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Suppose that f(n) is a proper complexity function. Then:

(i) SPACE(f(n)) € NSPACE(f(n)) and TIME(f(n)) C NTIME(f(n)).
(i) NTIME(f(n)) C SPACE(f(n)).

(i) NSPACE(f(n)) C TIME(K'9 "+ (M),

(i) and (i) are trivial. For (iii), assume that we are given a k-string NDTM M with input and output
that decides L in space f(n).
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Suppose that f(n) is a proper complexity function. Then:

(i) SPACE(f(n)) € NSPACE(f(n)) and TIME(f(n)) C NTIME(f(n)).
(i) NTIME(f(n)) C SPACE(f(n)).

(i) NSPACE(f(n)) C TIME(K'9 "+ (M),

Proof.

(i) and (i) are trivial. For (iii), assume that we are given a k-string NDTM M with input and output
that decides L in space f(n). A configuration of M can be described as
(q,i,Wz,Up,...,Wx_1,Ux_1), where 0 < i < n marks a position in the input string.
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Suppose that f(n) is a proper complexity function. Then:
(i) SPACE(f(n)) € NSPACE(f(n)) and TIME(f(n)) C NTIME(f(n)).
(i) NTIME(f(n)) C SPACE(f(n)).

(i) NSPACE(f(n)) C TIME(K'9 "+ (M),

Proof.

(i) and (i) are trivial. For (iii), assume that we are given a k-string NDTM M with input and output
that decides L in space f(n). A configuration of M can be described as
(q,i,Wz,Up,...,Wx_1,Ux_1), where 0 < i < n marks a position in the input string. Total number
of configurations = [K | x (n+ 1) x |[E|@k=2f(1) — ne!(M _ ¢fntogn,

Create the configuration graph G(M, x) on input x; vertices are configurations and there exists an
edge from the vertex representing C; to the vertex representing C; if and only if C; —y Cs.

x € L if and only if there is a path from Co = (s, 0,>, ¢, ..., ) tosome C = (“yes”,...,). |
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Some basic theorems (contd.)

(n)+logn

But now the problem is REACHABILITY in a graph with c; nodes.
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The Reachability Method

But now the problem is REACHABILITY in a graph with ¢! (19"

Cp - (clMHeIMy2 ¢, . 2(H(VHOIM _ i) +o9n time ysing a standard reachability algorithm.

nodes. Can be accomplished in
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The Reachability Method

But now the problem is REACHABILITY in a graph with ¢! (19"

Cp - (clMHeIMy2 ¢, . 2(H(VHOIM _ i) +o9n time ysing a standard reachability algorithm.

nodes. Can be accomplished in

L CNL C P C NP C PSPACE.
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Let G be a graph with n nodes and x,y € G.
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Proof.

Let G l_)e a graph with n nodes and x,y € G. PATH(X, Y, i) is true, if there is a path of length at
most 2' fromx toy in G.
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Let G be a graph with n nodes and x,y € G. PATH(X, y, i) is true, if there is a path of length at
most 2' from x to y in G. REACHABILITY coincides with checking whether PATH(X, y, [logn]) is
true.
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We design a 2-string Turing machine with input and output.
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Savitch’'s Theorem
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Proof.

Let G l_)e a graph with n nodes and x,y € G. PATH(X, Y, i) is true, if there is a path of length at
most 2' from x to y in G. REACHABILITY coincides with checking whether PATH(X, y, [logn]) is

true.

We design a 2-string Turing machine with input and output. The adjacency matrix of G is stored on
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second string will be used as scratch space.

Two cases to consider

(i) i =0- Checkif (x,y) is an edge!
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Savitch’'s Theorem

REACHABILITY € SPACE(log?® n).

Proof.

Let G be a graph with n nodes and x,y € G. PATH(X, Y, i) is true, if there is a path of length at
most 2' from x to y in G. REACHABILITY coincides with checking whether PATH(X, y, [logn]) is
true.

We design a 2-string Turing machine with input and output. The adjacency matrix of G is stored on
the input string. The first string contains several triples with (x, y, i) denoting the first triple. The
second string will be used as scratch space.

Two cases to consider

(i) i =0- Checkif (x,y) is an edge!
(i) i >1-
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(i) i =0- Checkif (x,y) is an edge!

(ii) i > 1 - Implement the following recursion:
for all nodes z € G, test whether PATH(X, z,i — 1)APATH(z,y,i — 1).
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REACHABILITY € SPACE(log?® n).

Proof.

Let G be a graph with n nodes and x,y € G. PATH(X, Y, i) is true, if there is a path of length at
most 2' from x to y in G. REACHABILITY coincides with checking whether PATH(X, y, [logn]) is
true.
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. ot
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NSPACEf (n) C SPACE((f(n))?) for any proper complexity function f(n) > log n.
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Savitch’s theorem (contd.)

NSPACEf (n) C SPACE((f(n))?) for any proper complexity function f(n) > log n.

Proof.

Given an f(n)-space bounded NDTM, simply run the previous algorithm on the configuration graph

G(M, x), where |x| = n.
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Savitch’s theorem (contd.)

NSPACEf (n) C SPACE((f(n))?) for any proper complexity function f(n) > log n.

Given an f(n)-space bounded NDTM, simply run the previous algorithm on the configuration graph
G(M, x), where |x| = n. Since G(M, |x|) has at most ¢/(™ nodes, O((f(n))?) space suffices. [

PSPACE = NPSPACE.
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The Reachability Method

Definition
A NDTM M is said to compute a function f from strings to strings, if all “yes” leaves have the output

f(x).
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The Reachability Method

A NDTM M is said to compute a function f from strings to strings, if all “yes” leaves have the output

f(x).

Theorem (Immerman-Szelepscényi Theorem)

Given a graph G with n nodes, and a node x € G, the number of nodes reachable from x in G can
be computed by a NDTM in space log n.
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A NDTM M is said to compute a function f from strings to strings, if all “yes” leaves have the output

f(x).

Theorem (Immerman-Szelepscényi Theorem)

Given a graph G with n nodes, and a node x € G, the number of nodes reachable from x in G can

be computed by a NDTM in space log n.

Proof.

Let S(i) denote the set of vertices that can be reached from x using paths of length at most i.
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The Reachability Method

A NDTM M is said to compute a function f from strings to strings, if all “yes” leaves have the output

f(x).

Theorem (Immerman-Szelepscényi Theorem)

Given a graph G with n nodes, and a node x € G, the number of nodes reachable from x in G can

be computed by a NDTM in space log n.

Proof.

Let S(i) denote the set of vertices that can be reached from x using paths of length at most i. We
are interested in |S(n — 1)|.
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Counting the number of reachable nodes

The Reachability Method

A NDTM M is said to compute a function f from strings to strings, if all “yes” leaves have the output

f(x).

Theorem (Immerman-Szelepscényi Theorem)

Given a graph G with n nodes, and a node x € G, the number of nodes reachable from x in G can

be computed by a NDTM in space log n.

Proof.

Let S(i) denote the set of vertices that can be reached from x using paths of length at most i. We
are interested in |S(n — 1)|.

loop; : |S(0)| :=1;fori =1,2,...,n — 1: compute |[S(k)| from |S(k — 1)]. l

4
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Counting the number of reachable nodes (contd.)

The Reachability Method

loop, : | := 0; for each nodeu = 1,2,...n:ifu € S(k), then| :=1+ 1.
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The Reachability Method

loop, : | := 0; for each nodeu = 1,2,...n:ifu € S(k), then| :=1+ 1.
How to decide whether u € S(k)?
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Counting the number of reachable nodes (contd.)

The Reachability Method

loop, : | := 0; for each nodeu = 1,2,...n:ifu € S(k), then| :=1+ 1.
How to decide whether u € S(k)?

loopz: m := 0; reply = false; for each node v = 1, 2, ... n repeat:
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The Reachability Method

loop, : | := 0; for each nodeu = 1,2,...n:ifu € S(k), then| :=1+ 1.
How to decide whether u € S(k)?

loopz: m := 0; reply = false; for each node v = 1, 2, ... n repeat:
if v € S(k — 1) then m := m + 1. Further, if G(v, u), then reply = true.
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Counting the number of reachable nodes (contd.)

The Reachability Method

loop, : | := 0; for each nodeu = 1,2,...n:ifu € S(k), then| :=1+ 1.
How to decide whether u € S(k)?

loopz: m := 0; reply = false; for each node v = 1, 2, ... n repeat:
if v € S(k — 1) then m := m + 1. Further, if G(v, u), then reply = true.
if at end, m < |S(k — 1)|, then “no”, else return reply.
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The Reachability Method

loop, : | := 0; for each nodeu = 1,2,...n:ifu € S(k), then| :=1+ 1.
How to decide whether u € S(k)?

loopz: m := 0; reply = false; for each node v = 1, 2, ... n repeat:

if v € S(k — 1) then m := m + 1. Further, if G(v, u), then reply = true.
if at end, m < |S(k — 1)|, then “no”, else return reply.

How to check if v € S(k — 1)?

Subramani Complexity Classes



Some basic theorems
Non-deterministic Space

Counting the number of reachable nodes (contd.)

The Reachability Method

loop, : | := 0; for each nodeu = 1,2,...n:ifu € S(k), then| :=1+ 1.
How to decide whether u € S(k)?

loopz: m := 0; reply = false; for each node v = 1, 2, ... n repeat:

if v € S(k — 1) then m := m + 1. Further, if G(v, u), then reply = true.
if at end, m < |S(k — 1)|, then “no”, else return reply.

How to check if v € S(k — 1)?

Simple! Start at node x and guess k — 1 nodes.
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Counting the number of reachable nodes (contd.)

The Reachability Method

loop, : | := 0; for each nodeu = 1,2,...n:ifu € S(k), then| :=1+ 1.
How to decide whether u € S(k)?

loopz: m := 0; reply = false; for each node v = 1, 2, ... n repeat:

if v € S(k — 1) then m := m + 1. Further, if G(v, u), then reply = true.
if at end, m < |S(k — 1)|, then “no”, else return reply.

How to check if v € S(k — 1)?

Simple! Start at node x and guess k — 1 nodes.
loops: wo :=x.forp=1,2,...k — 1:
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Counting the number of reachable nodes (contd.)

The Reachability Method

loop, : | := 0; for each nodeu = 1,2,...n:ifu € S(k), then| :=1+ 1.
How to decide whether u € S(k)?

loopz: m := 0; reply = false; for each node v = 1, 2, ... n repeat:

if v € S(k — 1) then m := m + 1. Further, if G(v, u), then reply = true.
if at end, m < |S(k — 1)|, then “no”, else return reply.

How to check if v € S(k — 1)?

Simple! Start at node x and guess k — 1 nodes.
loops: wo :=x.forp=1,2,...k — 1:
guess a node w, and check that G(w,—1, Wp). (If not, return “no”).
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Counting the number of reachable nodes (contd.)

The Reachability Method

loop, : | := 0; for each nodeu = 1,2,...n:ifu € S(k), then| :=1+ 1.
How to decide whether u € S(k)?

loopz: m := 0; reply = false; for each node v = 1, 2, ... n repeat:

if v € S(k — 1) then m := m + 1. Further, if G(v, u), then reply = true.
if at end, m < |S(k — 1)|, then “no”, else return reply.

How to check if v € S(k — 1)?

Simple! Start at node x and guess k — 1 nodes.

loops: wo :=x.forp=1,2,...k — 1:

guess a node w, and check that G(w,—1, Wp). (If not, return “no”).
ifwg_1 = v, thenreportv € Sy_, else “no”.
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Consequences of counting theorem

The Reachability Method

If f(n) > logn is a proper complexity function, then NSPACE(f(n)) = coNSPACE(f(n)).
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Consequences of counting theorem

The Reachability Method

If f(n) > logn is a proper complexity function, then NSPACE(f(n)) = coNSPACE(f(n)).

Let L € NSPACE(f(n)), i..e, L is decided by a NDTM M that is f(n)-space bounded.

Subramani Complexity Classes



Some basic theorems
Non-deterministic Space

Consequences of counting theorem

The Reachability Method

If f(n) > logn is a proper complexity function, then NSPACE(f(n)) = coNSPACE(f(n)).

Proof.

Let L € NSPACE(f(n)), i..e, L is decided by a NDTM M that is f(n)-space bounded. We construct
an NDTM M to decide L as follows:
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If f(n) > logn is a proper complexity function, then NSPACE(f(n)) = coNSPACE(f(n)).

Proof.

Let L € NSPACE(f(n)), i..e, L is decided by a NDTM M that is f(n)-space bounded. We construct
an NDTM M to decide L as follows: Simply run the algorithm of the Immerman-Szelepscényi

theorem on G(M, x)!
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Consequences of counting theorem

The Reachability Method

If f(n) > logn is a proper complexity function, then NSPACE(f(n)) = coNSPACE(f(n)).

Proof.

Let L € NSPACE(f(n)), i..e, L is decided by a NDTM M that is f(n)-space bounded. We construct
an NDTM M to decide L as follows: Simply run the algorithm of the Immerman-Szelepscényi
theorem on G(M, x)! If M discovers an accepting configuration in any S(k),k =0,1,...,n — 1,
then it halts and rejects.
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Consequences of counting theorem

If f(n) > logn is a proper complexity function, then NSPACE(f(n)) = coNSPACE(f(n)).

Proof.

Let L € NSPACE(f(n)), i..e, L is decided by a NDTM M that is f(n)-space bounded. We construct
an NDTM M to decide L as follows: Simply run the algorithm of the Immerman-Szelepscényi
theorem on G(M, x)! If M discovers an accepting configuration in any S(k),k =0,1,...,n — 1,
then it halts and rejects. The other possibility is that |S(n — 1)| is computed and no accepting
configuration is discovered, in which case M accepts.
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Consequences of counting theorem

The Reachability Method

If f(n) > logn is a proper complexity function, then NSPACE(f(n)) = coNSPACE(f(n)).

Proof.

Let L € NSPACE(f(n)), i..e, L is decided by a NDTM M that is f(n)-space bounded. We construct
an NDTM M to decide L as follows: Simply run the algorithm of the Immerman-Szelepscényi
theorem on G(M, x)! If M discovers an accepting configuration in any S(k),k =0,1,...,n — 1,
then it halts and rejects. The other possibility is that |S(n — 1)| is computed and no accepting
configuration is discovered, in which case M accepts.

We have thus shown that NSPACE(f(n)) € coNSPACE(f(n)). The reverse direction can be proved
in identical fashion.
O
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