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Complexity of Classes
The Hierarchy Theorem

Specification
Complements of complexity classes

Specification

Class Characteristics
(i) Model of Computatiion - multi-string Turing Machine

(ii) Mode of Computation - Deterministic or Non-deterministic

(iii) Resource of interest - Time, space, etc.

(iv) Bound - A function f : N → N .

Definition
A complexity class is the set of all languages decided by a multi-string string Turing machine M

operating in the appropriate mode and such that for any input x , M spends at most f (|x|) of the

specified resource.
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Specification (contd.)

Definition
A function f is said to be a proper complexity function, if (∀n ≥ 0)(f (n + 1) ≥ f (n)) and there

exists a k -string Turing machine Mf = (K ,Σ, δ, s) with input and output, which on input x ,

computes uf (|x|) in O(|x| + f (|x|) steps and uses O(f (|x|) space besides its input.

Typical proper complexity functions
c, n, n!,

√
n, log n, . . .

Notational Convenience
TIME(f ), SPACE(f ), NTIME(f ), NSPACE(f ). Parameterized complexity classes:

(i) P = TIME(nk ) = ∪j>0TIME(nj ).

(ii) NP = NTIME(nk ) = ∪j>0NTIME(nj ).

(iii) PSPACE = SPACE(nk ) =

∪j>0SPACE(nj ).

(iv) NPSPACE = NSPACE(nk ) =

∪j>0NSPACE(nj ).

(v) EXP = TIME(2nk
) =

∪j>0TIME(2nj
).

(vi) L = SPACE(log n).

(vii) NL = NSPACE(log n).

Subramani Complexity Classes



Complexity of Classes
The Hierarchy Theorem

Specification
Complements of complexity classes

Specification (contd.)

Definition
A function f is said to be a proper complexity function, if (∀n ≥ 0)(f (n + 1) ≥ f (n)) and there

exists a k -string Turing machine Mf = (K ,Σ, δ, s) with input and output, which on input x ,

computes uf (|x|) in O(|x| + f (|x|) steps and uses O(f (|x|) space besides its input.

Typical proper complexity functions
c, n, n!,

√
n, log n, . . .

Notational Convenience
TIME(f ), SPACE(f ), NTIME(f ), NSPACE(f ). Parameterized complexity classes:

(i) P = TIME(nk ) = ∪j>0TIME(nj ).

(ii) NP = NTIME(nk ) = ∪j>0NTIME(nj ).

(iii) PSPACE = SPACE(nk ) =

∪j>0SPACE(nj ).

(iv) NPSPACE = NSPACE(nk ) =

∪j>0NSPACE(nj ).

(v) EXP = TIME(2nk
) =

∪j>0TIME(2nj
).

(vi) L = SPACE(log n).

(vii) NL = NSPACE(log n).

Subramani Complexity Classes



Complexity of Classes
The Hierarchy Theorem

Specification
Complements of complexity classes

Specification (contd.)

Definition
A function f is said to be a proper complexity function, if (∀n ≥ 0)(f (n + 1) ≥ f (n)) and there

exists a k -string Turing machine Mf = (K ,Σ, δ, s) with input and output, which on input x ,

computes uf (|x|) in O(|x| + f (|x|) steps and uses O(f (|x|) space besides its input.

Typical proper complexity functions
c, n, n!,

√
n, log n, . . .

Notational Convenience
TIME(f ), SPACE(f ), NTIME(f ), NSPACE(f ). Parameterized complexity classes:

(i) P = TIME(nk ) = ∪j>0TIME(nj ).

(ii) NP = NTIME(nk ) = ∪j>0NTIME(nj ).

(iii) PSPACE = SPACE(nk ) =

∪j>0SPACE(nj ).

(iv) NPSPACE = NSPACE(nk ) =

∪j>0NSPACE(nj ).

(v) EXP = TIME(2nk
) =

∪j>0TIME(2nj
).

(vi) L = SPACE(log n).

(vii) NL = NSPACE(log n).

Subramani Complexity Classes



Complexity of Classes
The Hierarchy Theorem

Specification
Complements of complexity classes

Specification (contd.)

Definition
A function f is said to be a proper complexity function, if (∀n ≥ 0)(f (n + 1) ≥ f (n)) and there

exists a k -string Turing machine Mf = (K ,Σ, δ, s) with input and output, which on input x ,

computes uf (|x|) in O(|x| + f (|x|) steps and uses O(f (|x|) space besides its input.

Typical proper complexity functions
c, n, n!,

√
n, log n, . . .

Notational Convenience
TIME(f ), SPACE(f ), NTIME(f ), NSPACE(f ). Parameterized complexity classes:

(i) P = TIME(nk ) = ∪j>0TIME(nj ).

(ii) NP = NTIME(nk ) = ∪j>0NTIME(nj ).

(iii) PSPACE = SPACE(nk ) =

∪j>0SPACE(nj ).

(iv) NPSPACE = NSPACE(nk ) =

∪j>0NSPACE(nj ).

(v) EXP = TIME(2nk
) =

∪j>0TIME(2nj
).

(vi) L = SPACE(log n).

(vii) NL = NSPACE(log n).

Subramani Complexity Classes



Complexity of Classes
The Hierarchy Theorem

Specification
Complements of complexity classes

Specification (contd.)

Definition
A function f is said to be a proper complexity function, if (∀n ≥ 0)(f (n + 1) ≥ f (n)) and there

exists a k -string Turing machine Mf = (K ,Σ, δ, s) with input and output, which on input x ,

computes uf (|x|) in O(|x| + f (|x|) steps and uses O(f (|x|) space besides its input.

Typical proper complexity functions
c, n, n!,

√
n, log n, . . .

Notational Convenience
TIME(f ), SPACE(f ), NTIME(f ), NSPACE(f ). Parameterized complexity classes:

(i) P = TIME(nk ) = ∪j>0TIME(nj ).

(ii) NP = NTIME(nk ) = ∪j>0NTIME(nj ).

(iii) PSPACE = SPACE(nk ) =

∪j>0SPACE(nj ).

(iv) NPSPACE = NSPACE(nk ) =

∪j>0NSPACE(nj ).

(v) EXP = TIME(2nk
) =

∪j>0TIME(2nj
).

(vi) L = SPACE(log n).

(vii) NL = NSPACE(log n).

Subramani Complexity Classes



Complexity of Classes
The Hierarchy Theorem

Specification
Complements of complexity classes

Specification (contd.)

Definition
A function f is said to be a proper complexity function, if (∀n ≥ 0)(f (n + 1) ≥ f (n)) and there

exists a k -string Turing machine Mf = (K ,Σ, δ, s) with input and output, which on input x ,

computes uf (|x|) in O(|x| + f (|x|) steps and uses O(f (|x|) space besides its input.

Typical proper complexity functions
c, n, n!,

√
n, log n, . . .

Notational Convenience
TIME(f ), SPACE(f ), NTIME(f ), NSPACE(f ). Parameterized complexity classes:

(i) P = TIME(nk ) = ∪j>0TIME(nj ).

(ii) NP = NTIME(nk ) = ∪j>0NTIME(nj ).

(iii) PSPACE = SPACE(nk ) =

∪j>0SPACE(nj ).

(iv) NPSPACE = NSPACE(nk ) =

∪j>0NSPACE(nj ).

(v) EXP = TIME(2nk
) =

∪j>0TIME(2nj
).

(vi) L = SPACE(log n).

(vii) NL = NSPACE(log n).

Subramani Complexity Classes



Complexity of Classes
The Hierarchy Theorem

Specification
Complements of complexity classes

Specification (contd.)

Definition
A function f is said to be a proper complexity function, if (∀n ≥ 0)(f (n + 1) ≥ f (n)) and there

exists a k -string Turing machine Mf = (K ,Σ, δ, s) with input and output, which on input x ,

computes uf (|x|) in O(|x| + f (|x|) steps and uses O(f (|x|) space besides its input.

Typical proper complexity functions
c, n, n!,

√
n, log n, . . .

Notational Convenience
TIME(f ), SPACE(f ), NTIME(f ), NSPACE(f ). Parameterized complexity classes:

(i) P = TIME(nk ) = ∪j>0TIME(nj ).

(ii) NP = NTIME(nk ) = ∪j>0NTIME(nj ).

(iii) PSPACE = SPACE(nk ) =

∪j>0SPACE(nj ).

(iv) NPSPACE = NSPACE(nk ) =

∪j>0NSPACE(nj ).

(v) EXP = TIME(2nk
) =

∪j>0TIME(2nj
).

(vi) L = SPACE(log n).

(vii) NL = NSPACE(log n).

Subramani Complexity Classes



Complexity of Classes
The Hierarchy Theorem

Specification
Complements of complexity classes

Specification (contd.)

Definition
A function f is said to be a proper complexity function, if (∀n ≥ 0)(f (n + 1) ≥ f (n)) and there

exists a k -string Turing machine Mf = (K ,Σ, δ, s) with input and output, which on input x ,

computes uf (|x|) in O(|x| + f (|x|) steps and uses O(f (|x|) space besides its input.

Typical proper complexity functions
c, n, n!,

√
n, log n, . . .

Notational Convenience
TIME(f ), SPACE(f ), NTIME(f ), NSPACE(f ). Parameterized complexity classes:

(i) P = TIME(nk ) = ∪j>0TIME(nj ).

(ii) NP = NTIME(nk ) = ∪j>0NTIME(nj ).

(iii) PSPACE = SPACE(nk ) =

∪j>0SPACE(nj ).

(iv) NPSPACE = NSPACE(nk ) =

∪j>0NSPACE(nj ).

(v) EXP = TIME(2nk
) =

∪j>0TIME(2nj
).

(vi) L = SPACE(log n).

(vii) NL = NSPACE(log n).

Subramani Complexity Classes



Complexity of Classes
The Hierarchy Theorem

Specification
Complements of complexity classes

Specification (contd.)

Definition
A function f is said to be a proper complexity function, if (∀n ≥ 0)(f (n + 1) ≥ f (n)) and there

exists a k -string Turing machine Mf = (K ,Σ, δ, s) with input and output, which on input x ,

computes uf (|x|) in O(|x| + f (|x|) steps and uses O(f (|x|) space besides its input.

Typical proper complexity functions
c, n, n!,

√
n, log n, . . .

Notational Convenience
TIME(f ), SPACE(f ), NTIME(f ), NSPACE(f ). Parameterized complexity classes:

(i) P = TIME(nk ) = ∪j>0TIME(nj ).

(ii) NP = NTIME(nk ) = ∪j>0NTIME(nj ).

(iii) PSPACE = SPACE(nk ) =

∪j>0SPACE(nj ).

(iv) NPSPACE = NSPACE(nk ) =

∪j>0NSPACE(nj ).

(v) EXP = TIME(2nk
) =

∪j>0TIME(2nj
).

(vi) L = SPACE(log n).

(vii) NL = NSPACE(log n).

Subramani Complexity Classes



Complexity of Classes
The Hierarchy Theorem

Specification
Complements of complexity classes

Specification (contd.)

Definition
A function f is said to be a proper complexity function, if (∀n ≥ 0)(f (n + 1) ≥ f (n)) and there

exists a k -string Turing machine Mf = (K ,Σ, δ, s) with input and output, which on input x ,

computes uf (|x|) in O(|x| + f (|x|) steps and uses O(f (|x|) space besides its input.

Typical proper complexity functions
c, n, n!,

√
n, log n, . . .

Notational Convenience
TIME(f ), SPACE(f ), NTIME(f ), NSPACE(f ). Parameterized complexity classes:

(i) P = TIME(nk ) = ∪j>0TIME(nj ).

(ii) NP = NTIME(nk ) = ∪j>0NTIME(nj ).

(iii) PSPACE = SPACE(nk ) =

∪j>0SPACE(nj ).

(iv) NPSPACE = NSPACE(nk ) =

∪j>0NSPACE(nj ).

(v) EXP = TIME(2nk
) =

∪j>0TIME(2nj
).

(vi) L = SPACE(log n).

(vii) NL = NSPACE(log n).

Subramani Complexity Classes



Complexity of Classes
The Hierarchy Theorem

Specification
Complements of complexity classes

Specification (contd.)

Definition
A function f is said to be a proper complexity function, if (∀n ≥ 0)(f (n + 1) ≥ f (n)) and there

exists a k -string Turing machine Mf = (K ,Σ, δ, s) with input and output, which on input x ,

computes uf (|x|) in O(|x| + f (|x|) steps and uses O(f (|x|) space besides its input.

Typical proper complexity functions
c, n, n!,

√
n, log n, . . .

Notational Convenience
TIME(f ), SPACE(f ), NTIME(f ), NSPACE(f ). Parameterized complexity classes:

(i) P = TIME(nk ) = ∪j>0TIME(nj ).

(ii) NP = NTIME(nk ) = ∪j>0NTIME(nj ).

(iii) PSPACE = SPACE(nk ) =

∪j>0SPACE(nj ).

(iv) NPSPACE = NSPACE(nk ) =

∪j>0NSPACE(nj ).

(v) EXP = TIME(2nk
) =

∪j>0TIME(2nj
).

(vi) L = SPACE(log n).

(vii) NL = NSPACE(log n).

Subramani Complexity Classes



Complexity of Classes
The Hierarchy Theorem

Specification
Complements of complexity classes

Outline

1 Complexity of Classes
Specification
Complements of complexity classes

2 The Hierarchy Theorem
Setup Lemmata
The Theorem
Consequences of the Hierarchy Theorem

Subramani Complexity Classes



Complexity of Classes
The Hierarchy Theorem

Specification
Complements of complexity classes

Complementing Languages, Problems and Complexity
Classes

Definition
Let L ⊆ Σ∗ denote a language. The complement of L denoted by L̄ = Σ∗ − L.

Definition
The complement of a decision problem A, called A-COMPLEMENT, is the problem whose

“yes”-instances and “no”-instances correspond to the “no”-instances and “yes”-instances of A

respectively, e.g. SAT COMPLEMENT, Hamilton Path COMPLEMENT, . . .

Definition
The complement of a complexity class C, called coC denotes the class {L̄ : L ∈ C}.
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Relationship between C and coC
(i) C is deterministic.

(ii) C is non-deterministic.
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Setup Lemmata

Goal
To show that with sufficiently greater time, Turing machines can in fact perform more complex

computational tasks.

Setup
Let f (n) ≥ n denote a property complexity function. We define the the f -bounded Halting Problem,

Hf as follows: Hf = {〈M; x〉 : M accepts input x after are most f (|x|) steps }.
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Setup Lemmata (contd.)

Lemma
Hf ∈ TIME((f (n))3).

Proof.
Use a 4-string Turing Machine Uf that is a combination of the following machines:
(a) The Universal Turing machine, (b) The single-string simulator of multi-string Turing machines,
(c) The linear speedup machine, (d) The “yardstick” machine that computes f (n) precisely.
Approach:

(i) Uf copies x onto its first string and then uses Mf to initialize its 4th string with uf (|x|). (Each
move of M is marked off on this string.) Total time used thus far is O(|x| + f (|x|)).

(ii) Uf also copies M on its third string and s on its second string.

(iii) Uf then simulates M on x , precisely as the Universal Turing Machine does.

(iv) A single move of M takes O(lM · kM
2 · f (|x|) = O((f (n))2) steps, where lM is the length of the

description of each state and symbol of M and kM is the number of strings of M.

(v) Entire simulation takes O((f (n))3) time which can be made precisely (f (n))3 using linear
speedup.
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2 · f (|x|) = O((f (n))2) steps, where lM is the length of the

description of each state and symbol of M and kM is the number of strings of M.

(v) Entire simulation takes O((f (n))3) time which can be made precisely (f (n))3 using linear
speedup.
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Lemma
Hf 6∈ TIME(f (b n

2 c)).

Proof.
Assume that there exists a Turing machine MHf

that decides Hf in time f (b n
2 c). Construct Df as

follows:

Df (M) : if MHf
(M; M) = “yes” then “no” else “yes”.

Df (M) takes the same time as MHf
(M; M) which is f (b 2n+1

2 c) = f (n). What about Df (Df )? If

(Df (Df )) = “yes”, then MHf
(Df ; Df ) = “no” and hence 〈Df ; Df 〉 6∈ Hf . But this means that Df

does not accept its description in f (n) steps, i.e., Df (Df ) = “no”! Similarly, Df (Df ) = “no” implies

Df (Df ) = “yes”. It follows that Hf 6∈ TIME(f (b n
2 c)).
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The Hierarchy Theorem

Theorem (The Time Hierarchy Theorem)
If f (n) ≥ n is a proper complexity function, then the class TIME(f (n)) is strictly contained in the

class TIME((f (2n + 1))3).
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Consequences of the Hierarchy Theorem

Lemma
P is a proper subset of EXP.

Proof.
Clearly P ⊆ TIME(2n). As per the Hierarchy theorem, TIME(2n) ⊂ TIME((2(2n+1))3). But

TIME((2(2n+1))3) ⊂ TIME(2n2
) ⊆ EXP!

Lemma
If f (n) is a proper complexity function, then SPACE(f (n)) is proper subset of

SPACE(f (n) · log f (n)).

Theorem (The Gap Theorem)
There exists a recursive function f : N → N such that TIME(f (n)) = TIME(2f (n)).
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