
Outline

Relations between Complexity Classes

K. Subramani1

1Lane Department of Computer Science and Electrical Engineering
West Virginia University

The Reachability Method

Subramani Complexity Classes



Outline

Outline

1 The Reachability Method
Some basic theorems
Non-deterministic Space

Subramani Complexity Classes



The Reachability Method
Some basic theorems
Non-deterministic Space

Outline

1 The Reachability Method
Some basic theorems
Non-deterministic Space

Subramani Complexity Classes



The Reachability Method
Some basic theorems
Non-deterministic Space

Some basic theorems

Theorem
Suppose that f (n) is a proper complexity function. Then:

(i) SPACE(f (n)) ⊆ NSPACE(f (n)) and TIME(f (n)) ⊆ NTIME(f (n)).

(ii) NTIME(f (n)) ⊆ SPACE(f (n)).

(iii) NSPACE(f (n)) ⊆ TIME(k log n+f (n)).

Proof.
(i) and (ii) are trivial. For (iii), assume that we are given a k -string NDTM M with input and output
that decides L in space f (n). A configuration of M can be described as
(q, i, w2, u2, . . . , wk−1, uk−1), where 0 ≤ i ≤ n marks a position in the input string. Total number

of configurations = |K | × (n + 1) × |Σ|(2k−2)f (n) = ncf (n)
1 = cf (n)+log n

1 .
Create the configuration graph G(M, x) on input x ; vertices are configurations and there exists an
edge from the vertex representing C1 to the vertex representing C2 if and only if C1 →M C2.

x ∈ L if and only if there is a path from C0 = (s, 0, ⊲, ǫ, . . . , ǫ) to some C = (“yes′′
, . . . , ).

Subramani Complexity Classes



The Reachability Method
Some basic theorems
Non-deterministic Space

Some basic theorems

Theorem
Suppose that f (n) is a proper complexity function. Then:

(i) SPACE(f (n)) ⊆ NSPACE(f (n)) and TIME(f (n)) ⊆ NTIME(f (n)).

(ii) NTIME(f (n)) ⊆ SPACE(f (n)).

(iii) NSPACE(f (n)) ⊆ TIME(k log n+f (n)).

Proof.
(i) and (ii) are trivial. For (iii), assume that we are given a k -string NDTM M with input and output
that decides L in space f (n). A configuration of M can be described as
(q, i, w2, u2, . . . , wk−1, uk−1), where 0 ≤ i ≤ n marks a position in the input string. Total number

of configurations = |K | × (n + 1) × |Σ|(2k−2)f (n) = ncf (n)
1 = cf (n)+log n

1 .
Create the configuration graph G(M, x) on input x ; vertices are configurations and there exists an
edge from the vertex representing C1 to the vertex representing C2 if and only if C1 →M C2.

x ∈ L if and only if there is a path from C0 = (s, 0, ⊲, ǫ, . . . , ǫ) to some C = (“yes′′
, . . . , ).

Subramani Complexity Classes



The Reachability Method
Some basic theorems
Non-deterministic Space

Some basic theorems

Theorem
Suppose that f (n) is a proper complexity function. Then:

(i) SPACE(f (n)) ⊆ NSPACE(f (n)) and TIME(f (n)) ⊆ NTIME(f (n)).

(ii) NTIME(f (n)) ⊆ SPACE(f (n)).

(iii) NSPACE(f (n)) ⊆ TIME(k log n+f (n)).

Proof.
(i) and (ii) are trivial. For (iii), assume that we are given a k -string NDTM M with input and output
that decides L in space f (n). A configuration of M can be described as
(q, i, w2, u2, . . . , wk−1, uk−1), where 0 ≤ i ≤ n marks a position in the input string. Total number

of configurations = |K | × (n + 1) × |Σ|(2k−2)f (n) = ncf (n)
1 = cf (n)+log n

1 .
Create the configuration graph G(M, x) on input x ; vertices are configurations and there exists an
edge from the vertex representing C1 to the vertex representing C2 if and only if C1 →M C2.

x ∈ L if and only if there is a path from C0 = (s, 0, ⊲, ǫ, . . . , ǫ) to some C = (“yes′′
, . . . , ).

Subramani Complexity Classes



The Reachability Method
Some basic theorems
Non-deterministic Space

Some basic theorems

Theorem
Suppose that f (n) is a proper complexity function. Then:

(i) SPACE(f (n)) ⊆ NSPACE(f (n)) and TIME(f (n)) ⊆ NTIME(f (n)).

(ii) NTIME(f (n)) ⊆ SPACE(f (n)).

(iii) NSPACE(f (n)) ⊆ TIME(k log n+f (n)).

Proof.
(i) and (ii) are trivial. For (iii), assume that we are given a k -string NDTM M with input and output
that decides L in space f (n). A configuration of M can be described as
(q, i, w2, u2, . . . , wk−1, uk−1), where 0 ≤ i ≤ n marks a position in the input string. Total number

of configurations = |K | × (n + 1) × |Σ|(2k−2)f (n) = ncf (n)
1 = cf (n)+log n

1 .
Create the configuration graph G(M, x) on input x ; vertices are configurations and there exists an
edge from the vertex representing C1 to the vertex representing C2 if and only if C1 →M C2.

x ∈ L if and only if there is a path from C0 = (s, 0, ⊲, ǫ, . . . , ǫ) to some C = (“yes′′
, . . . , ).

Subramani Complexity Classes



The Reachability Method
Some basic theorems
Non-deterministic Space

Some basic theorems

Theorem
Suppose that f (n) is a proper complexity function. Then:

(i) SPACE(f (n)) ⊆ NSPACE(f (n)) and TIME(f (n)) ⊆ NTIME(f (n)).

(ii) NTIME(f (n)) ⊆ SPACE(f (n)).

(iii) NSPACE(f (n)) ⊆ TIME(k log n+f (n)).

Proof.
(i) and (ii) are trivial. For (iii), assume that we are given a k -string NDTM M with input and output
that decides L in space f (n). A configuration of M can be described as
(q, i, w2, u2, . . . , wk−1, uk−1), where 0 ≤ i ≤ n marks a position in the input string. Total number

of configurations = |K | × (n + 1) × |Σ|(2k−2)f (n) = ncf (n)
1 = cf (n)+log n

1 .
Create the configuration graph G(M, x) on input x ; vertices are configurations and there exists an
edge from the vertex representing C1 to the vertex representing C2 if and only if C1 →M C2.

x ∈ L if and only if there is a path from C0 = (s, 0, ⊲, ǫ, . . . , ǫ) to some C = (“yes′′
, . . . , ).

Subramani Complexity Classes



The Reachability Method
Some basic theorems
Non-deterministic Space

Some basic theorems

Theorem
Suppose that f (n) is a proper complexity function. Then:

(i) SPACE(f (n)) ⊆ NSPACE(f (n)) and TIME(f (n)) ⊆ NTIME(f (n)).

(ii) NTIME(f (n)) ⊆ SPACE(f (n)).

(iii) NSPACE(f (n)) ⊆ TIME(k log n+f (n)).

Proof.
(i) and (ii) are trivial. For (iii), assume that we are given a k -string NDTM M with input and output
that decides L in space f (n). A configuration of M can be described as
(q, i, w2, u2, . . . , wk−1, uk−1), where 0 ≤ i ≤ n marks a position in the input string. Total number

of configurations = |K | × (n + 1) × |Σ|(2k−2)f (n) = ncf (n)
1 = cf (n)+log n

1 .
Create the configuration graph G(M, x) on input x ; vertices are configurations and there exists an
edge from the vertex representing C1 to the vertex representing C2 if and only if C1 →M C2.

x ∈ L if and only if there is a path from C0 = (s, 0, ⊲, ǫ, . . . , ǫ) to some C = (“yes′′
, . . . , ).

Subramani Complexity Classes



The Reachability Method
Some basic theorems
Non-deterministic Space

Some basic theorems

Theorem
Suppose that f (n) is a proper complexity function. Then:

(i) SPACE(f (n)) ⊆ NSPACE(f (n)) and TIME(f (n)) ⊆ NTIME(f (n)).

(ii) NTIME(f (n)) ⊆ SPACE(f (n)).

(iii) NSPACE(f (n)) ⊆ TIME(k log n+f (n)).

Proof.
(i) and (ii) are trivial. For (iii), assume that we are given a k -string NDTM M with input and output
that decides L in space f (n). A configuration of M can be described as
(q, i, w2, u2, . . . , wk−1, uk−1), where 0 ≤ i ≤ n marks a position in the input string. Total number

of configurations = |K | × (n + 1) × |Σ|(2k−2)f (n) = ncf (n)
1 = cf (n)+log n

1 .
Create the configuration graph G(M, x) on input x ; vertices are configurations and there exists an
edge from the vertex representing C1 to the vertex representing C2 if and only if C1 →M C2.

x ∈ L if and only if there is a path from C0 = (s, 0, ⊲, ǫ, . . . , ǫ) to some C = (“yes′′
, . . . , ).

Subramani Complexity Classes



The Reachability Method
Some basic theorems
Non-deterministic Space

Some basic theorems

Theorem
Suppose that f (n) is a proper complexity function. Then:

(i) SPACE(f (n)) ⊆ NSPACE(f (n)) and TIME(f (n)) ⊆ NTIME(f (n)).

(ii) NTIME(f (n)) ⊆ SPACE(f (n)).

(iii) NSPACE(f (n)) ⊆ TIME(k log n+f (n)).

Proof.
(i) and (ii) are trivial. For (iii), assume that we are given a k -string NDTM M with input and output
that decides L in space f (n). A configuration of M can be described as
(q, i, w2, u2, . . . , wk−1, uk−1), where 0 ≤ i ≤ n marks a position in the input string. Total number

of configurations = |K | × (n + 1) × |Σ|(2k−2)f (n) = ncf (n)
1 = cf (n)+log n

1 .
Create the configuration graph G(M, x) on input x ; vertices are configurations and there exists an
edge from the vertex representing C1 to the vertex representing C2 if and only if C1 →M C2.

x ∈ L if and only if there is a path from C0 = (s, 0, ⊲, ǫ, . . . , ǫ) to some C = (“yes′′
, . . . , ).

Subramani Complexity Classes



The Reachability Method
Some basic theorems
Non-deterministic Space

Some basic theorems

Theorem
Suppose that f (n) is a proper complexity function. Then:

(i) SPACE(f (n)) ⊆ NSPACE(f (n)) and TIME(f (n)) ⊆ NTIME(f (n)).

(ii) NTIME(f (n)) ⊆ SPACE(f (n)).

(iii) NSPACE(f (n)) ⊆ TIME(k log n+f (n)).

Proof.
(i) and (ii) are trivial. For (iii), assume that we are given a k -string NDTM M with input and output
that decides L in space f (n). A configuration of M can be described as
(q, i, w2, u2, . . . , wk−1, uk−1), where 0 ≤ i ≤ n marks a position in the input string. Total number

of configurations = |K | × (n + 1) × |Σ|(2k−2)f (n) = ncf (n)
1 = cf (n)+log n

1 .
Create the configuration graph G(M, x) on input x ; vertices are configurations and there exists an
edge from the vertex representing C1 to the vertex representing C2 if and only if C1 →M C2.

x ∈ L if and only if there is a path from C0 = (s, 0, ⊲, ǫ, . . . , ǫ) to some C = (“yes′′
, . . . , ).

Subramani Complexity Classes



The Reachability Method
Some basic theorems
Non-deterministic Space

Some basic theorems

Theorem
Suppose that f (n) is a proper complexity function. Then:

(i) SPACE(f (n)) ⊆ NSPACE(f (n)) and TIME(f (n)) ⊆ NTIME(f (n)).

(ii) NTIME(f (n)) ⊆ SPACE(f (n)).

(iii) NSPACE(f (n)) ⊆ TIME(k log n+f (n)).

Proof.
(i) and (ii) are trivial. For (iii), assume that we are given a k -string NDTM M with input and output
that decides L in space f (n). A configuration of M can be described as
(q, i, w2, u2, . . . , wk−1, uk−1), where 0 ≤ i ≤ n marks a position in the input string. Total number

of configurations = |K | × (n + 1) × |Σ|(2k−2)f (n) = ncf (n)
1 = cf (n)+log n

1 .
Create the configuration graph G(M, x) on input x ; vertices are configurations and there exists an
edge from the vertex representing C1 to the vertex representing C2 if and only if C1 →M C2.

x ∈ L if and only if there is a path from C0 = (s, 0, ⊲, ǫ, . . . , ǫ) to some C = (“yes′′
, . . . , ).

Subramani Complexity Classes



The Reachability Method
Some basic theorems
Non-deterministic Space

Some basic theorems (contd.)

Proof.

But now the problem is REACHABILITY in a graph with cf (n)+log n
1 nodes. Can be accomplished in

c2 · (c(f (n)+log n)
1 )2 = c2 · c2·(f (n)+log n)

1 = k f (n)+log n time using a standard reachability algorithm.

Corollary
L ⊆ NL ⊆ P ⊆ NP ⊆ PSPACE.

Subramani Complexity Classes



The Reachability Method
Some basic theorems
Non-deterministic Space

Some basic theorems (contd.)

Proof.

But now the problem is REACHABILITY in a graph with cf (n)+log n
1 nodes. Can be accomplished in

c2 · (c(f (n)+log n)
1 )2 = c2 · c2·(f (n)+log n)

1 = k f (n)+log n time using a standard reachability algorithm.

Corollary
L ⊆ NL ⊆ P ⊆ NP ⊆ PSPACE.

Subramani Complexity Classes



The Reachability Method
Some basic theorems
Non-deterministic Space

Some basic theorems (contd.)

Proof.

But now the problem is REACHABILITY in a graph with cf (n)+log n
1 nodes. Can be accomplished in

c2 · (c(f (n)+log n)
1 )2 = c2 · c2·(f (n)+log n)

1 = k f (n)+log n time using a standard reachability algorithm.

Corollary
L ⊆ NL ⊆ P ⊆ NP ⊆ PSPACE.

Subramani Complexity Classes



The Reachability Method
Some basic theorems
Non-deterministic Space

Some basic theorems (contd.)

Proof.

But now the problem is REACHABILITY in a graph with cf (n)+log n
1 nodes. Can be accomplished in

c2 · (c(f (n)+log n)
1 )2 = c2 · c2·(f (n)+log n)

1 = k f (n)+log n time using a standard reachability algorithm.

Corollary
L ⊆ NL ⊆ P ⊆ NP ⊆ PSPACE.

Subramani Complexity Classes



The Reachability Method
Some basic theorems
Non-deterministic Space

Outline

1 The Reachability Method
Some basic theorems
Non-deterministic Space

Subramani Complexity Classes



The Reachability Method
Some basic theorems
Non-deterministic Space

Savitch’s Theorem

Theorem

REACHABILITY ∈ SPACE(log2 n).

Proof.
Let G be a graph with n nodes and x, y ∈ G. PATH(x, y , i) is true, if there is a path of length at
most 2i from x to y in G. REACHABILITY coincides with checking whether PATH(x, y , ⌈log n⌉) is
true.
We design a 2-string Turing machine with input and output. The adjacency matrix of G is stored on
the input string. The first string contains several triples with (x, y , i) denoting the first triple. The
second string will be used as scratch space.
Two cases to consider

(i) i = 0 - Check if (x, y) is an edge!

(ii) i ≥ 1 - Implement the following recursion:
for all nodes z ∈ G, test whether PATH(x, z, i − 1)∧PATH(z, y , i − 1).

Implementing the recursion in a space efficient manner - Generate all vertices z, one after the other

reusing space. Interpret positive and negative answers to PATH(x, z, i − 1) correctly. Stack size is

at most log n triples of size 3 log n each. Thus, total space used is O(log2 n).

Subramani Complexity Classes



The Reachability Method
Some basic theorems
Non-deterministic Space

Savitch’s Theorem

Theorem

REACHABILITY ∈ SPACE(log2 n).

Proof.
Let G be a graph with n nodes and x, y ∈ G. PATH(x, y , i) is true, if there is a path of length at
most 2i from x to y in G. REACHABILITY coincides with checking whether PATH(x, y , ⌈log n⌉) is
true.
We design a 2-string Turing machine with input and output. The adjacency matrix of G is stored on
the input string. The first string contains several triples with (x, y , i) denoting the first triple. The
second string will be used as scratch space.
Two cases to consider

(i) i = 0 - Check if (x, y) is an edge!

(ii) i ≥ 1 - Implement the following recursion:
for all nodes z ∈ G, test whether PATH(x, z, i − 1)∧PATH(z, y , i − 1).

Implementing the recursion in a space efficient manner - Generate all vertices z, one after the other

reusing space. Interpret positive and negative answers to PATH(x, z, i − 1) correctly. Stack size is

at most log n triples of size 3 log n each. Thus, total space used is O(log2 n).

Subramani Complexity Classes



The Reachability Method
Some basic theorems
Non-deterministic Space

Savitch’s Theorem

Theorem

REACHABILITY ∈ SPACE(log2 n).

Proof.
Let G be a graph with n nodes and x, y ∈ G. PATH(x, y , i) is true, if there is a path of length at
most 2i from x to y in G. REACHABILITY coincides with checking whether PATH(x, y , ⌈log n⌉) is
true.
We design a 2-string Turing machine with input and output. The adjacency matrix of G is stored on
the input string. The first string contains several triples with (x, y , i) denoting the first triple. The
second string will be used as scratch space.
Two cases to consider

(i) i = 0 - Check if (x, y) is an edge!

(ii) i ≥ 1 - Implement the following recursion:
for all nodes z ∈ G, test whether PATH(x, z, i − 1)∧PATH(z, y , i − 1).

Implementing the recursion in a space efficient manner - Generate all vertices z, one after the other

reusing space. Interpret positive and negative answers to PATH(x, z, i − 1) correctly. Stack size is

at most log n triples of size 3 log n each. Thus, total space used is O(log2 n).

Subramani Complexity Classes



The Reachability Method
Some basic theorems
Non-deterministic Space

Savitch’s Theorem

Theorem

REACHABILITY ∈ SPACE(log2 n).

Proof.
Let G be a graph with n nodes and x, y ∈ G. PATH(x, y , i) is true, if there is a path of length at
most 2i from x to y in G. REACHABILITY coincides with checking whether PATH(x, y , ⌈log n⌉) is
true.
We design a 2-string Turing machine with input and output. The adjacency matrix of G is stored on
the input string. The first string contains several triples with (x, y , i) denoting the first triple. The
second string will be used as scratch space.
Two cases to consider

(i) i = 0 - Check if (x, y) is an edge!

(ii) i ≥ 1 - Implement the following recursion:
for all nodes z ∈ G, test whether PATH(x, z, i − 1)∧PATH(z, y , i − 1).

Implementing the recursion in a space efficient manner - Generate all vertices z, one after the other

reusing space. Interpret positive and negative answers to PATH(x, z, i − 1) correctly. Stack size is

at most log n triples of size 3 log n each. Thus, total space used is O(log2 n).

Subramani Complexity Classes



The Reachability Method
Some basic theorems
Non-deterministic Space

Savitch’s Theorem

Theorem

REACHABILITY ∈ SPACE(log2 n).

Proof.
Let G be a graph with n nodes and x, y ∈ G. PATH(x, y , i) is true, if there is a path of length at
most 2i from x to y in G. REACHABILITY coincides with checking whether PATH(x, y , ⌈log n⌉) is
true.
We design a 2-string Turing machine with input and output. The adjacency matrix of G is stored on
the input string. The first string contains several triples with (x, y , i) denoting the first triple. The
second string will be used as scratch space.
Two cases to consider

(i) i = 0 - Check if (x, y) is an edge!

(ii) i ≥ 1 - Implement the following recursion:
for all nodes z ∈ G, test whether PATH(x, z, i − 1)∧PATH(z, y , i − 1).

Implementing the recursion in a space efficient manner - Generate all vertices z, one after the other

reusing space. Interpret positive and negative answers to PATH(x, z, i − 1) correctly. Stack size is

at most log n triples of size 3 log n each. Thus, total space used is O(log2 n).

Subramani Complexity Classes



The Reachability Method
Some basic theorems
Non-deterministic Space

Savitch’s Theorem

Theorem

REACHABILITY ∈ SPACE(log2 n).

Proof.
Let G be a graph with n nodes and x, y ∈ G. PATH(x, y , i) is true, if there is a path of length at
most 2i from x to y in G. REACHABILITY coincides with checking whether PATH(x, y , ⌈log n⌉) is
true.
We design a 2-string Turing machine with input and output. The adjacency matrix of G is stored on
the input string. The first string contains several triples with (x, y , i) denoting the first triple. The
second string will be used as scratch space.
Two cases to consider

(i) i = 0 - Check if (x, y) is an edge!

(ii) i ≥ 1 - Implement the following recursion:
for all nodes z ∈ G, test whether PATH(x, z, i − 1)∧PATH(z, y , i − 1).

Implementing the recursion in a space efficient manner - Generate all vertices z, one after the other

reusing space. Interpret positive and negative answers to PATH(x, z, i − 1) correctly. Stack size is

at most log n triples of size 3 log n each. Thus, total space used is O(log2 n).

Subramani Complexity Classes



The Reachability Method
Some basic theorems
Non-deterministic Space

Savitch’s Theorem

Theorem

REACHABILITY ∈ SPACE(log2 n).

Proof.
Let G be a graph with n nodes and x, y ∈ G. PATH(x, y , i) is true, if there is a path of length at
most 2i from x to y in G. REACHABILITY coincides with checking whether PATH(x, y , ⌈log n⌉) is
true.
We design a 2-string Turing machine with input and output. The adjacency matrix of G is stored on
the input string. The first string contains several triples with (x, y , i) denoting the first triple. The
second string will be used as scratch space.
Two cases to consider

(i) i = 0 - Check if (x, y) is an edge!

(ii) i ≥ 1 - Implement the following recursion:
for all nodes z ∈ G, test whether PATH(x, z, i − 1)∧PATH(z, y , i − 1).

Implementing the recursion in a space efficient manner - Generate all vertices z, one after the other

reusing space. Interpret positive and negative answers to PATH(x, z, i − 1) correctly. Stack size is

at most log n triples of size 3 log n each. Thus, total space used is O(log2 n).

Subramani Complexity Classes



The Reachability Method
Some basic theorems
Non-deterministic Space

Savitch’s Theorem

Theorem

REACHABILITY ∈ SPACE(log2 n).

Proof.
Let G be a graph with n nodes and x, y ∈ G. PATH(x, y , i) is true, if there is a path of length at
most 2i from x to y in G. REACHABILITY coincides with checking whether PATH(x, y , ⌈log n⌉) is
true.
We design a 2-string Turing machine with input and output. The adjacency matrix of G is stored on
the input string. The first string contains several triples with (x, y , i) denoting the first triple. The
second string will be used as scratch space.
Two cases to consider

(i) i = 0 - Check if (x, y) is an edge!

(ii) i ≥ 1 - Implement the following recursion:
for all nodes z ∈ G, test whether PATH(x, z, i − 1)∧PATH(z, y , i − 1).

Implementing the recursion in a space efficient manner - Generate all vertices z, one after the other

reusing space. Interpret positive and negative answers to PATH(x, z, i − 1) correctly. Stack size is

at most log n triples of size 3 log n each. Thus, total space used is O(log2 n).

Subramani Complexity Classes



The Reachability Method
Some basic theorems
Non-deterministic Space

Savitch’s Theorem

Theorem

REACHABILITY ∈ SPACE(log2 n).

Proof.
Let G be a graph with n nodes and x, y ∈ G. PATH(x, y , i) is true, if there is a path of length at
most 2i from x to y in G. REACHABILITY coincides with checking whether PATH(x, y , ⌈log n⌉) is
true.
We design a 2-string Turing machine with input and output. The adjacency matrix of G is stored on
the input string. The first string contains several triples with (x, y , i) denoting the first triple. The
second string will be used as scratch space.
Two cases to consider

(i) i = 0 - Check if (x, y) is an edge!

(ii) i ≥ 1 - Implement the following recursion:
for all nodes z ∈ G, test whether PATH(x, z, i − 1)∧PATH(z, y , i − 1).

Implementing the recursion in a space efficient manner - Generate all vertices z, one after the other

reusing space. Interpret positive and negative answers to PATH(x, z, i − 1) correctly. Stack size is

at most log n triples of size 3 log n each. Thus, total space used is O(log2 n).

Subramani Complexity Classes



The Reachability Method
Some basic theorems
Non-deterministic Space

Savitch’s Theorem

Theorem

REACHABILITY ∈ SPACE(log2 n).

Proof.
Let G be a graph with n nodes and x, y ∈ G. PATH(x, y , i) is true, if there is a path of length at
most 2i from x to y in G. REACHABILITY coincides with checking whether PATH(x, y , ⌈log n⌉) is
true.
We design a 2-string Turing machine with input and output. The adjacency matrix of G is stored on
the input string. The first string contains several triples with (x, y , i) denoting the first triple. The
second string will be used as scratch space.
Two cases to consider

(i) i = 0 - Check if (x, y) is an edge!

(ii) i ≥ 1 - Implement the following recursion:
for all nodes z ∈ G, test whether PATH(x, z, i − 1)∧PATH(z, y , i − 1).

Implementing the recursion in a space efficient manner - Generate all vertices z, one after the other

reusing space. Interpret positive and negative answers to PATH(x, z, i − 1) correctly. Stack size is

at most log n triples of size 3 log n each. Thus, total space used is O(log2 n).

Subramani Complexity Classes



The Reachability Method
Some basic theorems
Non-deterministic Space

Savitch’s Theorem

Theorem

REACHABILITY ∈ SPACE(log2 n).

Proof.
Let G be a graph with n nodes and x, y ∈ G. PATH(x, y , i) is true, if there is a path of length at
most 2i from x to y in G. REACHABILITY coincides with checking whether PATH(x, y , ⌈log n⌉) is
true.
We design a 2-string Turing machine with input and output. The adjacency matrix of G is stored on
the input string. The first string contains several triples with (x, y , i) denoting the first triple. The
second string will be used as scratch space.
Two cases to consider

(i) i = 0 - Check if (x, y) is an edge!

(ii) i ≥ 1 - Implement the following recursion:
for all nodes z ∈ G, test whether PATH(x, z, i − 1)∧PATH(z, y , i − 1).

Implementing the recursion in a space efficient manner - Generate all vertices z, one after the other

reusing space. Interpret positive and negative answers to PATH(x, z, i − 1) correctly. Stack size is

at most log n triples of size 3 log n each. Thus, total space used is O(log2 n).

Subramani Complexity Classes



The Reachability Method
Some basic theorems
Non-deterministic Space

Savitch’s Theorem

Theorem

REACHABILITY ∈ SPACE(log2 n).

Proof.
Let G be a graph with n nodes and x, y ∈ G. PATH(x, y , i) is true, if there is a path of length at
most 2i from x to y in G. REACHABILITY coincides with checking whether PATH(x, y , ⌈log n⌉) is
true.
We design a 2-string Turing machine with input and output. The adjacency matrix of G is stored on
the input string. The first string contains several triples with (x, y , i) denoting the first triple. The
second string will be used as scratch space.
Two cases to consider

(i) i = 0 - Check if (x, y) is an edge!

(ii) i ≥ 1 - Implement the following recursion:
for all nodes z ∈ G, test whether PATH(x, z, i − 1)∧PATH(z, y , i − 1).

Implementing the recursion in a space efficient manner - Generate all vertices z, one after the other

reusing space. Interpret positive and negative answers to PATH(x, z, i − 1) correctly. Stack size is

at most log n triples of size 3 log n each. Thus, total space used is O(log2 n).

Subramani Complexity Classes



The Reachability Method
Some basic theorems
Non-deterministic Space

Savitch’s Theorem

Theorem

REACHABILITY ∈ SPACE(log2 n).

Proof.
Let G be a graph with n nodes and x, y ∈ G. PATH(x, y , i) is true, if there is a path of length at
most 2i from x to y in G. REACHABILITY coincides with checking whether PATH(x, y , ⌈log n⌉) is
true.
We design a 2-string Turing machine with input and output. The adjacency matrix of G is stored on
the input string. The first string contains several triples with (x, y , i) denoting the first triple. The
second string will be used as scratch space.
Two cases to consider

(i) i = 0 - Check if (x, y) is an edge!

(ii) i ≥ 1 - Implement the following recursion:
for all nodes z ∈ G, test whether PATH(x, z, i − 1)∧PATH(z, y , i − 1).

Implementing the recursion in a space efficient manner - Generate all vertices z, one after the other

reusing space. Interpret positive and negative answers to PATH(x, z, i − 1) correctly. Stack size is

at most log n triples of size 3 log n each. Thus, total space used is O(log2 n).

Subramani Complexity Classes



The Reachability Method
Some basic theorems
Non-deterministic Space

Savitch’s Theorem

Theorem

REACHABILITY ∈ SPACE(log2 n).

Proof.
Let G be a graph with n nodes and x, y ∈ G. PATH(x, y , i) is true, if there is a path of length at
most 2i from x to y in G. REACHABILITY coincides with checking whether PATH(x, y , ⌈log n⌉) is
true.
We design a 2-string Turing machine with input and output. The adjacency matrix of G is stored on
the input string. The first string contains several triples with (x, y , i) denoting the first triple. The
second string will be used as scratch space.
Two cases to consider

(i) i = 0 - Check if (x, y) is an edge!

(ii) i ≥ 1 - Implement the following recursion:
for all nodes z ∈ G, test whether PATH(x, z, i − 1)∧PATH(z, y , i − 1).

Implementing the recursion in a space efficient manner - Generate all vertices z, one after the other

reusing space. Interpret positive and negative answers to PATH(x, z, i − 1) correctly. Stack size is

at most log n triples of size 3 log n each. Thus, total space used is O(log2 n).

Subramani Complexity Classes



The Reachability Method
Some basic theorems
Non-deterministic Space

Savitch’s Theorem

Theorem

REACHABILITY ∈ SPACE(log2 n).

Proof.
Let G be a graph with n nodes and x, y ∈ G. PATH(x, y , i) is true, if there is a path of length at
most 2i from x to y in G. REACHABILITY coincides with checking whether PATH(x, y , ⌈log n⌉) is
true.
We design a 2-string Turing machine with input and output. The adjacency matrix of G is stored on
the input string. The first string contains several triples with (x, y , i) denoting the first triple. The
second string will be used as scratch space.
Two cases to consider

(i) i = 0 - Check if (x, y) is an edge!

(ii) i ≥ 1 - Implement the following recursion:
for all nodes z ∈ G, test whether PATH(x, z, i − 1)∧PATH(z, y , i − 1).

Implementing the recursion in a space efficient manner - Generate all vertices z, one after the other

reusing space. Interpret positive and negative answers to PATH(x, z, i − 1) correctly. Stack size is

at most log n triples of size 3 log n each. Thus, total space used is O(log2 n).

Subramani Complexity Classes



The Reachability Method
Some basic theorems
Non-deterministic Space

Savitch’s Theorem

Theorem

REACHABILITY ∈ SPACE(log2 n).

Proof.
Let G be a graph with n nodes and x, y ∈ G. PATH(x, y , i) is true, if there is a path of length at
most 2i from x to y in G. REACHABILITY coincides with checking whether PATH(x, y , ⌈log n⌉) is
true.
We design a 2-string Turing machine with input and output. The adjacency matrix of G is stored on
the input string. The first string contains several triples with (x, y , i) denoting the first triple. The
second string will be used as scratch space.
Two cases to consider

(i) i = 0 - Check if (x, y) is an edge!

(ii) i ≥ 1 - Implement the following recursion:
for all nodes z ∈ G, test whether PATH(x, z, i − 1)∧PATH(z, y , i − 1).

Implementing the recursion in a space efficient manner - Generate all vertices z, one after the other

reusing space. Interpret positive and negative answers to PATH(x, z, i − 1) correctly. Stack size is

at most log n triples of size 3 log n each. Thus, total space used is O(log2 n).

Subramani Complexity Classes



The Reachability Method
Some basic theorems
Non-deterministic Space

Savitch’s Theorem

Theorem

REACHABILITY ∈ SPACE(log2 n).

Proof.
Let G be a graph with n nodes and x, y ∈ G. PATH(x, y , i) is true, if there is a path of length at
most 2i from x to y in G. REACHABILITY coincides with checking whether PATH(x, y , ⌈log n⌉) is
true.
We design a 2-string Turing machine with input and output. The adjacency matrix of G is stored on
the input string. The first string contains several triples with (x, y , i) denoting the first triple. The
second string will be used as scratch space.
Two cases to consider

(i) i = 0 - Check if (x, y) is an edge!

(ii) i ≥ 1 - Implement the following recursion:
for all nodes z ∈ G, test whether PATH(x, z, i − 1)∧PATH(z, y , i − 1).

Implementing the recursion in a space efficient manner - Generate all vertices z, one after the other

reusing space. Interpret positive and negative answers to PATH(x, z, i − 1) correctly. Stack size is

at most log n triples of size 3 log n each. Thus, total space used is O(log2 n).

Subramani Complexity Classes



The Reachability Method
Some basic theorems
Non-deterministic Space

Savitch’s theorem (contd.)

Corollary

NSPACEf (n) ⊆ SPACE((f (n))2) for any proper complexity function f (n) ≥ log n.

Proof.
Given an f (n)-space bounded NDTM, simply run the previous algorithm on the configuration graph

G(M, x), where |x| = n. Since G(M, |x|) has at most cf (n) nodes, O((f (n))2) space suffices.

Corollary
PSPACE = NPSPACE.

Subramani Complexity Classes



The Reachability Method
Some basic theorems
Non-deterministic Space

Savitch’s theorem (contd.)

Corollary

NSPACEf (n) ⊆ SPACE((f (n))2) for any proper complexity function f (n) ≥ log n.

Proof.
Given an f (n)-space bounded NDTM, simply run the previous algorithm on the configuration graph

G(M, x), where |x| = n. Since G(M, |x|) has at most cf (n) nodes, O((f (n))2) space suffices.

Corollary
PSPACE = NPSPACE.

Subramani Complexity Classes



The Reachability Method
Some basic theorems
Non-deterministic Space

Savitch’s theorem (contd.)

Corollary

NSPACEf (n) ⊆ SPACE((f (n))2) for any proper complexity function f (n) ≥ log n.

Proof.
Given an f (n)-space bounded NDTM, simply run the previous algorithm on the configuration graph

G(M, x), where |x| = n. Since G(M, |x|) has at most cf (n) nodes, O((f (n))2) space suffices.

Corollary
PSPACE = NPSPACE.

Subramani Complexity Classes



The Reachability Method
Some basic theorems
Non-deterministic Space

Counting the number of reachable nodes

Definition
A NDTM M is said to compute a function f from strings to strings, if all “yes” leaves have the output

f (x).

Theorem (Immerman-Szelepscényi Theorem)
Given a graph G with n nodes, and a node x ∈ G, the number of nodes reachable from x in G can

be computed by a NDTM in space log n.

Proof.
Let S(i) denote the set of vertices that can be reached from x using paths of length at most i . We
are interested in |S(n − 1)|.

loop1 : |S(0)| := 1; for i = 1, 2, . . . , n − 1: compute |S(k)| from |S(k − 1)|.

Subramani Complexity Classes



The Reachability Method
Some basic theorems
Non-deterministic Space

Counting the number of reachable nodes

Definition
A NDTM M is said to compute a function f from strings to strings, if all “yes” leaves have the output

f (x).

Theorem (Immerman-Szelepscényi Theorem)
Given a graph G with n nodes, and a node x ∈ G, the number of nodes reachable from x in G can

be computed by a NDTM in space log n.

Proof.
Let S(i) denote the set of vertices that can be reached from x using paths of length at most i . We
are interested in |S(n − 1)|.

loop1 : |S(0)| := 1; for i = 1, 2, . . . , n − 1: compute |S(k)| from |S(k − 1)|.

Subramani Complexity Classes



The Reachability Method
Some basic theorems
Non-deterministic Space

Counting the number of reachable nodes

Definition
A NDTM M is said to compute a function f from strings to strings, if all “yes” leaves have the output

f (x).

Theorem (Immerman-Szelepscényi Theorem)
Given a graph G with n nodes, and a node x ∈ G, the number of nodes reachable from x in G can

be computed by a NDTM in space log n.

Proof.
Let S(i) denote the set of vertices that can be reached from x using paths of length at most i . We
are interested in |S(n − 1)|.

loop1 : |S(0)| := 1; for i = 1, 2, . . . , n − 1: compute |S(k)| from |S(k − 1)|.

Subramani Complexity Classes



The Reachability Method
Some basic theorems
Non-deterministic Space

Counting the number of reachable nodes

Definition
A NDTM M is said to compute a function f from strings to strings, if all “yes” leaves have the output

f (x).

Theorem (Immerman-Szelepscényi Theorem)
Given a graph G with n nodes, and a node x ∈ G, the number of nodes reachable from x in G can

be computed by a NDTM in space log n.

Proof.
Let S(i) denote the set of vertices that can be reached from x using paths of length at most i . We
are interested in |S(n − 1)|.

loop1 : |S(0)| := 1; for i = 1, 2, . . . , n − 1: compute |S(k)| from |S(k − 1)|.

Subramani Complexity Classes



The Reachability Method
Some basic theorems
Non-deterministic Space

Counting the number of reachable nodes

Definition
A NDTM M is said to compute a function f from strings to strings, if all “yes” leaves have the output

f (x).

Theorem (Immerman-Szelepscényi Theorem)
Given a graph G with n nodes, and a node x ∈ G, the number of nodes reachable from x in G can

be computed by a NDTM in space log n.

Proof.
Let S(i) denote the set of vertices that can be reached from x using paths of length at most i . We
are interested in |S(n − 1)|.

loop1 : |S(0)| := 1; for i = 1, 2, . . . , n − 1: compute |S(k)| from |S(k − 1)|.

Subramani Complexity Classes



The Reachability Method
Some basic theorems
Non-deterministic Space

Counting the number of reachable nodes (contd.)

Proof.
loop2 : l := 0; for each node u = 1, 2, . . . n: if u ∈ S(k), then l := l + 1.
How to decide whether u ∈ S(k)?

loop3 : m := 0; reply = false; for each node v = 1, 2, . . . n repeat:
if v ∈ S(k − 1) then m := m + 1. Further, if G(v , u), then reply = true.
if at end, m < |S(k − 1)|, then “no”, else return reply .
How to check if v ∈ S(k − 1)?

Simple! Start at node x and guess k − 1 nodes.
loop4 : w0 := x . for p = 1, 2, . . . k − 1:
guess a node wp and check that G(wp−1, wp). (If not, return “no”).
if wk−1 = v , then report v ∈ Sk−1, else “no”.

Subramani Complexity Classes



The Reachability Method
Some basic theorems
Non-deterministic Space

Counting the number of reachable nodes (contd.)

Proof.
loop2 : l := 0; for each node u = 1, 2, . . . n: if u ∈ S(k), then l := l + 1.
How to decide whether u ∈ S(k)?

loop3 : m := 0; reply = false; for each node v = 1, 2, . . . n repeat:
if v ∈ S(k − 1) then m := m + 1. Further, if G(v , u), then reply = true.
if at end, m < |S(k − 1)|, then “no”, else return reply .
How to check if v ∈ S(k − 1)?

Simple! Start at node x and guess k − 1 nodes.
loop4 : w0 := x . for p = 1, 2, . . . k − 1:
guess a node wp and check that G(wp−1, wp). (If not, return “no”).
if wk−1 = v , then report v ∈ Sk−1, else “no”.

Subramani Complexity Classes



The Reachability Method
Some basic theorems
Non-deterministic Space

Counting the number of reachable nodes (contd.)

Proof.
loop2 : l := 0; for each node u = 1, 2, . . . n: if u ∈ S(k), then l := l + 1.
How to decide whether u ∈ S(k)?

loop3 : m := 0; reply = false; for each node v = 1, 2, . . . n repeat:
if v ∈ S(k − 1) then m := m + 1. Further, if G(v , u), then reply = true.
if at end, m < |S(k − 1)|, then “no”, else return reply .
How to check if v ∈ S(k − 1)?

Simple! Start at node x and guess k − 1 nodes.
loop4 : w0 := x . for p = 1, 2, . . . k − 1:
guess a node wp and check that G(wp−1, wp). (If not, return “no”).
if wk−1 = v , then report v ∈ Sk−1, else “no”.

Subramani Complexity Classes



The Reachability Method
Some basic theorems
Non-deterministic Space

Counting the number of reachable nodes (contd.)

Proof.
loop2 : l := 0; for each node u = 1, 2, . . . n: if u ∈ S(k), then l := l + 1.
How to decide whether u ∈ S(k)?

loop3 : m := 0; reply = false; for each node v = 1, 2, . . . n repeat:
if v ∈ S(k − 1) then m := m + 1. Further, if G(v , u), then reply = true.
if at end, m < |S(k − 1)|, then “no”, else return reply .
How to check if v ∈ S(k − 1)?

Simple! Start at node x and guess k − 1 nodes.
loop4 : w0 := x . for p = 1, 2, . . . k − 1:
guess a node wp and check that G(wp−1, wp). (If not, return “no”).
if wk−1 = v , then report v ∈ Sk−1, else “no”.

Subramani Complexity Classes



The Reachability Method
Some basic theorems
Non-deterministic Space

Counting the number of reachable nodes (contd.)

Proof.
loop2 : l := 0; for each node u = 1, 2, . . . n: if u ∈ S(k), then l := l + 1.
How to decide whether u ∈ S(k)?

loop3 : m := 0; reply = false; for each node v = 1, 2, . . . n repeat:
if v ∈ S(k − 1) then m := m + 1. Further, if G(v , u), then reply = true.
if at end, m < |S(k − 1)|, then “no”, else return reply .
How to check if v ∈ S(k − 1)?

Simple! Start at node x and guess k − 1 nodes.
loop4 : w0 := x . for p = 1, 2, . . . k − 1:
guess a node wp and check that G(wp−1, wp). (If not, return “no”).
if wk−1 = v , then report v ∈ Sk−1, else “no”.

Subramani Complexity Classes



The Reachability Method
Some basic theorems
Non-deterministic Space

Counting the number of reachable nodes (contd.)

Proof.
loop2 : l := 0; for each node u = 1, 2, . . . n: if u ∈ S(k), then l := l + 1.
How to decide whether u ∈ S(k)?

loop3 : m := 0; reply = false; for each node v = 1, 2, . . . n repeat:
if v ∈ S(k − 1) then m := m + 1. Further, if G(v , u), then reply = true.
if at end, m < |S(k − 1)|, then “no”, else return reply .
How to check if v ∈ S(k − 1)?

Simple! Start at node x and guess k − 1 nodes.
loop4 : w0 := x . for p = 1, 2, . . . k − 1:
guess a node wp and check that G(wp−1, wp). (If not, return “no”).
if wk−1 = v , then report v ∈ Sk−1, else “no”.

Subramani Complexity Classes



The Reachability Method
Some basic theorems
Non-deterministic Space

Counting the number of reachable nodes (contd.)

Proof.
loop2 : l := 0; for each node u = 1, 2, . . . n: if u ∈ S(k), then l := l + 1.
How to decide whether u ∈ S(k)?

loop3 : m := 0; reply = false; for each node v = 1, 2, . . . n repeat:
if v ∈ S(k − 1) then m := m + 1. Further, if G(v , u), then reply = true.
if at end, m < |S(k − 1)|, then “no”, else return reply .
How to check if v ∈ S(k − 1)?

Simple! Start at node x and guess k − 1 nodes.
loop4 : w0 := x . for p = 1, 2, . . . k − 1:
guess a node wp and check that G(wp−1, wp). (If not, return “no”).
if wk−1 = v , then report v ∈ Sk−1, else “no”.

Subramani Complexity Classes



The Reachability Method
Some basic theorems
Non-deterministic Space

Counting the number of reachable nodes (contd.)

Proof.
loop2 : l := 0; for each node u = 1, 2, . . . n: if u ∈ S(k), then l := l + 1.
How to decide whether u ∈ S(k)?

loop3 : m := 0; reply = false; for each node v = 1, 2, . . . n repeat:
if v ∈ S(k − 1) then m := m + 1. Further, if G(v , u), then reply = true.
if at end, m < |S(k − 1)|, then “no”, else return reply .
How to check if v ∈ S(k − 1)?

Simple! Start at node x and guess k − 1 nodes.
loop4 : w0 := x . for p = 1, 2, . . . k − 1:
guess a node wp and check that G(wp−1, wp). (If not, return “no”).
if wk−1 = v , then report v ∈ Sk−1, else “no”.

Subramani Complexity Classes



The Reachability Method
Some basic theorems
Non-deterministic Space

Counting the number of reachable nodes (contd.)

Proof.
loop2 : l := 0; for each node u = 1, 2, . . . n: if u ∈ S(k), then l := l + 1.
How to decide whether u ∈ S(k)?

loop3 : m := 0; reply = false; for each node v = 1, 2, . . . n repeat:
if v ∈ S(k − 1) then m := m + 1. Further, if G(v , u), then reply = true.
if at end, m < |S(k − 1)|, then “no”, else return reply .
How to check if v ∈ S(k − 1)?

Simple! Start at node x and guess k − 1 nodes.
loop4 : w0 := x . for p = 1, 2, . . . k − 1:
guess a node wp and check that G(wp−1, wp). (If not, return “no”).
if wk−1 = v , then report v ∈ Sk−1, else “no”.

Subramani Complexity Classes



The Reachability Method
Some basic theorems
Non-deterministic Space

Counting the number of reachable nodes (contd.)

Proof.
loop2 : l := 0; for each node u = 1, 2, . . . n: if u ∈ S(k), then l := l + 1.
How to decide whether u ∈ S(k)?

loop3 : m := 0; reply = false; for each node v = 1, 2, . . . n repeat:
if v ∈ S(k − 1) then m := m + 1. Further, if G(v , u), then reply = true.
if at end, m < |S(k − 1)|, then “no”, else return reply .
How to check if v ∈ S(k − 1)?

Simple! Start at node x and guess k − 1 nodes.
loop4 : w0 := x . for p = 1, 2, . . . k − 1:
guess a node wp and check that G(wp−1, wp). (If not, return “no”).
if wk−1 = v , then report v ∈ Sk−1, else “no”.

Subramani Complexity Classes



The Reachability Method
Some basic theorems
Non-deterministic Space

Consequences of counting theorem

Corollary
If f (n) ≥ log n is a proper complexity function, then NSPACE(f (n)) = coNSPACE(f (n)).

Proof.
Let L ∈ NSPACE(f (n)), i..e, L is decided by a NDTM M that is f (n)-space bounded. We construct
an NDTM M̄ to decide L̄ as follows: Simply run the algorithm of the Immerman-Szelepscényi
theorem on G(M, x)! If M̄ discovers an accepting configuration in any S(k), k = 0, 1, . . . , n − 1,
then it halts and rejects. The other possibility is that |S(n − 1)| is computed and no accepting
configuration is discovered, in which case M̄ accepts.

We have thus shown that NSPACE(f (n)) ⊆ coNSPACE(f (n)). The reverse direction can be proved
in identical fashion.

Subramani Complexity Classes



The Reachability Method
Some basic theorems
Non-deterministic Space

Consequences of counting theorem

Corollary
If f (n) ≥ log n is a proper complexity function, then NSPACE(f (n)) = coNSPACE(f (n)).

Proof.
Let L ∈ NSPACE(f (n)), i..e, L is decided by a NDTM M that is f (n)-space bounded. We construct
an NDTM M̄ to decide L̄ as follows: Simply run the algorithm of the Immerman-Szelepscényi
theorem on G(M, x)! If M̄ discovers an accepting configuration in any S(k), k = 0, 1, . . . , n − 1,
then it halts and rejects. The other possibility is that |S(n − 1)| is computed and no accepting
configuration is discovered, in which case M̄ accepts.

We have thus shown that NSPACE(f (n)) ⊆ coNSPACE(f (n)). The reverse direction can be proved
in identical fashion.

Subramani Complexity Classes



The Reachability Method
Some basic theorems
Non-deterministic Space

Consequences of counting theorem

Corollary
If f (n) ≥ log n is a proper complexity function, then NSPACE(f (n)) = coNSPACE(f (n)).

Proof.
Let L ∈ NSPACE(f (n)), i..e, L is decided by a NDTM M that is f (n)-space bounded. We construct
an NDTM M̄ to decide L̄ as follows: Simply run the algorithm of the Immerman-Szelepscényi
theorem on G(M, x)! If M̄ discovers an accepting configuration in any S(k), k = 0, 1, . . . , n − 1,
then it halts and rejects. The other possibility is that |S(n − 1)| is computed and no accepting
configuration is discovered, in which case M̄ accepts.

We have thus shown that NSPACE(f (n)) ⊆ coNSPACE(f (n)). The reverse direction can be proved
in identical fashion.

Subramani Complexity Classes



The Reachability Method
Some basic theorems
Non-deterministic Space

Consequences of counting theorem

Corollary
If f (n) ≥ log n is a proper complexity function, then NSPACE(f (n)) = coNSPACE(f (n)).

Proof.
Let L ∈ NSPACE(f (n)), i..e, L is decided by a NDTM M that is f (n)-space bounded. We construct
an NDTM M̄ to decide L̄ as follows: Simply run the algorithm of the Immerman-Szelepscényi
theorem on G(M, x)! If M̄ discovers an accepting configuration in any S(k), k = 0, 1, . . . , n − 1,
then it halts and rejects. The other possibility is that |S(n − 1)| is computed and no accepting
configuration is discovered, in which case M̄ accepts.

We have thus shown that NSPACE(f (n)) ⊆ coNSPACE(f (n)). The reverse direction can be proved
in identical fashion.

Subramani Complexity Classes



The Reachability Method
Some basic theorems
Non-deterministic Space

Consequences of counting theorem

Corollary
If f (n) ≥ log n is a proper complexity function, then NSPACE(f (n)) = coNSPACE(f (n)).

Proof.
Let L ∈ NSPACE(f (n)), i..e, L is decided by a NDTM M that is f (n)-space bounded. We construct
an NDTM M̄ to decide L̄ as follows: Simply run the algorithm of the Immerman-Szelepscényi
theorem on G(M, x)! If M̄ discovers an accepting configuration in any S(k), k = 0, 1, . . . , n − 1,
then it halts and rejects. The other possibility is that |S(n − 1)| is computed and no accepting
configuration is discovered, in which case M̄ accepts.

We have thus shown that NSPACE(f (n)) ⊆ coNSPACE(f (n)). The reverse direction can be proved
in identical fashion.

Subramani Complexity Classes



The Reachability Method
Some basic theorems
Non-deterministic Space

Consequences of counting theorem

Corollary
If f (n) ≥ log n is a proper complexity function, then NSPACE(f (n)) = coNSPACE(f (n)).

Proof.
Let L ∈ NSPACE(f (n)), i..e, L is decided by a NDTM M that is f (n)-space bounded. We construct
an NDTM M̄ to decide L̄ as follows: Simply run the algorithm of the Immerman-Szelepscényi
theorem on G(M, x)! If M̄ discovers an accepting configuration in any S(k), k = 0, 1, . . . , n − 1,
then it halts and rejects. The other possibility is that |S(n − 1)| is computed and no accepting
configuration is discovered, in which case M̄ accepts.

We have thus shown that NSPACE(f (n)) ⊆ coNSPACE(f (n)). The reverse direction can be proved
in identical fashion.

Subramani Complexity Classes



The Reachability Method
Some basic theorems
Non-deterministic Space

Consequences of counting theorem

Corollary
If f (n) ≥ log n is a proper complexity function, then NSPACE(f (n)) = coNSPACE(f (n)).

Proof.
Let L ∈ NSPACE(f (n)), i..e, L is decided by a NDTM M that is f (n)-space bounded. We construct
an NDTM M̄ to decide L̄ as follows: Simply run the algorithm of the Immerman-Szelepscényi
theorem on G(M, x)! If M̄ discovers an accepting configuration in any S(k), k = 0, 1, . . . , n − 1,
then it halts and rejects. The other possibility is that |S(n − 1)| is computed and no accepting
configuration is discovered, in which case M̄ accepts.

We have thus shown that NSPACE(f (n)) ⊆ coNSPACE(f (n)). The reverse direction can be proved
in identical fashion.

Subramani Complexity Classes


	Outline
	Main Talk
	The Reachability Method
	Some basic theorems
	Non-deterministic Space



