Relations between Complexity Classes

K. Subramanit

Lane Department of Computer Science and Electrical Engineering
West Virginia University

The Reachability Method

Subramani Complexity Classes

Outline

Outline

@ The Reachability Method
@ Some basic theorems
@ Non-deterministic Space

Subramani Complexity Classes

Some basic theorems

The Reachability Method Non-deterministic Space

Outline

@ The Reachability Method
@ Some basic theorems

Subramani Complexity Classes

Some basic theorems

The Reachability Method Non-deterministic Space

Some basic theorems

Suppose that f(n) is a proper complexity function. Then:

Subramani Complexity Classes

Some basic theorems

The Reachability Method Non-deterministic Space

Some basic theorems

Suppose that f(n) is a proper complexity function. Then:
(i) SPACE(f(n)) € NSPACE(f(n)) and TIME(f(n)) C NTIME(f(n)).

Subramani Complexity Classes

Some basic theorems

The Reachability Method Non-deterministic Space

Some basic theorems

Suppose that f(n) is a proper complexity function. Then:
(i) SPACE(f(n)) € NSPACE(f(n)) and TIME(f(n)) C NTIME(f(n)).
(i) NTIME(f(n)) C SPACE(f(n)).

Subramani Complexity Classes

Some basic theorems
Non-deterministic Space

The Reachability Method

Some basic theorems

Suppose that f(n) is a proper complexity function. Then:

(i) SPACE(f(n)) € NSPACE(f(n)) and TIME(f(n)) C NTIME(f(n)).
(i) NTIME(f(n)) C SPACE(f(n)).

(i) NSPACE(f(n)) C TIME(K'9 "+ (M),

Subramani Complexity Classes

Some basic theorems

The Reachability Method Non-deterministic Space

Some basic theorems

Suppose that f(n) is a proper complexity function. Then:

(i) SPACE(f(n)) € NSPACE(f(n)) and TIME(f(n)) C NTIME(f(n)).
(i) NTIME(f(n)) C SPACE(f(n)).

(i) NSPACE(f(n)) C TIME(K'9 "+ (M),

(i) and (i) are trivial. For (iii), assume that we are given a k-string NDTM M with input and output
that decides L in space f(n).

Subramani Complexity Classes

Some basic theorems
Non-deterministic Space

The Reachability Method

Some basic theorems

Suppose that f(n) is a proper complexity function. Then:

(i) SPACE(f(n)) € NSPACE(f(n)) and TIME(f(n)) C NTIME(f(n)).
(i) NTIME(f(n)) C SPACE(f(n)).

(i) NSPACE(f(n)) C TIME(K'9 "+ (M),

Proof.

(i) and (i) are trivial. For (iii), assume that we are given a k-string NDTM M with input and output
that decides L in space f(n). A configuration of M can be described as
(q,i,Wz,Up,...,Wx_1,Ux_1), where 0 < i < n marks a position in the input string.

| \

Subramani Complexity Classes

Some basic theorems
Non-deterministic Space

The Reachability Method

Some basic theorems

Suppose that f(n) is a proper complexity function. Then:
(i) SPACE(f(n)) € NSPACE(f(n)) and TIME(f(n)) C NTIME(f(n)).
(i) NTIME(f(n)) C SPACE(f(n)).

(i) NSPACE(f(n)) C TIME(K'9 "+ (M),

Proof.

(i) and (i) are trivial. For (iii), assume that we are given a k-string NDTM M with input and output
that decides L in space f(n). A configuration of M can be described as
(q,i,Wz,Up,...,Wx_1,Ux_1), where 0 < i < n marks a position in the input string. Total number

of configurations = [K | x (n+ 1) x [E|@k=2f(0) — nc!(M _ ¢fntiogn,

Subramani Complexity Classes

Some basic theorems
Non-deterministic Space

The Reachability Method

Some basic theorems

Suppose that f(n) is a proper complexity function. Then:

(i) SPACE(f(n)) € NSPACE(f(n)) and TIME(f(n)) C NTIME(f(n)).
(i) NTIME(f(n)) C SPACE(f(n)).

(i) NSPACE(f(n)) C TIME(K'9 "+ (M),

Proof.

(i) and (i) are trivial. For (iii), assume that we are given a k-string NDTM M with input and output
that decides L in space f(n). A configuration of M can be described as
(q,i,Wz,Up,...,Wx_1,Ux_1), where 0 < i < n marks a position in the input string. Total number
of configurations = [K | x (n+ 1) x [E|@k=2f(0) — nc!(M _ ¢fntiogn,

Create the configuration graph G(M, x) on input x;

Subramani Complexity Classes

Some basic theorems
Non-deterministic Space

The Reachability Method

Some basic theorems

Suppose that f(n) is a proper complexity function. Then:

(i) SPACE(f(n)) € NSPACE(f(n)) and TIME(f(n)) C NTIME(f(n)).
(i) NTIME(f(n)) C SPACE(f(n)).

(i) NSPACE(f(n)) C TIME(K'9 "+ (M),

Proof.

(i) and (i) are trivial. For (iii), assume that we are given a k-string NDTM M with input and output
that decides L in space f(n). A configuration of M can be described as
(q,i,Wz,Up,...,Wx_1,Ux_1), where 0 < i < n marks a position in the input string. Total number
of configurations = [K | x (n+ 1) x |[E|@k=2f(1) — ne!(M _ ¢fntogn,

Create the configuration graph G(M, x) on input x; vertices are configurations and there exists an
edge from the vertex representing C; to the vertex representing C; if and only if C; —y Cs.

Subramani Complexity Classes

Some basic theorems
Non-deterministic Space

The Reachability Method

Some basic theorems

Suppose that f(n) is a proper complexity function. Then:
(i) SPACE(f(n)) € NSPACE(f(n)) and TIME(f(n)) C NTIME(f(n)).
(i) NTIME(f(n)) C SPACE(f(n)).

(i) NSPACE(f(n)) C TIME(K'9 "+ (M),

Proof.

(i) and (i) are trivial. For (iii), assume that we are given a k-string NDTM M with input and output
that decides L in space f(n). A configuration of M can be described as
(q,i,Wz,Up,...,Wx_1,Ux_1), where 0 < i < n marks a position in the input string. Total number
of configurations = [K | x (n+ 1) x |[E|@k=2f(1) — ne!(M _ ¢fntogn,

Create the configuration graph G(M, x) on input x; vertices are configurations and there exists an
edge from the vertex representing C; to the vertex representing C; if and only if C; —y Cs.

x € L if and only if there is a path from Co = (s, 0,>, ¢, ...,) tosome C = (“yes”,...,). |

Subramani Complexity Classes

Some basic theorems

The Reachability Method Non-deterministic Space

Some basic theorems (contd.)

Subramani Complexity Classes

Some basic theorems

The Reachability Method Non-deterministic Space

Some basic theorems (contd.)

(n)+logn

But now the problem is REACHABILITY in a graph with c; nodes.

Subramani Complexity Classes

Some basic theorems
Non-deterministic Space

Some basic theorems (contd.)

The Reachability Method

But now the problem is REACHABILITY in a graph with ¢! (19"

Cp - (clMHeIMy2 ¢, . 2(H(VHOIM _ i) +o9n time ysing a standard reachability algorithm.

nodes. Can be accomplished in

Subramani Complexity Classes

Some basic theorems
Non-deterministic Space

Some basic theorems (contd.)

The Reachability Method

But now the problem is REACHABILITY in a graph with ¢! (19"

Cp - (clMHeIMy2 ¢, . 2(H(VHOIM _ i) +o9n time ysing a standard reachability algorithm.

nodes. Can be accomplished in

L CNL C P C NP C PSPACE.

Subramani Complexity Classes

Some basic theorems

The Reachability Method Non-deterministic Space

Outline

@ The Reachability Method

@ Non-deterministic Space

Subramani Complexity Classes

Some basic theorems
Non-deterministic Space

The Reachability Method

Savitch’'s Theorem

REACHABILITY € SPACE(log?® n).

Subramani Complexity Classes

Some basic theorems
Non-deterministic Space

The Reachability Method

Savitch’'s Theorem

REACHABILITY € SPACE(log?® n).

Let G be a graph with n nodes and x,y € G.

Subramani Complexity Classes

Some basic theorems
Non-deterministic Space

The Reachability Method

Savitch’'s Theorem

REACHABILITY € SPACE(log?® n).

Proof.

Let G l_)e a graph with n nodes and x,y € G. PATH(X, Y, i) is true, if there is a path of length at
most 2' fromx toy in G.

Subramani Complexity Classes

Some basic theorems
Non-deterministic Space

The Reachability Method

Savitch’'s Theorem

REACHABILITY € SPACE(log?® n).

Proof.

Let G be a graph with n nodes and x,y € G. PATH(X, y, i) is true, if there is a path of length at
most 2' from x to y in G. REACHABILITY coincides with checking whether PATH(X, y, [logn]) is
true.

Subramani Complexity Classes

Some basic theorems
The Reachability Method ’ ¢ hee
Non-deterministic Space

Savitch’'s Theorem

REACHABILITY € SPACE(log?® n).

Proof.
Let G l_)e a graph with n nodes and x,y € G. PATH(X, Y, i) is true, if there is a path of length at
most 2' from x to y in G. REACHABILITY coincides with checking whether PATH(X, y, [logn]) is

true.
We design a 2-string Turing machine with input and output.

Subramani Complexity Classes

Some basic theorems
The Reachability Method ’ ¢ hee
Non-deterministic Space

Savitch’'s Theorem

REACHABILITY € SPACE(log?® n).

Proof.
Let G l_)e a graph with n nodes and x,y € G. PATH(X, Y, i) is true, if there is a path of length at
most 2' from x to y in G. REACHABILITY coincides with checking whether PATH(X, y, [logn]) is

true.
We design a 2-string Turing machine with input and output. The adjacency matrix of G is stored on

the input string.

Subramani Complexity Classes

Some basic theorems
The Reachability Method ’ ¢ hee
Non-deterministic Space

Savitch’'s Theorem

REACHABILITY € SPACE(log?® n).

Proof.
Let G l_)e a graph with n nodes and x,y € G. PATH(X, Y, i) is true, if there is a path of length at
most 2' from x to y in G. REACHABILITY coincides with checking whether PATH(X, y, [logn]) is

true.
We design a 2-string Turing machine with input and output. The adjacency matrix of G is stored on

the input string. The first string contains several triples with (x, y, i) denoting the first triple.

Subramani Complexity Classes

Some basic theorems
The Reachability Method ’ ¢ hee
Non-deterministic Space

Savitch’'s Theorem

REACHABILITY € SPACE(log?® n).

Proof.

Let G l_)e a graph with n nodes and x,y € G. PATH(X, Y, i) is true, if there is a path of length at
most 2' from x to y in G. REACHABILITY coincides with checking whether PATH(X, y, [logn]) is

true.
We design a 2-string Turing machine with input and output. The adjacency matrix of G is stored on

the input string. The first string contains several triples with (x, y, i) denoting the first triple. The
second string will be used as scratch space.

Subramani Complexity Classes

Some basic theorems
Non-deterministic Space

The Reachability Method

Savitch’'s Theorem

REACHABILITY € SPACE(log?® n).

Proof.

Let G l_)e a graph with n nodes and x,y € G. PATH(X, Y, i) is true, if there is a path of length at
most 2' from x to y in G. REACHABILITY coincides with checking whether PATH(X, y, [logn]) is

true.

We design a 2-string Turing machine with input and output. The adjacency matrix of G is stored on
the input string. The first string contains several triples with (x, y, i) denoting the first triple. The
second string will be used as scratch space.

Two cases to consider

Subramani Complexity Classes

Some basic theorems
Non-deterministic Space

The Reachability Method

Savitch’'s Theorem

REACHABILITY € SPACE(log?® n).

Proof.

Let G l_)e a graph with n nodes and x,y € G. PATH(X, Y, i) is true, if there is a path of length at
most 2' from x to y in G. REACHABILITY coincides with checking whether PATH(X, y, [logn]) is

true.

We design a 2-string Turing machine with input and output. The adjacency matrix of G is stored on
the input string. The first string contains several triples with (x, y, i) denoting the first triple. The
second string will be used as scratch space.

Two cases to consider

() i=0-

Subramani Complexity Classes

Some basic theorems
Non-deterministic Space

The Reachability Method

Savitch’'s Theorem

REACHABILITY € SPACE(log?® n).

Proof.

Let G l_)e a graph with n nodes and x,y € G. PATH(X, Y, i) is true, if there is a path of length at
most 2' from x to y in G. REACHABILITY coincides with checking whether PATH(X, y, [logn]) is

true.

We design a 2-string Turing machine with input and output. The adjacency matrix of G is stored on
the input string. The first string contains several triples with (x, y, i) denoting the first triple. The
second string will be used as scratch space.

Two cases to consider

(i) i =0- Checkif (x,y) is an edge!

Subramani Complexity Classes

Some basic theorems
Non-deterministic Space

The Reachability Method

Savitch’'s Theorem

REACHABILITY € SPACE(log?® n).

Proof.

Let G be a graph with n nodes and x,y € G. PATH(X, Y, i) is true, if there is a path of length at
most 2' from x to y in G. REACHABILITY coincides with checking whether PATH(X, y, [logn]) is
true.

We design a 2-string Turing machine with input and output. The adjacency matrix of G is stored on
the input string. The first string contains several triples with (x, y, i) denoting the first triple. The
second string will be used as scratch space.

Two cases to consider

(i) i =0- Checkif (x,y) is an edge!
(i) i >1-

Subramani Complexity Classes

Some basic theorems
Non-deterministic Space

The Reachability Method

Savitch’'s Theorem

REACHABILITY € SPACE(log?® n).

Proof.

Let G l_)e a graph with n nodes and x,y € G. PATH(X, Y, i) is true, if there is a path of length at
most 2' from x to y in G. REACHABILITY coincides with checking whether PATH(X, y, [logn]) is

true.

We design a 2-string Turing machine with input and output. The adjacency matrix of G is stored on
the input string. The first string contains several triples with (x, y, i) denoting the first triple. The
second string will be used as scratch space.

Two cases to consider

(i) i =0- Checkif (x,y) is an edge!

(ii) i > 1 - Implement the following recursion:
for all nodes z € G, test whether PATH(X, z,i — 1)APATH(z,y,i — 1).

Subramani Complexity Classes

Some basic theorems
Non-deterministic Space

The Reachability Method

Savitch’'s Theorem

REACHABILITY € SPACE(log?® n).

Proof.

Let G be a graph with n nodes and x,y € G. PATH(X, Y, i) is true, if there is a path of length at
most 2' from x to y in G. REACHABILITY coincides with checking whether PATH(X, y, [logn]) is
true.

We design a 2-string Turing machine with input and output. The adjacency matrix of G is stored on
the input string. The first string contains several triples with (x, y, i) denoting the first triple. The
second string will be used as scratch space.

Two cases to consider

(i) i =0- Checkif (x,y) is an edge!

(ii) i > 1 - Implement the following recursion:
for all nodes z € G, test whether PATH(X, z,i — 1)APATH(z,y,i — 1).

Implementing the recursion in a space efficient manner -

Subramani Complexity Classes

Some basic theorems
Non-deterministic Space

The Reachability Method

Savitch’'s Theorem

REACHABILITY € SPACE(log?® n).

Proof.

Let G be a graph with n nodes and x,y € G. PATH(X, Y, i) is true, if there is a path of length at
most 2' from x to y in G. REACHABILITY coincides with checking whether PATH(X, y, [logn]) is
true.

We design a 2-string Turing machine with input and output. The adjacency matrix of G is stored on
the input string. The first string contains several triples with (x, y, i) denoting the first triple. The
second string will be used as scratch space.

Two cases to consider

(i) i =0- Checkif (x,y) is an edge!

(ii) i > 1 - Implement the following recursion:
for all nodes z € G, test whether PATH(X, z,i — 1)APATH(z,y,i — 1).

Implementing the recursion in a space efficient manner - Generate all vertices z, one after the other

reusing space. Interpret positive and negative answers to PATH(X, z, i — 1) correctly.

Subramani Complexity Classes

Some basic theorems
Non-deterministic Space

The Reachability Method

Savitch’'s Theorem

REACHABILITY € SPACE(log?® n).

Proof.

Let G be a graph with n nodes and x,y € G. PATH(X, Y, i) is true, if there is a path of length at
most 2' from x to y in G. REACHABILITY coincides with checking whether PATH(X, y, [logn]) is
true.

We design a 2-string Turing machine with input and output. The adjacency matrix of G is stored on
the input string. The first string contains several triples with (x, y, i) denoting the first triple. The
second string will be used as scratch space.

Two cases to consider

(i) i =0- Checkif (x,y) is an edge!

(ii) i > 1 - Implement the following recursion:
for all nodes z € G, test whether PATH(X, z,i — 1)APATH(z,y,i — 1).

Implementing the recursion in a space efficient manner - Generate all vertices z, one after the other
reusing space. Interpret positive and negative answers to PATH(x, z, i — 1) correctly. Stack size is

at most log n triples of size 3log n each.

Subramani Complexity Classes

Some basic theorems
Non-deterministic Space

The Reachability Method

Savitch’'s Theorem

REACHABILITY € SPACE(log?® n).

Proof.

Let G be a graph with n nodes and x,y € G. PATH(X, Y, i) is true, if there is a path of length at
most 2' from x to y in G. REACHABILITY coincides with checking whether PATH(X, y, [logn]) is
true.

We design a 2-string Turing machine with input and output. The adjacency matrix of G is stored on
the input string. The first string contains several triples with (x, y, i) denoting the first triple. The
second string will be used as scratch space.

Two cases to consider

(i) i =0- Checkif (x,y) is an edge!

(ii) i > 1 - Implement the following recursion:
for all nodes z € G, test whether PATH(X, z,i — 1)APATH(z,y,i — 1).

Implementing the recursion in a space efficient manner - Generate all vertices z, one after the other
reusing space. Interpret positive and negative answers to PATH(x, z, i — 1) correctly. Stack size is

at most log n triples of size 3log n each. Thus, total space used is O(Iog2 n). O
. ot

Subramani Complexity Classes

Some basic theorems
Non-deterministic Space

The Reachability Method

Savitch’s theorem (contd.)

NSPACEf (n) C SPACE((f(n))?) for any proper complexity function f(n) > log n.

Subramani Complexity Classes

Some basic theorems
Non-deterministic Space

The Reachability Method

Savitch’s theorem (contd.)

NSPACEf (n) C SPACE((f(n))?) for any proper complexity function f(n) > log n.

Proof.

Given an f(n)-space bounded NDTM, simply run the previous algorithm on the configuration graph

G(M, x), where |x| = n.

Subramani Complexity Classes

Some & theorems
Non-deterministic Space

The Reachability Method

Savitch’s theorem (contd.)

NSPACEf (n) C SPACE((f(n))?) for any proper complexity function f(n) > log n.

Given an f(n)-space bounded NDTM, simply run the previous algorithm on the configuration graph
G(M, x), where |x| = n. Since G(M, |x|) has at most ¢/(™ nodes, O((f(n))?) space suffices. [

PSPACE = NPSPACE.

Subramani Complexity Classes

Some basic theorems
Non-deterministic Space

Counting the number of reachable nodes

The Reachability Method

Definition
A NDTM M is said to compute a function f from strings to strings, if all “yes” leaves have the output

f(x).

Subramani Complexity Classes

Some basic theorems
Non-deterministic Space

Counting the number of reachable nodes

The Reachability Method

A NDTM M is said to compute a function f from strings to strings, if all “yes” leaves have the output

f(x).

Theorem (Immerman-Szelepscényi Theorem)

Given a graph G with n nodes, and a node x € G, the number of nodes reachable from x in G can
be computed by a NDTM in space log n.

Subramani Complexity Classes

Some basic theorems
Non-deterministic Space

Counting the number of reachable nodes

The Reachability Method

A NDTM M is said to compute a function f from strings to strings, if all “yes” leaves have the output

f(x).

Theorem (Immerman-Szelepscényi Theorem)

Given a graph G with n nodes, and a node x € G, the number of nodes reachable from x in G can

be computed by a NDTM in space log n.

Proof.

Let S(i) denote the set of vertices that can be reached from x using paths of length at most i.

Subramani Complexity Classes

Some basic theorems
Non-deterministic Space

Counting the number of reachable nodes

The Reachability Method

A NDTM M is said to compute a function f from strings to strings, if all “yes” leaves have the output

f(x).

Theorem (Immerman-Szelepscényi Theorem)

Given a graph G with n nodes, and a node x € G, the number of nodes reachable from x in G can

be computed by a NDTM in space log n.

Proof.

Let S(i) denote the set of vertices that can be reached from x using paths of length at most i. We
are interested in |S(n — 1)|.

Subramani Complexity Classes

Some basic theorems
Non-deterministic Space

Counting the number of reachable nodes

The Reachability Method

A NDTM M is said to compute a function f from strings to strings, if all “yes” leaves have the output

f(x).

Theorem (Immerman-Szelepscényi Theorem)

Given a graph G with n nodes, and a node x € G, the number of nodes reachable from x in G can

be computed by a NDTM in space log n.

Proof.

Let S(i) denote the set of vertices that can be reached from x using paths of length at most i. We
are interested in |S(n — 1)|.

loop; : |S(0)| :=1;fori =1,2,...,n — 1: compute |[S(k)| from |S(k — 1)]. l

4

Subramani Complexity Classes

Some basic theorems
Non-deterministic Space

Counting the number of reachable nodes (contd.)

The Reachability Method

loop, : | := 0; for each nodeu = 1,2,...n:ifu € S(k), then| :=1+ 1.

Subramani Complexity Classes

Some basic theorems
Non-deterministic Space

Counting the number of reachable nodes (contd.)

The Reachability Method

loop, : | := 0; for each nodeu = 1,2,...n:ifu € S(k), then| :=1+ 1.
How to decide whether u € S(k)?

Subramani Complexity Classes

Some basic theorems
Non-deterministic Space

Counting the number of reachable nodes (contd.)

The Reachability Method

loop, : | := 0; for each nodeu = 1,2,...n:ifu € S(k), then| :=1+ 1.
How to decide whether u € S(k)?

loopz: m := 0; reply = false; for each node v = 1, 2, ... n repeat:

Subramani Complexity Classes

Some basic theorems
Non-deterministic Space

Counting the number of reachable nodes (contd.)

The Reachability Method

loop, : | := 0; for each nodeu = 1,2,...n:ifu € S(k), then| :=1+ 1.
How to decide whether u € S(k)?

loopz: m := 0; reply = false; for each node v = 1, 2, ... n repeat:
if v € S(k — 1) then m := m + 1. Further, if G(v, u), then reply = true.

Subramani Complexity Classes

Some basic theorems
Non-deterministic Space

Counting the number of reachable nodes (contd.)

The Reachability Method

loop, : | := 0; for each nodeu = 1,2,...n:ifu € S(k), then| :=1+ 1.
How to decide whether u € S(k)?

loopz: m := 0; reply = false; for each node v = 1, 2, ... n repeat:
if v € S(k — 1) then m := m + 1. Further, if G(v, u), then reply = true.
if at end, m < |S(k — 1)|, then “no”, else return reply.

Subramani Complexity Classes

Some basic theorems
Non-deterministic Space

Counting the number of reachable nodes (contd.)

The Reachability Method

loop, : | := 0; for each nodeu = 1,2,...n:ifu € S(k), then| :=1+ 1.
How to decide whether u € S(k)?

loopz: m := 0; reply = false; for each node v = 1, 2, ... n repeat:

if v € S(k — 1) then m := m + 1. Further, if G(v, u), then reply = true.
if at end, m < |S(k — 1)|, then “no”, else return reply.

How to check if v € S(k — 1)?

Subramani Complexity Classes

Some basic theorems
Non-deterministic Space

Counting the number of reachable nodes (contd.)

The Reachability Method

loop, : | := 0; for each nodeu = 1,2,...n:ifu € S(k), then| :=1+ 1.
How to decide whether u € S(k)?

loopz: m := 0; reply = false; for each node v = 1, 2, ... n repeat:

if v € S(k — 1) then m := m + 1. Further, if G(v, u), then reply = true.
if at end, m < |S(k — 1)|, then “no”, else return reply.

How to check if v € S(k — 1)?

Simple! Start at node x and guess k — 1 nodes.

Subramani Complexity Classes

Some basic theorems
Non-deterministic Space

Counting the number of reachable nodes (contd.)

The Reachability Method

loop, : | := 0; for each nodeu = 1,2,...n:ifu € S(k), then| :=1+ 1.
How to decide whether u € S(k)?

loopz: m := 0; reply = false; for each node v = 1, 2, ... n repeat:

if v € S(k — 1) then m := m + 1. Further, if G(v, u), then reply = true.
if at end, m < |S(k — 1)|, then “no”, else return reply.

How to check if v € S(k — 1)?

Simple! Start at node x and guess k — 1 nodes.
loops: wo :=x.forp=1,2,...k — 1:

Subramani Complexity Classes

Some basic theorems
Non-deterministic Space

Counting the number of reachable nodes (contd.)

The Reachability Method

loop, : | := 0; for each nodeu = 1,2,...n:ifu € S(k), then| :=1+ 1.
How to decide whether u € S(k)?

loopz: m := 0; reply = false; for each node v = 1, 2, ... n repeat:

if v € S(k — 1) then m := m + 1. Further, if G(v, u), then reply = true.
if at end, m < |S(k — 1)|, then “no”, else return reply.

How to check if v € S(k — 1)?

Simple! Start at node x and guess k — 1 nodes.
loops: wo :=x.forp=1,2,...k — 1:
guess a node w, and check that G(w,—1, Wp). (If not, return “no”).

Subramani Complexity Classes

Some basic theorems
Non-deterministic Space

Counting the number of reachable nodes (contd.)

The Reachability Method

loop, : | := 0; for each nodeu = 1,2,...n:ifu € S(k), then| :=1+ 1.
How to decide whether u € S(k)?

loopz: m := 0; reply = false; for each node v = 1, 2, ... n repeat:

if v € S(k — 1) then m := m + 1. Further, if G(v, u), then reply = true.
if at end, m < |S(k — 1)|, then “no”, else return reply.

How to check if v € S(k — 1)?

Simple! Start at node x and guess k — 1 nodes.

loops: wo :=x.forp=1,2,...k — 1:

guess a node w, and check that G(w,—1, Wp). (If not, return “no”).
ifwg_1 = v, thenreportv € Sy_, else “no”.

Subramani Complexity Classes

Some basic theorems
Non-deterministic Space

Consequences of counting theorem

The Reachability Method

If f(n) > logn is a proper complexity function, then NSPACE(f(n)) = coNSPACE(f(n)).

Subramani Complexity Classes

Some basic theorems
Non-deterministic Space

Consequences of counting theorem

The Reachability Method

If f(n) > logn is a proper complexity function, then NSPACE(f(n)) = coNSPACE(f(n)).

Let L € NSPACE(f(n)), i..e, L is decided by a NDTM M that is f(n)-space bounded.

Subramani Complexity Classes

Some basic theorems
Non-deterministic Space

Consequences of counting theorem

The Reachability Method

If f(n) > logn is a proper complexity function, then NSPACE(f(n)) = coNSPACE(f(n)).

Proof.

Let L € NSPACE(f(n)), i..e, L is decided by a NDTM M that is f(n)-space bounded. We construct
an NDTM M to decide L as follows:

Subramani Complexity Classes

Some basic theorems
The Reachability Method Non-deterministic Space

Consequences of counting theorem

If f(n) > logn is a proper complexity function, then NSPACE(f(n)) = coNSPACE(f(n)).

Proof.

Let L € NSPACE(f(n)), i..e, L is decided by a NDTM M that is f(n)-space bounded. We construct
an NDTM M to decide L as follows: Simply run the algorithm of the Immerman-Szelepscényi

theorem on G(M, x)!

Subramani Complexity Classes

Some basic theorems
Non-deterministic Space

Consequences of counting theorem

The Reachability Method

If f(n) > logn is a proper complexity function, then NSPACE(f(n)) = coNSPACE(f(n)).

Proof.

Let L € NSPACE(f(n)), i..e, L is decided by a NDTM M that is f(n)-space bounded. We construct
an NDTM M to decide L as follows: Simply run the algorithm of the Immerman-Szelepscényi
theorem on G(M, x)! If M discovers an accepting configuration in any S(k),k =0,1,...,n — 1,
then it halts and rejects.

Subramani Complexity Classes

Some basic theorems
The Reachability Method ’ ole meo
Non-deterministic Space

Consequences of counting theorem

If f(n) > logn is a proper complexity function, then NSPACE(f(n)) = coNSPACE(f(n)).

Proof.

Let L € NSPACE(f(n)), i..e, L is decided by a NDTM M that is f(n)-space bounded. We construct
an NDTM M to decide L as follows: Simply run the algorithm of the Immerman-Szelepscényi
theorem on G(M, x)! If M discovers an accepting configuration in any S(k),k =0,1,...,n — 1,
then it halts and rejects. The other possibility is that |S(n — 1)| is computed and no accepting
configuration is discovered, in which case M accepts.

Subramani Complexity Classes

Some basic theorems
Non-deterministic Space

Consequences of counting theorem

The Reachability Method

If f(n) > logn is a proper complexity function, then NSPACE(f(n)) = coNSPACE(f(n)).

Proof.

Let L € NSPACE(f(n)), i..e, L is decided by a NDTM M that is f(n)-space bounded. We construct
an NDTM M to decide L as follows: Simply run the algorithm of the Immerman-Szelepscényi
theorem on G(M, x)! If M discovers an accepting configuration in any S(k),k =0,1,...,n — 1,
then it halts and rejects. The other possibility is that |S(n — 1)| is computed and no accepting
configuration is discovered, in which case M accepts.

We have thus shown that NSPACE(f(n)) € coNSPACE(f(n)). The reverse direction can be proved
in identical fashion.
O

Subramani Complexity Classes

	Outline
	Main Talk
	The Reachability Method
	Some basic theorems
	Non-deterministic Space

