy theorem, $\text{TIME}(2^n) \subset \text{TIME}((2^{(2n+1)})^3)$. But $\text{TIME}((2^{(2n+1)})^3) \subset \text{TIME}(2^{n^2}) \subseteq \text{EXP}!$

Lemma

If f(n) is a proper complexity function, then SPACE(f(n)) is proper subset of SPACE $(f(n) \cdot \log f(n))$.

Theorem (The Gap Theorem)

There exists a recursive function $f : \mathcal{N} \to \mathcal{N}$ such that $\mathsf{TIME}(f(n)) = \mathsf{TIME}(2^{f(n)})$.